
Journal of Parallel and Distributed Computing 163 (2022) 147–155

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Pipelined Preconditioned Conjugate Gradient Methods for real and 

complex linear systems for distributed memory architectures

Manasi Tiwari ∗, Sathish Vadhiyar

Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 July 2021
Received in revised form 22 December 2021
Accepted 19 January 2022
Available online 29 January 2022

Keywords:
Preconditioned Conjugate Gradient
Pipelining
Overlapping communication and 
computations
Complex Hermitian positive definite 
systems
Complex symmetric systems

Preconditioned Conjugate Gradient (PCG) is a popular method for solving large and sparse linear systems 
of equations. The performance of PCG at scale is affected due to the costly global synchronization steps 
that arise in dot-products on distributed memory systems. Pipelined PCG (PIPECG) removes the costly 
global synchronization steps from PCG by only executing a single non-blocking allreduce per iteration 
and overlapping it with independent computations.
In our previous work, we have developed a novel pipelined PCG algorithm called PIPECG-OATI (One 
Allreduce per Two Iterations) for real linear systems which executes a single non-blocking allreduce per 
two iterations and provides a large overlap of global communication with independent computations 
at higher number of cores. Our method achieves this overlap by using iteration combination and 
by introducing new recurrence and non-recurrence computations. We implement optimizations in the 
PIPECG-OATI method to use cache memory efficiently.
In this work, we present PIPECG-OATI-c method for linear systems with complex Hermitian positive 
definite and complex symmetric matrices. We compare our method with various pipelined CG methods 
on a variety of problems and demonstrate that our method always gives the least run times. We 
performed experiments with our method using 20M and 30M unknowns on up to 16K cores and obtained 
up to 2.48X performance improvement over PCG and 2.14X performance improvement over PIPECG 
methods. We also experimented with up to 1-billion unknowns on 16K cores, the largest problem size 
explored for the CG problem, to our knowledge, and obtained about 25% improvement over PCG.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

High performance computing applications in Computational 
Fluid Dynamics, Computational Electromagnetics etc. solve partial 
differential equations (PDEs) over space and time. These PDEs are 
discretized using finite volume, finite element or finite difference 
methods and they result in a linear system of equations Ax = b. 
Generally, the coefficient matrix A obtained from these discretiza-
tion schemes is large and sparse. Iterative methods are used to 
solve these linear systems of equations with large and sparse ma-
trices. In iterative methods, we begin with an initial solution x0
and reduce the error in solution until it reaches the user defined 
error tolerance. The most widely used iterative methods used for 
solving these sparse systems are Krylov Subspace methods. The 
basic idea behind Krylov methods when solving a linear system 
Ax = b is to build a solution within the Krylov subspace com-

* Corresponding author.
E-mail addresses: manasitiwari@iisc.ac.in (M. Tiwari), vss@iisc.ac.in (S. Vadhiyar).
https://doi.org/10.1016/j.jpdc.2022.01.008
0743-7315/© 2022 Elsevier Inc. All rights reserved.
posed of several powers of matrix A multiplied by vector b, that 
is, {b, Ab, A2b, ..., Amb}.

Conjugate Gradient (CG) [18] [26] method is one of the widely 
used Krylov Subspace methods and is used to find the solution of 
linear systems with large and sparse positive definite matrices. In 
exact arithmetic, CG gives the solution of a system of size N in N 
steps. A preconditioner can be applied to the system to condition 
the input system and to improve convergence.

CG method is used to solve linear systems with real coefficient 
matrices which are symmetric (A = AT ) and positive definite. The 
coefficient matrix A is usually real, but complex matrices do oc-
cur, for example, in computational electromagnetics. CG method 
can also be used to solve linear systems with complex coefficient 
matrices. Two types of complex linear systems occur, linear sys-
tems with complex Hermitian positive definite matrices (A = AT ) 
and linear systems with complex symmetric matrices (A = AT ). 
CG method has been successfully used for the solution of linear 
systems with large and sparse Hermitian positive definite matri-
ces in [27][3]. The method, in its classical form, cannot be used to 

https://doi.org/10.1016/j.jpdc.2022.01.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.01.008&domain=pdf
mailto:manasitiwari@iisc.ac.in
mailto:vss@iisc.ac.in
https://doi.org/10.1016/j.jpdc.2022.01.008


M. Tiwari and S. Vadhiyar Journal of Parallel and Distributed Computing 163 (2022) 147–155
solve linear systems with complex symmetric matrices as shown 
in [20][15]. However, some linear systems with complex symmet-
ric matrices can be solved using the CG method by changing the 
dot product formulation for the complex vectors [4–6].

The main computational kernels in Preconditioned Conjugate 
Gradient (PCG) are Sparse Matrix Vector Product (SPMV), Precon-
ditioner Application (PC), Vector-Multiply-Adds (VMAs) and Dot 
Products. The dot products use allreduce operations in distributed 
memory systems. The scalability bottleneck in PCG is the syn-
chronization that happens across all cores due to the allreduce 
operations in the algorithm. Hence, existing works by Saad [25], 
Meurant [21], Azevedo et al. [12] and Chronopoulos et al. [8] had 
worked on reducing the number of allreduces to one per iteration 
as opposed to the three that exists in the original PCG.

The overlap of allreduce with useful work has been made pos-
sible by the advent of non-blocking collectives like MPI_IAllreduce 
in the MPI-3 standard [1]. Gropp’s Asynchronous PCG [17] was 
the first work to use non-blocking collectives to overlap allre-
duces with computation. It used the original PCG consisting of 
three allreduces per iteration and introduced inexpensive Vector-
Multiply-Add (VMA) operations to eliminate the dependencies that 
prevent the overlap. The resulting algorithm is then able to over-
lap one allreduce with SPMV and the other two with PC. Pipelined 
PCG (PIPECG) proposed by Ghysels et al. [16], on which this work 
is based, uses Chronopoulos-Gear PCG [8] which has one allreduce 
per iteration. By introducing extra VMAs, it overlaps this allre-
duce with a PC and an SPMV. Pipelined PCG with deeper pipelines 
(PIPELCG) was introduced in [11][10] in order to overlap more 
work with allreduce at higher core counts. It starts with Gener-
alized Minimal Residual (GMRES) as the base algorithm. Another 
variant of CG which has only one allreduce per iteration is the 
three-term recurrence variant. However, this has been shown to 
have lower accuracy than the original three two-term recurrence 
PCG variants. A pipelined version of this variant (PIPECG3) was 
proposed by Eller et al. [14]. It overlaps the single allreduce with 
two PCs and two SPMVs.

This work is an extension of our previous work [29] in which 
we proposed a novel pipelined PCG method for distributed mem-
ory systems, called PIPECG-OATI (PIPECG-One Allreduce per Two 
Iterations) obtained by combining iterations and by introducing 
new recurrence and non-recurrence computations. In PIPECG-OATI, 
we reduce the number of allreduces to one per two iterations and 
overlap this allreduce with two PCs and two SPMVs.

The PIPECG-OATI method presented in our previous work [29]
was derived and tested for real linear systems with symmetric pos-
itive definite matrices. In this work, we extend the PIPECG-OATI 
method to support linear systems with complex Hermitian positive 
definite and complex symmetric matrices and call it the PIPECG-
OATI-c (‘c’ for complex systems) method. For providing support for 
complex Hermitian positive definite systems, extra dot products 
are introduced in PIPECG-OATI so that the method is arithmetically 
equivalent to the PCG and PIPECG methods. For providing support 
for complex symmetric systems, the formulation of complex dot 
products is changed.

