
Strategies for efficient execution of Pipelined
Conjugate Gradient method on GPU systems

Manasi Tiwari and Sathish Vadhiyar

Department of Computational and Data Sciences
Indian Institute of Science, Bangalore, India

{manasitiwari,vss}@iisc.ac.in

Abstract. The Preconditioned Conjugate Gradient (PCG) method is
widely used for solving linear systems of equations with sparse matri-
ces. A recent version of PCG, Pipelined PCG (PIPECG), eliminates the
dependencies in the computations of the PCG algorithm so that the
non-dependent computations can be overlapped with communication.
In this paper, we develop three methods for efficient execution of the
Pipelined PCG algorithm on GPU accelerated heterogeneous architec-
tures. The first two methods achieve task-parallelism using asynchronous
executions of different tasks on multi-core CPU and a GPU. The third
method achieves data parallelism by decomposing the workload between
multi-core CPU and GPU based on a performance model. We performed
experiments on both the K40 and V100 GPU systems and our methods
give up to 8x speedup and on average 3x speedup over PCG CPU im-
plementation of Paralution and PETSc libraries. They also give up to 5x
speedup and on average 1.45x speedup over PCG GPU implementation
of Paralution and PETSc libraries. The third method also provides an
efficient solution for solving problems that cannot be fit into the GPU
memory and gives up to 6.8x speedup for such problems.

Keywords: Preconditioned Conjugate Gradient · Pipelined Methods ·
Heterogeneous Architectures · GPU · Asynchronous executions

1 Introduction

Conjugate Gradient (CG) [7] is one of the most widely used iterative methods
for finding the solution of linear systems Ax = b with symmetric positive definite
sparse matrices. A preconditioner can be applied to the system to condition the
input system and to improve convergence.

Today’s HPC systems have accelerators like GPUs along with traditional
multi-core CPUs. The programming models for these accelerators are different
from that of the multi-core processors as well. In order to use all the resources
available within a compute node efficiently, we must interleave the features in the
programming models in such a way that we achieve the best possible performance
from the platform.

The main computational kernels in the PCG method are Sparse Matrix Vec-
tor Product (SPMV), Preconditioner Application (PC), Vector-Multiply-Adds



2 M. Tiwari et al.

(VMAs) and Dot Products. For distributed memory systems, the bottleneck
in PCG is the synchronization that occurs on all cores due to the allreduce
in the dot products of the algorithm. Pipelined PCG (PIPECG) proposed
by Ghysels et al [6], on which this work is based, has one allreduce per itera-
tion. By introducing extra VMAs, they eliminate the dependencies between the
dot products and PC+SPMV of PCG. The aim of doing this is to overlap the
communication introduced by dot products with PC and SPMV. The resulting
algorithm offers another advantage which makes it a perfect candidate for our
hybrid executions on a single node-single GPU system. As the PC and SPMV in
PIPECG do not depend on results of the previous dot products, we can execute
them simultaneously on multi-core CPU and GPU. This would require commu-
nicating data between CPU and GPU, thus introducing additional costs. We
show that by using asynchronous streams efficiently, we can hide the complete
time for data movement between CPU and GPU.

We develop three methods for efficient execution of PIPECG on a single node-
single GPU system. The first two methods, Hybrid-PIPECG-1 and Hybrid-
PIPECG-2, achieve task-parallelism by simultaneous execution of the dot prod-
ucts on multi-core CPU and PC and SPMV on the GPU. They are different in
the amount of data that needs to be moved between the CPU and GPU in
every iteration of PIPECG. The third method, Hybrid-PIPECG-3, achieves
data parallelism by decomposing the workload between multi-core CPU and
GPU based on a performance model and then using asynchronous data transfers
for PIPECG iterations. We use CUDA streams for asynchronous data trans-
fers between CPU and GPU. We performed experiments on both the K40 and
V100 GPU systems and our methods give up to 8x speedup and on average 3x
speedup over PCG CPU implementation of Paralution and PETSc libraries. Our
methods give up to 5x speedup and on average 1.45x speedup over PCG GPU
implementation of Paralution and PETSc libraries. Hybrid-PIPECG-3 method
also provides an efficient solution for solving problems that cannot be fit into
the GPU memory and gives up to 6.8x speedup for such problems.