We compared the performance of the PIPECG-OATI-c method 
with other PCG variants. We performed experiments with our 
method using 20M and 30M unknowns on up to 16K cores and ob-
tained up to 2.48X performance improvement over PCG and 2.14X 
performance improvement over PIPECG methods. We also experi-
mented with up to 1-billion unknowns on 16K cores, the largest 
problem size explored for the CG problem, to our knowledge, and 
obtained about 25% improvement over PCG. We also performed 
weak scaling results with 1250 rows per core on up to 16K cores 
and our method performed at least 15% better than the other 
methods at all the core counts. Our method also reaches the accu-
148
Algorithm 1 Preconditioned Conjugate Gradient (PCG).
1: r0 = b − Ax0; u0 = M−1r0;
2: γ0 = (u0, r0); norm0 = √

(u0, u0)

3: for i=0,1... do
4: if i > 0 then
5: βi = γi/γi−1
6: else
7: βi = 0
8: end if
9: pi = ui + βi pi−1

10: s = Api

11: δ = (s, pi)

12: MPI_Allreduce on δ
13: α = γi/δ

14: xi+1 = xi + αpi

15: ri+1 = ri − αs
16: ui+1 = M−1ri+1
17: γi+1 = (ui+1, ri+1);
18: MPI_Allreduce on γi+1
19: normi+1 = √

(ui+1, ui+1)

20: MPI_Allreduce on normi+1
21: end for

racy values used in practical problems the fastest when compared 
to the other methods.

The rest of the paper is organized as follows: Section 2 gives 
background related to PCG and PIPECG, Section 3 describes our al-
gorithms for PIPECG-OATI and PIPECG-OATI-c methods. Section 4
presents the analysis and comparison of our method compared to 
other works. Section 5 presents the optimizations we have imple-
mented in our method. Section 6 presents experiments, results and 
discussions for our proposed methods and Section 7 gives the con-
clusions and future work.

2. Background

2.1. PCG method

The Preconditioned Conjugate Gradient Method (PCG) intro-
duced by Hestenes and Stiefel [18] is given in Algorithm 1. It it-
eratively solves the preconditioned system M−1 Ax = M−1b where 
both A and M are symmetric and positive definite square matrices 
of size N × N. As shown in Algorithm 1, the computational ker-
nels in PCG’s f or loop are Sparse Matrix Vector Product (SPMV) in 
line 10, Preconditioner Application (PC) in line 16, Vector-Multiply-
Adds (VMAs) in lines 9, 14 and 15 and dot products in lines 11, 17 
and 19. Note that the third dot product (line 19) is for calculating 
the residual norm which is used to check for convergence.

2.2. Impact of ordering, partitioning and preconditioning strategies

The performance of the SPMV kernel has been shown to be de-
pendent on ordering of the rows in the matrix [23][30]. The A
matrix derived from a PDE can, possibly after a permutation of 
rows, be mapped to the underlying machine architecture in such a 
way that the SPMV only requires communication between neigh-
boring nodes, i.e. nodes that are separated by a small number 
of hops. Such permutation of rows can also significantly reduce 
the communication volume between these neighboring nodes. In 
this work, we don’t explicitly change the permutation of the rows 
of the A matrix because we work with well structured matrices 
which only require communication with the neighboring nodes 
and also have low communication volumes. Moreover, our work 
is intended for generic network architectures. Further, our meth-
ods can be used together with any elaborate reordering procedures 
applied on the matrix.

The performance of the SPMV kernel also depends on the par-
titioning strategies used as shown in [7][24]. In this work, we use 
the PETSc library [4] to handle all the underlying communication 



M. Tiwari and S. Vadhiyar Journal of Parallel and Distributed Computing 163 (2022) 147–155
Algorithm 2 Pipelined Preconditioned Conjugate Gradient 
(PIPECG).

1: r0 = b − Ax0; u0 = M−1r0; w0 = Au0;
2: γ0 = (r0, u0); δ = (w0, u0); norm0 = √

(u0, u0)

3: m0 = M−1 w0; n0 = Am0

4: for i=0,1... do
5: if i > 0 then
6: βi = γi/γi−1; αi = γi/(δ − βiγi/alphai−1);
7: else
8: βi = 0; αi = γi/δ

9: end if
10: zi = ni + βi zi−1
11: qi = mi + βiqi−1
12: si = wi + βi si−1
13: pi = ui + βi pi−1
14: xi+1 = xi + αi pi

15: ri+1 = ri − αi si

16: ui+1 = ui − αiqi

17: wi+1 = wi − αi zi

18: γi+1 = (ri+1, ui+1)

19: δ = (wi+1, ui+1)

20: normi+1 = √
(ui+1, ui+1)

21: MPI_Iallreduce on γi+1, δ, normi+1
22: mi+1 = M−1 wi+1
23: ni+1 = Ami+1
24: end for

in the SPMV kernel. PETSc, by default, employs a 1-dimensional 
block-row distribution of the matrices and 1-dimensional distribu-
tion of the vectors as well. There is one vector that needs to be 
replicated at every process for the SPMV kernel and the communi-
cation for that replication is handled by PETSc. There are different 
matrix partitioning techniques supported in PETSc. In this work, 
we use the default 1-d distribution of the matrices as our aim is 
not to reduce communication within the SPMV kernel itself but to 
overlap the global communication with computations in the iter-
ative solver as a whole. Our methods can be used in conjunction 
with any partitioning strategies.

The performance of the CG method depends on the precon-
ditioner (PC) used as shown in [28][19][9]. Different PCs would 
converge in different number of iterations with the CG method. 
The volume and pattern of communications depend on the type 
of PC that is employed. We use PETSc’s Jacobi PC for all our tests 
since our objective is to minimize global communication patterns. 
Our methods can be used together with any preconditioners that 
can be applied to the CG method.

2.3. Overlapping non-blocking allreduce with computations

VMAs require no communication. Dot products use allreduce 
which requires all the processors to synchronize and send their lo-
cal dot products so that the global dot product can be calculated. 
In the original PCG Algorithm 1, the allreduce used in the dot 
products cannot be overlapped with any work because the results 
of the dot products are needed immediately in the next step. So 
the cores remain idle till the communication for calculating global 
dot product completes. Also, there are three allreduces per itera-
tion in PCG, so the cores have to incur synchronization and idling 
cost thrice. As the number of cores increase, the time taken for 
allreduce increases, thus the cores remain idle for a longer time 
and this becomes the bottleneck and hinders obtaining good per-
formance for PCG at higher number of cores.

2.4. PIPECG method

The Pipelined Preconditioned Conjugate Gradient Method
(PIPECG) was proposed by Ghysels and Vanroose [16] for obtaining 
performance improvements on distributed memory architectures. 
As shown in Algorithm 2, PIPECG introduces extra AXPY operations 
(lines 10, 11, 12, 16, 17) to remove the dependencies between 
149
Algorithm 3 PIPECG Method: two iterations unrolled.
1: r0 = b − Ax0; u0 = M−1r0; w0 = Au0;
2: γ0 = (r0, u0); δ0 = (w0, u0); norm0 = √

(u0, u0)

3: m0 = M−1 w0; n0 = Am0

4: for i=0,2,4,... do
5: if i > 0 then
6: βi = γi/γi−1; αi = γi/(δi − βiγi/αi−1);
7: else
8: βi = 0; αi = γi/δi

9: end if
10: zi = ni + βi zi−1; qi = mi + βiqi−1; si = wi + βi si−1
11: pi = ui + βi pi−1; xi+1 = xi + αi pi ; ri+1 = ri − αi si

12: ui+1 = ui − αiqi ; wi+1 = wi − αi zi

13: γi+1 = (ri+1, ui+1); δi+1 = (wi+1, ui+1); normi+1 = √
(ui+1, ui+1)

14: MPI_Iallreduce on γi+1, δi+1, normi+1
15: mi+1 = M−1 wi+1; ni+1 = Ami+1
16: βi+1 = γi+1/γi ; αi+1 = γi+1/(δi+1 − βi+1γi+1/αi);
17: zi+1 = ni+1 + βi+1 zi ; qi+1 = mi+1 + βi+1qi

18: si+1 = wi+1 + βi+1si ; pi+1 = ui+1 + βi+1 pi

19: xi+2 = xi+1 + αi+1 pi+1; ri+2 = ri+1 − αi+1si+1
20: ui+2 = ui+1 − αi+1qi+1; wi+2 = wi+1 − αi+1 zi+1
21: γi+2 = (ri+2, ui+2); δi+2 = (wi+2, ui+2); normi+2 = √

(ui+2, ui+2)

22: MPI_Iallreduce on γi+2, δi+2, normi+2
23: mi+2 = M−1 wi+2; ni+2 = Ami+2
24: end for

the dot products and PC and SPMV so that PC and SPMV can 
be computed while the communication for dot products is be-
ing completed, thereby increasing the utilization of the cores. The 
MPI_Iallreduce (line 21) for the dot products (line 18, 19, 20) can 
be overlapped with the PC and SPMV (line 22, 23).

The PIPECG method overlaps a single MPI_Iallreduce with one 
PC and one SPMV. While this is a reasonable strategy for lower 
number of cores, when we run the PIPECG code at higher num-
ber of cores, the time taken by the MPI_Iallreduce can not be fully 
overlapped by the PC and SPMV. In order to hide the latency in-
troduced by MPI_Iallreduce at higher number of cores, we must 
overlap it with more work.

3. Methodology

We present a brief derivation of PIPECG-OATI method in Sec-
tion 3.1 and a derivation of PIPECG-OATI-c method in sections 3.2
and 3.3.

3.1. PIPECG-OATI method for real linear systems

We propose a novel algorithm in [29], PIPECG-OATI, which com-
bines two iterations of PIPECG, reduces the number of MPI_Iallre-
duce to one per two iterations and then overlaps it with two PCs 
and two SPMVs. This is done at the cost of introducing extra VMA 
operations. The primary challenge in combining two iterations of 
PIPECG and pipelining it is that it has dependencies that require 
an extra PC and an extra SPMV for each combined-iteration. So, 
a total of three PCs and three SPMVs would be required in a 
combined-iteration as opposed to two PCs and two SPMVs in two 
uncombined iterations. Since the PC and SPMV are the most com-
putationally intensive kernels in each iteration, an extra PC and 
SPMV would degrade the performance of PIPECG-OATI. To deal 
with this challenge, we introduced new non-recurrence compu-
tations in each iteration of PIPECG-OATI which brings down the 
number of PCs and SPMVs to two per combined-iteration. To find a 
detailed derivation of the PIPECG-OATI method for real linear sys-
tems, please refer to our previous work [29].

In Algorithm 3, we unroll two iterations of PIPECG. Following 
are steps for deriving PIPECG-OATI from Algorithm 3.

1. Move the PC, mi+1 and SPMV, ni+1 (line 15) after the PC, mi+2
and SPMV, ni+2 (line 23) by introducing recurrence relations 
for them.



M. Tiwari and S. Vadhiyar Journal of Parallel and Distributed Computing 163 (2022) 147–155
Algorithm 4 PIPECG-OATI (PIPECG-One Allreduce per Two Itera-
tions): After Step 4.

1: r0 = b − Ax0; u0 = M−1r0; w0 = Au0;
2: γ0 = λ7 = (r0, u0); δ0 = λ8 = (w0, u0); norm0 = real(

√
λ9) = real(

√
(u0, u0))

3: m0 = M−1 w0; n0 = Am0; g0 = M−1n0; h0 = Ag0; e0 = M−1h0; f0 = Ae0

4: λ1 = (w0, m0); λ4 = (n0, m0)

5: for i=0,2,4,... do
6: if i > 0 then
7: βi = γi/γi−1; αi = γi/(δi − βiγi/αi−1);
8: else
9: βi = 0; αi = γi/δi

10: end if
11: γi+1 = λ7 − 2αi(λ8 + βiλ0) + αi

2(λ1 + 2 ∗ βiλ2 + βi
2λ3)

12: δi+1 = λ8 − αi(λ1 + βiλ2) − αi(λ1 + βiλ2) + αi
2(λ4 + βiλ5 + βiλ5 + βi

2λ6)

13: βi+1 = γi+1/γi ; αi+1 = γi+1/(δi+1 − βi+1γi+1/αi);
14: VecOps
15: MPI_Iallreduce on λ0, λ1...λ9

16: gi+2 = M−1ni+2; hi+2 = Agi+2
17: ei+2 = M−1hi+2; f i+2 = Aei+2
18: ai+1 = (gi+1 − gi+2)/αi+1
19: bi+1 = (hi+1 − hi+2)/αi+1
20: γi+2 = λ7; δi+2 = λ8; normi+2 = √

λ9

21: end for

Algorithm 5 VecOps.
1: zi = ni + βi zi−1; qi = mi + βiqi−1; si = wi + βi si−1
2: pi = ui + βi pi−1; ci = gi + βi ci−1; di = hi + βidi−1;
3: ai = ei + βiai−1; bi = f i + βibi−1;
4: xi+1 = xi + αi pi ; ri+1 = ri − αi si

5: ui+1 = ui − αiqi ; wi+1 = wi − αi zi

6: mi+1 = mi − αi ci ; ni+1 = ni − αidi

7: gi+1 = gi − αiai ; hi+1 = hi − αibi

8: zi+1 = ni+1 + βi+1 zi ; qi+1 = mi+1 + βi+1qi ;
9: si+1 = wi+1 + βi+1si pi+1 = ui+1 + βi+1 pi ;

10: ci+1 = gi+1 + βi+1ci ; di+1 = hi+1 + βi+1di ;
11: xi+2 = xi+1 + αi+1 pi+1; ri+2 = ri+1 − αi+1si+1
12: ui+2 = ui+1 − αi+1qi+1; wi+2 = wi+1 − αi+1 zi+1
13: mi+2 = mi+1 − αi+1ci+1; ni+2 = ni+1 − αi+1di+1
14: λ0 = (ui+2, si+1); λ1 = (wi+2, mi+2);
15: λ2 = (wi+2, qi+1); λ3 = (si+1, qi+1);
16: λ4 = (ni+2, mi+2); λ5 = (ni+2, qi+1);
17: λ6 = (zi+1, qi+1); λ7 = (ri+2, ui+2);
18: λ8 = (ui+2, wi+2); λ9 = (ui+2, ui+2);

2. Express the dot products γi+1, δi+1 and normi+1 (line 13) as 
recurrence relations and move the resulting new dot prod-
ucts after the previous iteration’s dot products γi+2, δi+2 and 
normi+2 (line 21).

3. As the new dot products will need results of PC, mi+2 and 
SPMV, ni+2 beforehand, introduce recurrence relations for 
these PC and SPMV.

4. To deal with extra PC, ai+1 and SPMV, bi+1, introduce new 
non-recurrence computations.

Algorithm 4 captures all the above mentioned reorganizations, 
new recurrence relations and new non-recurrence computations. 
Putting it all together, PIPECG-OATI overlaps one MPI_Iallreduce 
(line 15) with two PCs and two SPMVs (lines 16 and 17) at the 
cost of introducing 21 new Vector Operations and 7 new dot prod-
ucts (shown in Algorithm 5) which can be computed with a single 
allreduce.

3.2. PIPECG-OATI-c method for complex Hermitian systems

The PIPECG-OATI-c method for complex Hermitian positive def-
inite systems can be derived by following the same steps as listed 
in Section 3.1. However, step 2 cannot be exactly followed for com-
plex Hermitian systems. For PIPECG-OATI-c to be computationally 
equivalent to PCG and other pipelined CG variants, we have to add 
extra dot products.
150
In a complex Hermitian system, the coefficient matrix A, the 
preconditioner M−1 and the vectors have complex entries. For 
complex vectors a and b, the dot product is defined as:

a · b = (a,b), where b is the complex conjugate of b.