2 Related Work

To achieve optimum performance of the PCG method on GPU systems, many
works have concentrated on efficient GPU implementation of the PC kernel.
Algebraic Multigrid GPU implementations are presented in [3]. Incomplete LU
and Cholesky factorizations on GPUs are presented in [9]. Research works also
concentrate on optimizing the most time consuming kernel in PCG, the SPMV
kernel [5]. Different sparse matrix formats have been proposed in [4] to improve
SPMV performance on GPUs. All the works mentioned above concentrate on
kernel executions only on the GPUs. They do not utilize the multi-core CPU
present in the system. Our work is different from all the works described above
since we aim to utilize all the available resources of the system and accelerate
the performance of the PCG method as a whole. Furthermore, our work can be
used in conjunction with the enhanced kernels on the GPUs mentioned above.



Pipelined CG on GPU systems 3

3 Background

PCG: PCG introduced by Hestenes [7] is given in Algorithm 1. The computa-
tional kernels in PCG are SPMV in line 10, PC in line 15, VMAs in lines 9, 13
and 14 and dot products in lines 11, 16 and 17. In PCG, we can see that the
operation in every line depends on the operation in the previous line. There are
no independent computations in each iteration which can be executed simulta-
neously.

PIPECG: PIPECG was proposed by Ghysels et al. [6]. As shown in Algo-
rithm 2, PIPECG introduces extra VMAs (on lines 11,12,13,17,18) to remove
the dependencies between the dot products (lines 19,20,21) and PC (line 22)
and SPMV (line 23) so that PC and SPMV can be computed while dot prod-
ucts are being computed. We can use PIPECG for our hybrid executions as the
dot products can be executed on the CPU while PC+SPMV can be executed
simultaneously on GPU as they are not dependent on each other. This strat-
egy helps us utilize all the resources in the GPU accelerated node and achieve
optimum performance.

Algorithm 1 PCG Method

1: r0 = b−Ax0; u0 = M−1r0;
2: γ0 = (u0, r0); norm0 =

√
(u0, u0)

3: for i=0,1... do
4: if i > 0 then
5: βi = γi/γi−1

6: else
7: βi = 0
8: end if
9: pi = ui + βipi−1

10: s = Api
11: δ = (s, pi)
12: α = γi/δ
13: xi+1 = xi + αpi
14: ri+1 = ri − αs
15: ui+1 = M−1ri+1

16: γi+1 = (ui+1, ri+1);

17: normi+1 =
√

(ui+1, ui+1)
18: end for

Algorithm 2 PIPECG Method

1: r0 = b − Ax0;u0 = M−1r0;w0 =
Au0;

2: γ0 = (r0, u0);δ = (w0, u0);norm0 =√
(u0, u0)

3: m0 = M−1w0; n0 = Am0

4: for i=0,1... do
5: if i > 0 then
6: βi = γi/γi−1;
7: αi = γi/(δ − βiγi/αi−1);
8: else
9: βi = 0;αi = γi/δ

10: end if
11: zi = ni + βizi−1

12: qi = mi + βiqi−1

13: si = wi + βisi−1

14: pi = ui + βipi−1

15: xi+1 = xi + αipi
16: ri+1 = ri − αisi
17: ui+1 = ui − αiqi
18: wi+1 = wi − αizi
19: γi+1 = (ri+1, ui+1)
20: δ = (wi+1, ui+1)

21: normi+1 =
√

(ui+1, ui+1)
22: mi+1 = M−1wi+1

23: ni+1 = Ami+1

24: end for



4 M. Tiwari et al.

4 Methodology

4.1 Hybrid-PIPECG-1 Method

In the standard GPU implementation of PCG, the CPU launches CUDA kernels
for VMAs, dot products, PC and SPMV on the GPU and then remains idle. In
PIPECG, we have independent kernels and thus, we can make use of the idle
CPU cores. We show the execution flow of Hybrid-PIPECG-1 in Figure 1(a).