In order to compute γi+1 in Section 3.1 of our previous work 
[29], we substitute the full equations of ri+1 and ui+1:

γi+1 = ri+1 · ui+1 = (ri − αi si) · (ui − αiqi)

= ri · ui − αi(ri · qi) − αi(si · ui) + α2
i (si · qi).

Further, we used the equality q = M−1s for the following trans-
formation.

ri · qi = ri · M−1si = M−1ri · si = ui · si = si · ui .

Thus we obtained the following equation involving less number 
of dot products.

γi+1 = ri · ui − 2αi(si · ui) + αi
2(si · qi)

For real systems, ui · si = si · ui . But for complex Hermitian sys-
tems, this relation does not hold true because complex dot prod-
ucts are non-commutative.

ui · si = (ui, si).

si · ui = (si, ui).

We used the transformation for the real case because it reduced 
the number of dot products that we had to calculate. However, for 
complex Hermitian systems, even after applying the transforma-
tion we will have to calculate two dot products, si · ui and ui · si . 
For complex Hermitian systems, γi+1 will be

γi+1 = ri · ui − αi(ui · si) − αi(si · ui) + α2
i (si · qi).

We further simplify ui · si as

ui · si = ui · (wi + βi si−1) = ui · wi + βi(ui · si−1)

We further simplify si · ui as

si · ui = (wi + βi si−1) · ui = wi · ui + βi(si−1 · ui)

We further simplify si · qi as

si · qi = (wi + βi si−1) · (mi + βiqi−1)

= wi · mi + βi(wi · qi−1) + βi(si−1 · mi) + β2
i (si−1 · qi−1).

Substituting values of ui · si , si · ui and si · qi in γi+1, we obtain

γi+1 = ri · ui − αi(ui · wi + βi(ui · si−1))

− αi(wi · ui + βi(si−1 · ui)) + α2
i (wi · mi + βi(wi · qi−1)

+ βi(si−1 · mi) + β2
i (si−1 · qi−1))

Now, expressing δi+1 by substituting the full equations of wi+1

and ui+1,

δi+1 = wi+1 · ui+1 = (wi − αi zi) · (ui − αiqi)

= wi · ui − αi(wi · qi) − αi(zi · ui) + α2
i (zi · qi).

We further simplify wi · qi as

wi · qi = wi · (mi + βiqi−1) = wi · mi + βi(wi · qi−1)

We further simplify zi · ui as

zi · ui = (ni + βi zi−1) · ui = ni · ui + βi(zi−1 · ui)



M. Tiwari and S. Vadhiyar Journal of Parallel and Distributed Computing 163 (2022) 147–155
Algorithm 6 PIPECG-OATI-c Method.
1: r0 = b − Ax0; u0 = M−1r0; w0 = Au0;
2: γ0 = λ10 = (r0, u0); δ0 = λ11 = (w0, u0); norm0 = real(

√
λ12) = real(

√
(u0, u0))

3: m0 = M−1 w0; n0 = Am0; g0 = M−1n0; h0 = Ag0; e0 = M−1h0; f0 = Ae0

4: λ1 = (w0, m0); λ6 = (n0, m0); λ13 = (u0, w0)

5: for i=0,2,4,... do
6: if i > 0 then
7: βi = γi/γi−1; αi = γi/(δi − βiγi/αi−1);
8: else
9: βi = 0; αi = γi/δi

10: end if
11: γi+1 = λ10 −αi(λ13 +βiλ14) −αi(λ11 +βiλ0) +αi

2(λ1 +βiλ2 +βiλ3 +βi
2λ4)

12: δi+1 = λ11 − αi(λ1 + βiλ2) − αi(λ5 + βiλ3) + αi
2(λ6 + βiλ7 + βiλ8 + βi

2λ9)

13: βi+1 = γi+1/γi ; αi+1 = γi+1/(δi+1 − βi+1γi+1/αi);
14: VecOps
15: MPI_Iallreduce on λ0, λ1...λ14

16: gi+2 = M−1ni+2; hi+2 = Agi+2
17: ei+2 = M−1hi+2; f i+2 = Aei+2
18: ai+1 = (gi+1 − gi+2)/αi+1
19: bi+1 = (hi+1 − hi+2)/αi+1
20: γi+2 = λ10; δi+2 = λ11; normi+2 = real(

√
λ12)

21: end for

Algorithm 7 VecOps.
1: zi = ni + βi zi−1; qi = mi + βiqi−1; si = wi + βi si−1
2: pi = ui + βi pi−1; ci = gi + βi ci−1; di = hi + βidi−1;
3: ai = ei + βiai−1; bi = f i + βibi−1;
4: xi+1 = xi + αi pi ; ri+1 = ri − αi si

5: ui+1 = ui − αiqi ; wi+1 = wi − αi zi

6: mi+1 = mi − αi ci ; ni+1 = ni − αidi

7: gi+1 = gi − αiai ; hi+1 = hi − αibi

8: zi+1 = ni+1 + βi+1 zi ; qi+1 = mi+1 + βi+1qi ;
9: si+1 = wi+1 + βi+1si pi+1 = ui+1 + βi+1 pi ;

10: ci+1 = gi+1 + βi+1ci ; di+1 = hi+1 + βi+1di ;
11: xi+2 = xi+1 + αi+1 pi+1; ri+2 = ri+1 − αi+1si+1
12: ui+2 = ui+1 − αi+1qi+1; wi+2 = wi+1 − αi+1 zi+1
13: mi+2 = mi+1 − αi+1ci+1; ni+2 = ni+1 − αi+1di+1
14: λ0 = (si+1, ui+2); λ1 = (wi+2, mi+2); λ2 = (wi+2, qi+1);
15: λ3 = (si+1, mi+2); λ4 = (si+1, qi+1); λ5 = (ni+2, ui+2);
16: λ6 = (ni+2, mi+2); λ7 = (ni+2, qi+1); λ8 = (zi+1, mi+1);
17: λ9 = (zi+2, qi+2); λ10 = (ri+2, ui+2); λ11 = (wi+2, ui+2);
18: λ12 = (ui+2, ui+2); λ13 = (ui+2, wi+2); λ14 = (ui+2, si+1);

We further simplify zi · qi as

zi · qi = (ni + βi zi−1) · (mi + βiqi−1)

= ni · mi + βi(ni · qi−1) + βi(zi−1 · mi) + β2
i (zi−1 · qi−1).

Substituting values of wi · qi , zi · ui and zi · qi in δi+1, we obtain

δi+1 = wi · ui − αi(wi · mi + βi(wi · qi−1))

− αi(ni · ui + βi(zi−1 · ui)) + α2
i (ni · mi + βi(ni · qi−1)

+ βi(zi−1 · mi) + β2
i (zi−1 · qi−1))

We can further transform zi−1 · ui into si−1 · mi by using some 
equalities

zi−1 · ui = Aqi−1 · ui = qi−1 · Aui = qi−1 · wi = M−1si−1 · wi

= si−1 · M−1 wi = si−1 · mi .

Because of the above transformation, we don’t have to compute 
zi−1 · ui separately because we are already computing si−1 · mi for 
γi+1. Combined with the dot products of the previous iteration, we 
need to calculate a total of fifteen dot products stored in an array 
λ, all of which can be computed using one allreduce. Compared 
to PIPECG-OATI method where we had to calculate ten dot prod-
ucts in each iteration, we need to calculate five more dot products 
for PIPECG-OATI-c method because of non-commutative nature of 
complex dot products.

The rest of the steps in Section 3.1 are followed for deriv-
ing PIPECG-OATI-c method. Algorithm 6 and Algorithm 7 show 
the PIPECG-OATI-c method with fifteen dot products. The changes 
made to the PIPECG-OATI method to derive PIPECG-OATI-c method 
151
Table 1
Differences between various PCG Methods for two iterations of execution. L=2 for 
PIPELCG.

Method #Allr Time for G, PC, SPMV FLOP Memory

real/CS CH

PCG 6 6G+2PC+2SPMV 24 24 4
PIPECG 2 2(max(G, PC+SPMV)) 44 44 9
PIPELCG 2 max(G, 2PC+2SPMV) 52 52 14
PIPECG3 1 max(G, 2PC+2SPMV) 90 - 25
PIPECG-OATI 1 max(G, 2PC+2SPMV) 80 90 19

are shown in red. PIPECG-OATI-c overlaps one MPI_Iallreduce (line 
15) with two PCs and two SPMVs (lines 16 and 17) at the cost of 
introducing five new dot products to the PIPECG-OATI method.

3.3. PIPECG-OATI-c method for complex symmetric systems

In PETSc [4] library’s PCG method implementation, support for 
complex symmetric matrices is provided by changing the way 
complex dot product is calculated. Applying the same convention 
of calculating dot products to our PIPECG-OATI-c method, we find 
that in fact we obtain the same algorithm as Algorithm 4 for real 
matrices. We change the way complex dot products are calculated 
as follows:

a · b = (a,b).

In this case, the vector b is not conjugated. If we calculate the 
complex dot products in this way, we don’t need to calculate extra 
dot products because we can use the commutative property of dot 
products to calculate the dot products once and reuse them again. 
Algorithm 4 derived for real linear systems also takes advantage 
of the commutative property of the real dot products and hence, 
for linear systems with complex symmetric matrices, we can use 
Algorithm 4 directly.

4. Overview of different CG variants

In this section, we provide an overview of state-of-the-art PCG 
variants as shown in Table 1. The #Allr column shows the number 
of allreduces in two iterations for every method. The Time column 
shows the time taken for two iterations for global allreduce (G), 
Preconditioner (PC) and Sparse Matrix Vector Product (SPMV). The 
FLOP column lists the number of Floating Point Operations (xN) in 
VMAs and dot products for two iterations. It is further subdivided 
into two columns: real/CS (complex symmetric) and CH (complex 
Hermitian). This is done because the number of dot products can 
be different for real, complex Hermitian and complex symmetric 
linear systems. The Memory column counts the number of vectors 
that need to be kept in the memory (excluding x and b).

The PIPECG-OATI (PIPECG-OATI-c for CH, CS cases) method has 
one allreduce per two iterations and overlaps it with two PCs 
and two SPMVs. It will give performance improvements over other 
methods when the time taken for global allreduce (G) is com-
pletely overlapped by the two PCs and SPMVs which will happen 
at higher number of cores. The PIPECG-OATI method also has dif-
ferent number of FLOPs for real, complex Hermitian and complex 
symmetric linear systems, as we have seen in section 3.

We also note that the FLOPs in PIPECG-OATI are significantly 
more than that in PCG, PIPECG and PIPELCG methods. We intro-
duce optimizations in the next section to deal with this overhead.

5. Optimization

In this section, we discuss implementation optimizations that 
help in getting significant performance improvement by making 
efficient memory accesses.



M. Tiwari and S. Vadhiyar Journal of Parallel and Distributed Computing 163 (2022) 147–155
Fig. 1. Merging VecOps.

As shown in Fig. 1 left, in the naïve implementation of PIPECG-
OATI-c, we call individual AYPX, AXPY and DOT functions to imple-
ment the VecOps. However if we merge the VecOps as shown in 
Fig. 1 right, we can reuse the vectors already loaded in the cache 
and reduce the number of vector reads and writes to the main 
memory. Since the main memory accesses are expensive as com-
pared to cache accesses, merging VecOps eliminates the need for 
accessing main memory repeatedly. As PIPECG-OATI-c introduces 
21 extra VMAs and 12 new Dot Products as shown in Algorithm 5, 
using this technique helps in efficient memory accesses and hence 
reduces the overhead introduced by these extra operations.

In addition to this, we used the pragma CRI ivdep directive be-
fore the f or loop of the merged VecOps. This helps the compiler to 
take advantage of the vector architecture of the underlying CPUs.

6. Experiments and results

6.1. Experiment setup

We ran tests on our Institute’s supercomputer cluster called Sa-
hasraT, a Cray-XC40 machine which has 1376 compute nodes. Each 
node has two CPU sockets with 12 cores each, 128GB RAM and 
connected using Cray Aries interconnect. We have implemented 
our methods in the PETSc library [5]. We use cray-mpich ver-
sion 7.7.2. For the non-blocking collective MPI_Iallreduce to make 
progress, it is necessary to configure our customized PETSc code 
with –LIBS=-ldmapps for dynamic linking to the DMAPP library 
and set MPICH_NEMESIS_ASYNC_PROGRESS to 1 in the job script. 
For the complex test cases to run correctly, it is necessary to con-
figure the PETSc code with the option –with-scalar-type=complex. 
Our implementations for PIPECG-OATI and PIPECG-OATI-c are avail-
able in the open-source PETSc repository.1

Complex Symmetric Test Case: We use ex11 provided by PETSc 
in its tutorials folder. It solves the complex Helmholtz equation:

−�u − σ1 × u + i × σ2 × u = f (1)

where � is the Laplace operator. Dirichlet boundary conditions are 
applied on all sides and the 2-D 5-point finite difference stencil is 
used. After the stencil is used to create the matrix A, the equation 
Ax = b is solved. The solution vector x is initialized to a vector 
of zeroes. The complex Helmholtz equation has many applications 
in various fields of physics, such as optics, acoustics, electrostatics 
and quantum mechanics. We test with 30 million and 1 billion grid 
points for complex symmetric cases.

Complex Hermitian Test Case: We use ex45 provided by PETSc 
in its tutorials folder. It solves the Poisson equation:

−�u = 1, 0 < x, y, z < 1 (2)

with boundary conditions

u = 1, f or x = 0, x = 1, y = 0, y = 1, z = 0, z = 1. (3)

1 Available as KSPPIPECG2. URL: https://www.mcs .anl .gov /petsc /petsc -current /
docs /manualpages /KSP /KSPPIPECG2 .html #KSPPIPECG2.
152
We modify the example to use 3-D 27-point finite difference sten-
cil which is used in many benchmarks such as HPCG [13]. As we 
wanted complex Hermitian systems, we modified the code to ini-
tialize the same Poisson matrices with complex entries such that 
the resulting matrix is Hermitian positive definite. The equation 
Ax = b is solved in the tests. The solution vector x0 is initialized 
to a vector of zeroes. The Poisson equation is used to model elec-
trostatics, steady-state diffusion, and other physical processes. We 
test with 20 million grid points and 1250 rows per core for com-
plex Hermitian cases.

Our method PIPECG-OATI-c (unoptimized and optimized ver-
sions) are compared with the complex versions of other PCG vari-
ants i.e. PCG-c, PIPECG-c and PIPELCG-c (with L=2). The unopti-
mized version of PIPECG-OATI-c corresponds to the implementa-
tion of PIPECG-OATI-c which does not have merged VecOps as 
described in section 5. PIPECG3 does not support complex num-
bers, therefore, we haven’t provided comparisons with PIPECG3 
method here. We use Jacobi Preconditioner in all tests. Each test 
was run five times and the average speedup gained is presented. 
We present results for performance modeling, strong scaling, weak 
scaling and accuracy of our method compared with state-of-the-art 
methods.

6.2. Performance modeling results

We use a simple performance model to understand the ex-
pected performance of the PIPECG-OATI-c method at scale. The 
main computational kernels in the PIPECG-OATI-c method are 
SPMV, PC, VMAs and dot products. The dot product kernel is fur-
ther divided into local dot product and the global allreduce. The 
VMAs and local dot product together form the VecOps. As given 
in Section 4, the VecOps are counted as floating point operations 
(FLOP) and from the same section, we formulate the expected time 
taken by the PIPECG-OATI-c method as:

texpected = (max(G,2P C +2S P M V )+t f lop)×no_of _iterations/2

(4)

where t f lop is the time taken by the FLOPs. The number of it-
erations is halved since one iteration of PIPECG-OATI-c actually 
performs two iterations of the PCG method.