The rectangular boxes show the operation performed and the number within
the bracket is the line number of Algorithm 2 that the box executes. The solid
thick arrow represents data movement and its direction shows the source and
destination of the data movement. The matrix A, the vectors b and x have been
moved to the GPU prior to this execution flow.

The implementation starts with executing the initialization steps on the
GPU. After this, the for loop starts which iterates until the preconditioned
residual norm becomes smaller than the user defined tolerance. In each iter-
ation, α and β are calculated on the CPU. Then the Vector Operations are
executed on the GPU which update the vectors w, r and u among others. We
know that dot products γ, δ and norm can be executed simultaneously with
PC and SPMV. For executing these dot products on the CPU cores, the CPU
needs to have the vectors w, u and r but as the updated vectors are on the
GPU, we have to copy them to the CPU at every iteration. So here, we define
a stream which asynchronously copies w, r and u while GPU carries on with its
kernel executions. The CPU waits on this stream till the copy is completed and
then proceeds to calculate γ, δ and norm by using all available cores. Thus, in
Hybrid-PIPECG-1, PC and SPMV computations on the GPU are overlapped
with the data movement from GPU to CPU and the dot product calculation on
the CPU cores.

4.2 Hybrid-PIPECG-2 Method

Hybrid-PIPECG-1 requires copy of 3N elements from GPU to CPU in every
iteration which can become costly for linear systems with vectors with large N,
as the time for copying will exceed the PC + SPMV times thus degrading the
overall performance. Therefore, we develop Hybrid-PIPECG-2 shown in Figure
1(b) to reduce the number of vectors to be copied from GPU to CPU in every
iteration.

If we want to compute the dot products γ, δ and norm on the CPU, we need
to have w, u and r vectors on the CPU. Instead of copying the updated vectors
from the GPU at every iteration, we can update them on the CPU itself. In
PIPECG method in algorithm 2, we see that we can update w, u and r on the
CPU using the vectors z, q and s. In turn, we would need n and m for updating
z and q. This means the CPU should have a copy of z, q, s, n, m, w, u and
r. For updating these vectors on the CPU, we can copy only n from the GPU
to CPU. As shown in Figure 1(b), in the for loop, after calculating α and β,
the vector n is copied from the GPU to the CPU on the user defined stream.



Pipelined CG on GPU systems 5

CPU GPU
Intitialization Steps 

(1-3)

Calculate alpha, beta
(5-10)

Vector Operations
(11-18)

MemcpyAsync
invoke: w, r, u 

Wait for copy to finish PC (22)

for loop starts

User defined
stream

Check residual
norm (4)

Calculate gamma,
delta, norm
(19,20,21)

SPMV (23)

Execution Flow of Hybrid-PIPECG-1 Method

(a) Hybrid-PIPECG-1 method

CPU GPU
Intitialization Steps 

(1-3)

Calculate alpha, beta
(5-10)

Vector Operations
(11,12,14,15,16,18)

Wait for copy to finish
PC (22)

SPMV (23)

for loop starts

Check residual
norm (4)

Vector Operations
(12,13,16,17)

MemcpyAsync
invoke: n

User defined
stream

Calculate gamma,
norm (19,21)

Vector Operations
(11, 18, 22)

Calculate delta (20)

Execution Flow of Hybrid-PIPECG-2 Method

(b) Hybrid-PIPECG-2 method

Fig. 1. Task Parallel Algorithms

While the copy is progressing, both CPU and GPU perform their operations.
GPU proceeds with its Vector Operations, PC and SPMV kernels. On the CPU,
we observe that for updating the vectors z, w and m, CPU needs the vector n.
While n is being copied, CPU can proceed with the update of vectors q, s, r and
u as they don’t need n. After vector updates, γ and norm can be calculated.
Then the CPU waits on the user defined stream until the copy is copied. After
n is successfully received, CPU can proceed to update z, w and m vectors and
compute δ.