We model the performance of the PIPECG-OATI-c method for 
a complex symmetric system where the dimensions of the matrix 
A are 1 billion × 1 billion. We measure the times G, PC, SPMV 
and t f lop independently on various problem sizes and number of 
cores. We then substitute these component times in Equation (4)
and obtain the texpected for PIPECG-OATI-c method.

We present the comparison between the expected and the mea-
sured times of PIPECG-OATI-c method in Fig. 2. Speedups for es-
timated and measured times for 100 iterations of PIPECG-OATI-c 
are presented with respect to measured time for 200 iterations of 
PCG. From Fig. 2, we observe that the PIPECG-OATI-c method is ex-
pected to perform better than PCG method as the number of cores 
increase and the work per cores decreases. The expected speedups 
for PIPECG-OATI-c are always more than the measured speedups. 
We believe that the reason for this is that our simple perfor-
mance model ignores penalties introduced due to OS jitter, core 
speed variability or load imbalance that start to play an important 
role for larger systems. Nevertheless, our performance model ad-
equately captures the trend of the actual speedups obtained with 
increasing number of cores.

6.3. Strong scaling results

Fig. 3 shows the strong scaling of different methods on a 5-pt 
2D complex symmetric problem with 30 million (30M) unknowns 

https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPIPECG2.html#KSPPIPECG2
https://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/KSP/KSPPIPECG2.html#KSPPIPECG2


M. Tiwari and S. Vadhiyar Journal of Parallel and Distributed Computing 163 (2022) 147–155
Fig. 2. Expected vs. Measured strong scaling of PIPECG-OATI-c on a 5-pt complex 
symmetric problem with 1B unknowns.

Fig. 3. Strong scaling of different methods on a 5-pt complex symmetric problem 
with 30M unknowns.

on up to 16000 cores. All the methods run to convergence for a 
relative tolerance of 10−5 in 8145 iterations. We plot the speedup 
obtained by each method with respect to PCG. The bars on the 
PIPECG-OATI-c method indicate the standard deviation in speedups 
for five runs and the point plotted is the average speedup.

We observe from Fig. 3 that the performance of PIPECG-c is al-
ways lower than PCG-c despite PIPECG-c overlapping one allreduce 
with computations. As 5-pt 2D problem provides less number of 
non zeroes in the coefficient matrix, one PC and one SPMV are 
not very expensive. Thus, allreduce is not efficiently overlapped 
with the computations. Also, the cost of unoptimized VecOps in 
PIPECG-c overshadows the allreduce it overlaps with the computa-
tions. So, PIPECG-c does not provide much overlap and in addition 
introduces unoptimized VecOps. This leads to low performance of 
PIPECG-c than the other methods.

Fig. 3 also shows that PIPECG-OATI-c unoptimized version per-
forms better than PCG-c and PIPECG-c. This happens as it overlaps 
two PCs and two SPMVs with one allreduce. So, even though a sin-
gle PC and SPMV in the 5-pt problem are not very expensive, two 
PCs and two SPMVs provide considerable work to be overlapped 
with the allreduce. Also, it starts performing better than PCG-c 
from 10000 cores because from 10000 cores on-wards, the allre-
duce cost becomes large enough to be overlapped by two PCs and 
153
Fig. 4. Strong scaling of different methods on a 27-pt complex Hermitian problem 
with 20M unknowns.

two SPMVs. However, it still performs worse than PIPECG-OATI-c 
because the unoptimized VecOps provide additional overhead.

Finally, we observe that PIPECG-OATI-c optimized version per-
forms the best when compared to all the other methods because it 
overlaps larger work with allreduce and uses cache memory effec-
tively for the VecOps. So, for the 5-pt complex symmetric problem 
with 30M unknowns, PIPECG-OATI-c provides up to 1.67x speedup 
wrt PCG-c (at 16k cores), up to 2.14x speedup wrt PIPECG-c (at 16k 
cores) and up to 1.18x speedup wrt PIPECG-OATI-c unoptimized 
version (at 16k cores).

PIPELCG-c (L=2) method cannot compute the preconditioned 
norm of the residual whereas all the other methods determine 
the convergence based on the preconditioned residual norm. As 
PIPELCG-c determines convergence based on only natural norm of 
the residual, we ran the method to convergence for natural norm 
and observed that it gives different (more) number of iterations 
than the other methods. Due to this reason, we ran PIPECG-OATI-c 
to convergence for the natural norm of the residual so that it can 
be compared with PIPELCG-c method. We find that PIPECG-OATI-c 
gives up to 1.38x speedup over PIPELCG-c for this problem (at 16k 
cores).

Fig. 4 shows the strong scaling of different methods on a 27-
pt 3D complex Hermitian problem with 20M unknowns on up to 
16000 cores. All the methods ran to convergence for a relative tol-
erance of 10−5 in 5203 iterations.

We observe from Fig. 4 that PIPECG-c performs better than 
PCG-c because the PC and SPMV in the 27-pt 3D problem are 
expensive enough to completely overlap the cost of a single allre-
duce. The unoptimized VecOps do produce some overhead but it is 
overshadowed by the complete overlapping of the allreduce with 
PC and SPMV. PIPECG-OATI-c unoptimized performs better than 
PCG-c but worse than PIPECG-c till 8k cores. This happens be-
cause the allreduce cost is completely overlapped by one PC and 
one SPMV till 8k cores in PIPECG-c. The larger overlap provided by 
PIPECG-OATI-c unoptimized is not useful at lower number of cores 
and the additional overhead provided by PIPECG-OATI-c unopti-
mized due to extra VecOps becomes dominant. However, we ob-
serve that after 8k cores, it starts performing better than PIPECG-c 
method because the allreduce cost becomes adequate to be over-
lapped with two PCs and two SPMVs. PIPECG-OATI-c optimized 
performs better than all the methods. The curves start dropping 
from 10k cores on-wards because the work per core decreases and 
the allreduce cost becomes more than the work provided by the 
methods.



M. Tiwari and S. Vadhiyar Journal of Parallel and Distributed Computing 163 (2022) 147–155
Fig. 5. Weak Scaling results for 27-pt Complex Hermitian problem with 1250 rows 
per core.

So, for the 27-pt complex Hermitian problem with 20M un-
knowns, PIPECG-OATI-c optimized provides up to 2.48x speedup 
wrt PCG-c (at 10k cores), up to 1.35x speedup wrt PIPECG-c (at 
10k cores) and up to 1.34x speedup wrt PIPECG-OATI-c unopti-
mized version (at 10k cores). We compared the time for natural 
norm convergence for PIPELCG-c and PIPECG-OATI-c and found 
that PIPECG-OATI-c gives up to 1.5x speedup over PIPELCG-c for 
this problem (at 10k cores).

We also compared the performance of our method with the 
other methods for a 5-pt complex symmetric problem with 1 bil-
lion unknowns on 16k cores. To our knowledge, this is the largest 
problem size experimented for the CG method. We found that 
at 16k cores for this test case, PCG-c method takes 8.2 minutes, 
PIPECG-c method takes 9.5 minutes, PIPECG-OATI-c unoptimized 
version takes 10.4 minutes and PIPECG-OATI-c optimized version 
takes 6 minutes. Thus, we conclude that PIPECG-OATI-c method 
performs better than the other CG methods even for very large 
test cases at higher number of cores.

6.4. Weak scaling results

Fig. 5 shows the weak scaling of different methods on a 27-
pt 3D complex Hermitian problem with 1250 rows per core on 
up to 16000 cores. All the methods are run for 200 iterations so 
that they overcome initialization costs and display cache locality 
benefits.