Thus, with Hybrid-PIPECG-2, we are able to reduce the number of vector
copies to one per iteration. Moreover, the data movement is hidden by compu-
tations on the CPU so the CPU doesn’t have to be idle while the copy proceeds.

4.3 Hybrid-PIPECG-3 Method

Hybrid-PIPECG-1 and Hybrid-PIPECG-2 achieve task parallelism by executing
independent kernels on CPU and GPU simultaneously. But for linear systems
with even larger N, executing redundant computations for complete vectors of
length N on both CPU and GPU proves to be counter-productive. Thus, we
propose a data parallel version of PIPECG, Hybrid-PIPECG-3, where the matrix
and vectors are decomposed between the CPU and GPU and both these entities
carry out PIPECG on their data with communication between each other for
important data. This method can also be used for problems that cannot fit in



6 M. Tiwari et al.

the GPU memory. Hybrid-PIPECG-3 consists of 3 parts: Performance modelling,
Data decomposition, and the actual PIPECG iterations.

1. Performance Modelling: We want to calculate the relative performances
of the CPU and GPU so that we can decompose data between them according
to these relative performances. For this, we execute the SPMV kernel for the
complete matrix A (nnz elements) on CPU and GPU separately. We select the
SPMV kernel because that is the most time dominating kernel in the PIPECG
iteration. If we decompose the data in a way such that the time taken by CPU
for SPMV kernel on its data is equal to the time taken by GPU for the SPMV
kernel on its data, then complete overlap of the most time consuming kernel is
achieved. Hence, we perform five executions of SPMV on both CPU and the GPU
for nnz elements. We perform five executions so that effects of cache locality that
become prevalent in the later iterations are also be taken into consideration.

Once we have the time taken by CPU cores, tcpu and the time taken by GPU,
tgpu, we calculate the performance of CPU cores, scpu and the performance of
GPU, sgpu as follows:
scpu = nnz/tcpu
sgpu = nnz/tgpu
Then, we calculate the relative performance rcpu and rgpu as follows:
rcpu = scpu/(scpu + sgpu)
rgpu = sgpu/(scpu + sgpu)
After we obtain rcpu and rgpu, we now divide the nnz into two parts, nnzcpu
and nnzgpu as follows:
nnzcpu = nnz ∗ rcpu
nnzgpu = nnz − nnzcpu

For ease of implementation, we do not assign exact nnzcpu elements to CPU
and nnzgpu elements to GPU. Instead, we find out the number of rows to be
assigned to the CPU, Ncpu, which would contain either equal to or slightly less
number of non-zeroes than nnzcpu. This gives a 1-D decomposition of the A
matrix. Ngpu is then obtained by N −Ncpu.

2. Data Decomposition: Now that we have Ncpu and Ngpu, we assign Ncpu

rows to the CPU and Ngpu rows to the GPU. We also divide the vectors between
the CPU and GPU using same parameters. The division of vectors ensures that
there are no redundant computations as both CPU and GPU will be acting on
just their local elements. But in every iteration, the SPMV kernels of both CPU
and GPU will require the full m vector. After 1-D decomposition, the CPU has
Ncpu elements of the m vector and the GPU has the other Ngpu elements. It is
clear that we need to copy these partial vectors from their home device to the
other device.

In order to hide the time taken for this copy, we perform a further decompo-
sition of the nnzcpu into nnz1cpu and nnz2cpu in such a way that all the nnz’s
in nnz1cpu need only the local Ncpu elements of m for the SPMV. When SPMV
kernel acts on just nnz1cpu elements, we call it SPMV part 1. After the copy
of Ngpu elements of m is complete, we will then commence SPMV part 2 on
nnz2cpu elements which will complete the entire SPMV. We perform the same



Pipelined CG on GPU systems 7

for nnzgpu. So, through this further local decomposition, we are able to achieve
better overlap of computations with communication. In effect, we have achieved
the 2-D decomposition of the matrix A. This is illustrated in figure 2.

a(1,1) a(1,2) a(1,3) a(1,5)

a(2,1) a(2,2) a(2,3)

a(3,1) a(3,3)

a(4,2) a(4,4) a(4,5)

a(5,1) a(5,4) a(5,5)

m(1)

m(2)

m(3)

m(4)

m(5)

N_(cpu)

N_(gpu)

N_(cpu)

N_(gpu)

Sparse Symmetric Matrix, A Vector m

nnz1_(cpu) nnz2_(cpu)

nnz2_(gpu) nnz1_(gpu)

Fig. 2. 2-D decomposition of Matrix A

3. Execution Flow of Hybrid-PIPECG-3 method: Figure 3 shows the
execution flow of the Hybrid-PIPECG-3 method.

For Performance Modelling, we execute the SPMV kernel on CPU and GPU
simultaneously. After we get Ncpu and Ngpu, we perform 2-D decomposition of
the matrix A and also decompose the vectors. After the decomposition step, the
PIPECG method starts. Both CPU and GPU perform the initialization steps on
their data except the computation of n vector. Then the for loop starts. After
checking the residual norm, CPU calculates α and β. Then asynchronous copy
of m vector is started from CPU to GPU as well as GPU to CPU. These two
Copy’s are executed simultaneously using two user defined streams, Stream 1
and Stream 2. Similar to Hybrid-PIPECG-2 method, while CPU and GPU wait
for m vector to be copied so that they can calculate vector n, the vectors that
do not depend on n can be updated. This results in vector operations for q, s, p,
x and r. After these vector updates, γ and norm can be computed. To further
use the waiting time, CPU and GPU can compute SPMV part 1 as described
in section 4.3. Both CPU and GPU then wait for the Copy’s to finish. With
proper data decomposition, this wait is negligible as the data movement time is
completely overlapped with useful computations. Then, CPU and GPU execute
SPMV part 2 and obtain the vector n. They update the vectors that depend on
n and apply PC. Finally, they compute δ and follow the same steps iteratively.

Thus, with Hybrid-PIPECG-3, we achieve data parallelism by decomposing
data between CPU and GPU and the simultaneous operations on CPU and GPU
are overlapped with the asynchronous data movement.



8 M. Tiwari et al.

CPU GPU
SPMV Kernel for

performance
modelling 

Decomposition of
data

SPMV Kernel for
performance

modelling

Initialization steps
(1,2,3 except n)

Intitialization Steps 
(1,2,3 except n)

Check residual
norm (4)

Calculate alpha, beta
(5,10)

MemcpyAsync
invoke: m

For loop starts

MemcpyAsync
invoke: m

Vector Operations
(12,13,14,15,16,17)

Vector Operations
(12,13,14,15,16,17)

Calculate gamma,
norm (19,21)

Calculate gamma,
norm (19,21)

SPMV part 1 SPMV part 1

Wait for copy to finish Wait for copy to finish

SPMV part 2 SPMV part 2

Vector Operations
and PC (11,18,22)

Vector Operations
and PC (11,18,22)

Calculate delta (20) Calculate delta(20)