We observe from the figure that PIPECG-OATI-c optimized ver-
sion performs better than the other methods at all the core counts. 
The overlap provided by PIPECG-OATI-c method along with the 
merged VecOps makes it the best performing method for this 
problem followed by PIPECG-OATI-c unoptimized version, which 
still performs better than PIPECG despite having overhead of ex-
tra VecOps. PIPECG performs better than PCG due to its overlap of 
the allreduce with one PC and SPMV.

Thus, we conclude that as problem size increases with number 
of cores, PIPECG-OATI-c provides better performance than all the 
other methods.

6.5. Accuracy results

In the PCG method, the convergence is checked as:

‖ui‖ < max(rtol ∗ ‖b‖,atol)

where ui is preconditioned residual, rtol is relative tolerance and 
atol is absolute tolerance. In PETSc based applications, rtol is set 
154
Fig. 6. Solver Accuracy/Performance Experiment for 5-pt complex symmetric prob-
lem with 30M unknowns. Relative residual values are plotted as a function of time 
at 16k cores.

to 10−5 by default. In the OpenFOAM [2][22] based applications 
which solve pressure Poisson equations, we see that default value 
for rtol is set to 10−2.

Fig. 6 shows the relative residual values attained by each 
method as a function of time for the 5-pt complex symmetric 
problem with 30M unknowns on 16k cores. Here, we see that 
PIPECG-OATI-c reaches the threshold of rtol ∗‖b‖ (where rtol is set 
to 10−5) the fastest as compared to all the other methods with 
PIPECG-c being the slowest. These results align with the strong 
scaling results for the same problem shown in Fig. 3. Thus, we 
conclude that for widely used values of rtol, our method can be 
used to solve the linear system of equations obtained from real 
world applications faster as compared to other methods.

7. Conclusions and future work

In this work, we extended the PIPECG-OATI method from our 
previous work [29] to support complex Hermitian positive definite 
and complex symmetric systems and we obtained the PIPECG-
OATI-c method. PIPECG-OATI-c reduces the number of allreduces 
to one per two iterations and overlaps it with two PCs and two 
SPMVs using MPI_Iallreduce at the cost of introducing five ex-
tra dot products to PIPECG-OATI. We also provide support for 
complex symmetric systems by changing the way complex dot 
products are calculated. We provide an optimized implementation 
of PIPECG-OATI-c which helps in efficient memory accesses and 
hence gives performance improvements. Our optimized version of 
PIPECG-OATI-c gives a speedup of up to 1.34x over the unopti-
mized version of PIPECG-OATI-c.

We performed experiments with 20M and 30M unknowns on 
up to 16K cores and obtained up to 2.48X performance improve-
ment over PCG and 2.14X performance improvement over PIPECG 
methods. We also experimented with up to 1-billion unknowns on 
16K cores, the largest problem size explored for the CG problem, 
to our knowledge, and obtained about 25% improvement over PCG. 
We conclude that PIPECG-OATI-c gives performance benefits over 
PCG-c and PIPECG-c at high number of cores when the allreduce 
cost becomes more and can be completely overlapped by the two 
PCs and two SPMVs provided by the complex linear system. Our 
method also reaches the accuracies used in practical problems the 
fastest when compared to the other methods.

In future, we plan to reduce the number of allreduces to one 
per s number of iterations and overlap it with useful work with 
support for unpreconditioned, preconditioned and natural norms. 



M. Tiwari and S. Vadhiyar Journal of Parallel and Distributed Computing 163 (2022) 147–155
We plan to test and analyze the behavior of our method PIPECG-
OATI-c on multi-node multi-GPU systems.

CRediT authorship contribution statement

Manasi Tiwari: Conceptualization, Methodology, Implementa-
tion, Experimentation, Data Collection, Visualization, Investigation, 
Writing.

Sathish Vadhiyar: Conceptualization, Experiment Design, Writ-
ing, Reviewing, Editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

References

[1] MPICH 3.3.3, https://www.mpich .org/, 2019.
[2] OpenFOAM, https://www.openfoam .org/, 2019.
[3] S.F. Ashby, T.A. Manteuffel, P.E. Saylor, A taxonomy for conjugate gradient meth-

ods, SIAM J. Numer. Anal. 27 (6) (1990) 1542–1568, https://doi .org /10 .1137 /
0727091.

[4] S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient management of paral-
lelism in object oriented numerical software libraries, in: E. Arge, A.M. Bru-
aset, H.P. Langtangen (Eds.), Modern Software Tools in Scientific Computing, 
Birkhäuser Press, 1997, pp. 163–202.

[5] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dal-
cin, A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, 
D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. 
Zampini, H. Zhang, H. Zhang, PETSc Web page, https://www.mcs .anl .gov /petsc, 
2019.

[6] S. Balay, S. Abhyankar, M.F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dal-
cin, A. Dener, V. Eijkhout, W.D. Gropp, D. Karpeyev, D. Kaushik, M.G. Knepley, 
D.A. May, L.C. McInnes, R.T. Mills, T. Munson, K. Rupp, P. Sanan, B.F. Smith, S. 
Zampini, H. Zhang, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Re-
vision 3.13, Argonne National Laboratory, 2020, https://www.mcs .anl .gov /petsc.

[7] U. Catalyurek, C. Aykanat, Hypergraph-partitioning-based decomposition for 
parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib. Syst. 
10 (7) (1999) 673–693, https://doi .org /10 .1109 /71.780863.

[8] A.T. Chronopoulos, C.W. Gear, S-step iterative methods for symmetric linear 
systems, J. Comput. Appl. Math. 25 (2) (1989) 153–168, https://doi .org /10 .1016 /
0377 -0427(89 )90045 -9.

[9] P. Concus, G.H. Golub, G. Meurant, Block preconditioning for the conjugate 
gradient method, SIAM J. Sci. Stat. Comput. 6 (1) (1985) 220–252, https://
doi .org /10 .1137 /0906018.

[10] S. Cools, J. Cornelis, W. Vanroose, Numerically stable recurrence relations for 
the communication hiding pipelined conjugate gradient method, arXiv:1902 .
03100, 2019.

[11] J. Cornelis, S. Cools, W. Vanroose, The communication-hiding conjugate gradi-
ent method with deep pipelines, arXiv:1801.04728, 2018.

[12] E. D’Azevedo, V. Eijkhout, C. Romine, Lapack working note 56: Reducing com-
munication costs in the conjugate gradient algorithm on distributed memory 
multiprocessors, Tech. rep., USA, 1993.

[13] J. Dongarra, M. Heroux, P. Luszczek, HPCG Benchmark: a new metric for rank-
ing high performance computing systems ∗ , 2015.

[14] P.R. Eller, W. Gropp, Scalable non-blocking preconditioned conjugate gradient 
methods, in: Proceedings of the International Conference for High Performance 
Computing, Networking, Storage and Analysis, SC ’16, IEEE Press, 2016.

[15] R.W. Freund, Conjugate gradient-type methods for linear systems with com-
plex symmetric coefficient matrices, SIAM J. Sci. Stat. Comput. 13 (1) (1992) 
425–448, https://doi .org /10 .1137 /0913023.

[16] P. Ghysels, W. Vanroose, Hiding global synchronization latency in the precondi-
tioned conjugate gradient algorithm, Parallel Comput. 40 (7) (2014) 224–238, 
https://doi .org /10 .1016 /j .parco .2013 .06 .001.

[17] W. Gropp, Update on Libraries for Blue Waters, Tech. rep., http://
jointlab .ncsa .illinois .edu /events /workshop3 /pdf /presentations /Gropp -Update -
on -Libraries .pdf.

[18] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear sys-
tems, J. Res. Natl. Bur. Stand. 49 (1952) 409–436.

[19] O.G. Johnson, C.A. Micchelli, G. Paul, Polynomial preconditioners for conjugate 
gradient calculations, SIAM J. Numer. Anal. 20 (2) (1983) 362–376, https://doi .
org /10 .1137 /0720025.