User defined
stream 1

User defined
stream 2

Execution Flow of Hybrid-PIPECG-3 Method

Fig. 3. Execution flow of Hybrid-PIPECG-3 method



Pipelined CG on GPU systems 9

5 Experiments and Results

Experimental Setup: We run our tests on two systems: first, a Tesla K40
GPU with 15 Streaming Multiprocessors (SMX), 5GB memory, 16 core Intel
CPU and second, a Volta V100 GPU with 80 SMX, 32GB memory and 32 core
Intel CPU. We employ OpenMP for using all CPU cores and we employ CUDA
kernels, cublas and cusparse libraries for GPU. We run experiments on matrices
from the SuiteSparse Matrix Collection[1] as well our own generated Poisson
matrices shown in table 1. N is the number of rows and nnz is the number of
non-zeroes in the matrix. We solve a linear system of equations Ax = b with the
exact solution x0 = 1/

√
N , where N is the number of rows of A and b = Ax0.

We set the absolute tolerance to 10−5, maximum number of iterations to 10000
and use Jacobi preconditioner. We run all tests to convergence and compare
the total execution times of Hybrid-PIPECG-1, Hybrid-PIPECG-2 and Hybrid-
PIPECG-3 with the PCG CPU and GPU implementations in the widely used
Paralution[8] and PETSc[2] libraries. We also compare our methods with the
CPU and GPU implementations of PIPECG method. Here, we note that the
total execution time for the Hybrid-PIPECG-3 method always includes the time
consumed for performance modelling and data decomposition.

Table 1. Matrices used for Experiments

System Matrix N nnz

K40

bcsstk15 3,948 117,816
gyro 17,361 1,021,159
boneS01 127,224 6,715,152
hood 220,542 10,768,436
offshore 259,789 4,242,673
Serena 1,391,349 64,531,701
Queen 4147 4,147,110 329,499,284

K40
4.5M Poisson 4,492,125 549,353,259
5M Poisson 4,913,000 601,211,584
6M Poisson 5,929,741 726,572,699

V100
17.5M Poisson 17,576,000 2,166,720,184
20M Poisson 19,902,511 2,454,911,549
25M Poisson 24,897,088 3,073,924,664

Figure 4 compares the performance of our hybrid methods with CPU imple-
mentations of PCG in Paralution and PETSc, and with our CPU implementation
of PIPECG method on a single node with 16 CPU cores and a K40 GPU. We
present the speedups obtained by each method wrt to our PIPECG-OpenMP im-
plementation. We observe that PIPECG-OpenMP performs the worst for every
matrix. This is because the PIPECG method introduces extra VMAs to remove
the dependencies. This VMA overhead is less pronounced for distributed mem-
ory systems but more pronounced for multi-core CPU in a single node. We see
that PETSc-PCG-MPI always performs worse than Paralution-PCG-OpenMP.



10 M. Tiwari et al.

Finally, we observe that our hybrid methods perform better than all the CPU
versions for all matrices because we use GPU cores as well.

For bcsstk15 and gyro, Hybrid-PIPECG-1 performs the best. The same be-
haviour is observed for matrices with N from 100 to 36000. The other hybrid
methods don’t perform well for these matrices with small N as Hybrid-PIPECG-2
has redundant computations on the CPU cores and Hybrid-PIPECG-3 has ex-
tra overhead of performance modelling and data decomposition. For boneS01,
hood and offshore, Hybrid-PIPECG-2 performs the best. The same behaviour is
observed for matrices with N from 36000 to 260,000. Hybrid-PIPECG-1 doesn’t
perform well for larger matrices because copying 3N elements becomes costly for
large N. Hybrid-PIPECG-2 copies only N elements. Hybrid-PIPECG-3 performs
worse than Hybrid-PIPECG-2 because in Hybrid-PIPECG-2, the vector copy is
overlapped by the full SPMV kernel, whereas in Hybrid-PIPECG-3 method, it
is overlapped by only SPMV part 1 kernel. For Serena and Queen 4147, Hybrid-
PIPECG-3 performs the best. Similar behavior is observed for matrices with N
from 260,000 to 4M. Hybrid-PIPECG-1 copies 3N elements in every iteration and
hence performs poorly for matrices with very large N. Hybrid-PIPECG-2 copies
N elements but performs redundant computations on CPU and GPU which pro-
vide great overhead for very large N. So, for very large N (and consequently
large nnz), Hybrid-PIPECG-3 provides almost perfect overlap of operations on
the CPU and GPU and is the best suited. Thus, we find that different hybrid
methods give the best performance for different matrix size ranges.