[20] P. Joly, G. Meurant, Complex conjugate gradient methods, Numer. Algorithms 4 
(1993) 379–406, https://doi .org /10 .1007 /BF02145754.

[21] G. Meurant, Multitasking the conjugate gradient method on the cray x-mp/48, 
Parallel Comput. 5 (3) (1987) 267–280, https://doi .org /10 .1016 /0167 -8191(87 )
90037 -8.

[22] OpenFOAM Poisson solver example, https://cfd .direct /openfoam /user-guide /v6 -
fvsolution/, 2020.

[23] A. Pinar, M. Heath, Improving performance of sparse matrix-vector multiplica-
tion, in: SC ’99: Proceedings of the 1999 ACM/IEEE Conference on Supercom-
puting, 1999, p. 30.

[24] L. Romero, E. Zapata, Data distributions for sparse matrix vector multiplication, 
Parallel Comput. 21 (4) (1995) 583–605, https://doi .org /10 .1016 /0167 -8191(94 )
00087 -Q.

[25] Y. Saad, Practical use of some Krylov subspace methods for solving indefi-
nite and nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 5 (1) (1984) 
203–228, https://doi .org /10 .1137 /0905015.

[26] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, Society for 
Industrial and Applied Mathematics, USA, 2003.

[27] S. Serra-Capizzano, Conditioning and solution of Hermitian (block) Toeplitz sys-
tems by means of preconditioned conjugate gradient methods, Proc. SPIE Int. 
Soc. Opt. Eng. 2563 (1995) 326–337, https://doi .org /10 .1117 /12 .211409.

[28] O. Tatebe, Y. Oyanagi, Efficient implementation of the multigrid preconditioned 
conjugate gradient method on distributed memory machines, in: Supercom-
puting ’94:Proceedings of the 1994 ACM/IEEE Conference on Supercomputing, 
1994, pp. 194–203.

[29] M. Tiwari, S. Vadhiyar, Pipelined preconditioned conjugate gradient methods 
for distributed memory systems, in: 27th IEEE International Conference on 
High Performance Computing, Data, and Analytics, HiPC 2020, Pune, India, De-
cember 16–19, 2020, IEEE, 2020, pp. 151–160.

[30] J. White, P. Sadayappan, On improving the performance of sparse matrix-
vector multiplication, in: Proceedings Fourth International Conference on High-
Performance Computing, 1997, pp. 66–71.

Manasi Tiwari received her B.Tech degree from In-
stitute of Engineering and Technology, India in 2017 
and is now pursuing her Phd at Department of Com-
putational and Data Sciences, Indian Institute of Sci-
ence, Bengaluru, India. Her research interests include 
parallel linear solvers, distributed computing and het-
erogeneous computing specially involving GPU accel-
erators.

Sathish Vadhiyar is a Professor in Supercomputer 
Education and Research Centre, Indian Institute of Sci-
ence. He obtained his B.E. degree from the Depart-
ment of Computer Science and Engineering at Thi-
agarajar College of Engineering, India in 1997 and 
received his Master’s degree in Computer Science at 
Clemson University, USA in 1999. He graduated with 
a Ph.D from the Computer Science Department at Uni-
versity of Tennessee, USA in 2003. His research areas 

include building application frameworks involving runtime frameworks for 
irregular applications including graph applications, hybrid CPU-GPU exe-
cution strategies, and programming models for accelerator-based systems, 
acceleration of climate and weather applications on different kinds of par-
allel systems, middleware for production supercomputer systems and fault 
tolerance for large-scale systems.
155

https://www.mpich.org/
https://www.openfoam.org/
https://doi.org/10.1137/0727091
https://doi.org/10.1137/0727091
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib5EA904170C55F237387D57BA48616C3As1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib5EA904170C55F237387D57BA48616C3As1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib5EA904170C55F237387D57BA48616C3As1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib5EA904170C55F237387D57BA48616C3As1
https://www.mcs.anl.gov/petsc
https://www.mcs.anl.gov/petsc
https://doi.org/10.1109/71.780863
https://doi.org/10.1016/0377-0427(89)90045-9
https://doi.org/10.1016/0377-0427(89)90045-9
https://doi.org/10.1137/0906018
https://doi.org/10.1137/0906018
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibC53E30518ECACBF80D922BE70FC56D34s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibC53E30518ECACBF80D922BE70FC56D34s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibC53E30518ECACBF80D922BE70FC56D34s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib172C9F65C06CE5E030A3B631B4C37E3Cs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib172C9F65C06CE5E030A3B631B4C37E3Cs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib0A4376FD26A428C7B3EF23E252C31282s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib0A4376FD26A428C7B3EF23E252C31282s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib0A4376FD26A428C7B3EF23E252C31282s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib002E33B429D71070DDAB126BF35633FDs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib002E33B429D71070DDAB126BF35633FDs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib002E33B429D71070DDAB126BF35633FDs1
https://doi.org/10.1137/0913023
https://doi.org/10.1016/j.parco.2013.06.001
http://jointlab.ncsa.illinois.edu/events/workshop3/pdf/presentations/Gropp-Update-on-Libraries.pdf
http://jointlab.ncsa.illinois.edu/events/workshop3/pdf/presentations/Gropp-Update-on-Libraries.pdf
http://jointlab.ncsa.illinois.edu/events/workshop3/pdf/presentations/Gropp-Update-on-Libraries.pdf
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib94E00E6B5737A34475026469793A1086s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib94E00E6B5737A34475026469793A1086s1
https://doi.org/10.1137/0720025
https://doi.org/10.1137/0720025
https://doi.org/10.1007/BF02145754
https://doi.org/10.1016/0167-8191(87)90037-8
https://doi.org/10.1016/0167-8191(87)90037-8
https://cfd.direct/openfoam/user-guide/v6-fvsolution/
https://cfd.direct/openfoam/user-guide/v6-fvsolution/
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibCFC7C4776994D60509538A439535571Fs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibCFC7C4776994D60509538A439535571Fs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibCFC7C4776994D60509538A439535571Fs1
https://doi.org/10.1016/0167-8191(94)00087-Q
https://doi.org/10.1016/0167-8191(94)00087-Q
https://doi.org/10.1137/0905015
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib355350B5B1AAF9D58E1B11160586B915s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib355350B5B1AAF9D58E1B11160586B915s1
https://doi.org/10.1117/12.211409
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibACE70F796752D6B964CA15D1CB216330s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibACE70F796752D6B964CA15D1CB216330s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibACE70F796752D6B964CA15D1CB216330s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibACE70F796752D6B964CA15D1CB216330s1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib9A15ACF84482F15368943D948ACB555Cs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib9A15ACF84482F15368943D948ACB555Cs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib9A15ACF84482F15368943D948ACB555Cs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bib9A15ACF84482F15368943D948ACB555Cs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibD0DB9748C9E7F8A9E04613D06E6911BAs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibD0DB9748C9E7F8A9E04613D06E6911BAs1
http://refhub.elsevier.com/S0743-7315(22)00015-6/bibD0DB9748C9E7F8A9E04613D06E6911BAs1

	Pipelined Preconditioned Conjugate Gradient Methods for real and complex linear systems for distributed memory architectures
	1 Introduction
	2 Background
	2.1 PCG method
	2.2 Impact of ordering, partitioning and preconditioning strategies
	2.3 Overlapping non-blocking allreduce with computations
	2.4 PIPECG method

	3 Methodology
	3.1 PIPECG-OATI method for real linear systems
	3.2 PIPECG-OATI-c method for complex Hermitian systems
	3.3 PIPECG-OATI-c method for complex symmetric systems

	4 Overview of different CG variants
	5 Optimization
	6 Experiments and results
	6.1 Experiment setup
	6.2 Performance modeling results
	6.3 Strong scaling results
	6.4 Weak scaling results
	6.5 Accuracy results

	7 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	References