Figure 5 compares the performance of our hybrid methods with GPU im-
plementations of PCG in Paralution, PCG in PETSc and PIPECG method
in PETSc. We present the speedups obtained by each method wrt to PETSc-
PIPECG-GPU implementation. Similar trends as the CPU comparison are ob-
served here as well and we observe that different hybrid methods give the best
performance for different matrix size ranges.

Until now, we have presented results on matrices from the SuiteSparse col-
lection that can be fit in K40’s memory. Queen 4147 is the largest matrix size
that we are able to run on a single K40 GPU. We now analyse Poisson matrices
that cannot be fit in K40 and V100 memory (shown in the last 6 rows of table
1). Hybrid-PIPECG-1 and Hybrid-PIPECG-2 launch the SPMV kernel on only
the GPU and thus require the complete matrix to be on the GPU. Hence, these
methods cannot be used for these cases. We can use Hybrid-PIPECG-3 method
because it decomposes data between multi-core CPU and GPU. We compare
Hybrid-PIPECG-3 with CPU-only implementations of our PIPECG, PETSC
PCG and Paralution PCG methods. We show the performance comparisons
on various Poisson Matrices in Figure 6. We find that our Hybrid-PIPECG-3
method gives 2-2.5 times speedup over the other methods on K40 and 2.5-6.8
times speedup on V100.

6 Conclusion and Future Work

In this work, we proposed three methods for efficient execution of PIPECG
method on GPU accelerated systems. Hybrid-PIPECG-1 and Hybrid-PIPECG-



Pipelined CG on GPU systems 11

Fig. 4. Comparison of Hybrid methods with various CPU versions on a single node
with 16 CPU cores and K40 GPU. Speedup presented wrt PIPECG-OpenMP.

Fig. 5. omparison of Hybrid methods with various GPU versions on a single node with
16 CPU cores and K40 GPU. Speedup presented wrt PETSc-PIPECG-GPU.



12 M. Tiwari et al.

(a) K40 GPU (b) Volta GPU

Fig. 6. Comparison of Hybrid-PIPECG-3 with CPU versions for various Poisson prob-
lems on K40 and V100. Speedup presented wrt PIPECG-OpenMP.

2 methods achieve task parallelism by executing dot products on the CPU while
GPU executes PC and SPMV kernels. Hybrid-PIPECG-3 method achieves data
parallelism by decomposing the workload between multi-core CPU and GPU
based on a performance model. Our methods give up to 8x speedup and on
average 3x speedup over PCG CPU implementation of Paralution and PETSc
libraries. Our methods give up to 5x speedup and on average 1.45x speedup over
PCG GPU implementation of Paralution and PETSc libraries. Hybrid-PIPECG-
3 method also provides an efficient solution for solving problems that cannot be
fit into the GPU memory and gives up to 6.8x speedup for such problems. In the
future, we plan to extend this single node single GPU work to multiple nodes
with multiple GPUs.

References

1. Suitesparse matrix collection (2020), https://sparse.tamu.edu/
2. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of par-

allelism in object oriented numerical software libraries. In: Modern Software Tools
in Scientific Computing. pp. 163–202. Birkhäuser Press (1997)

3. Bell, N., Dalton, S., Olson, L.N.: Exposing fine-grained parallelism in algebraic
multigrid methods. SIAM Journal on Scientific Computing 34(4)

4. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on cuda
5. Bell, N., Garland, M.: Implementing sparse matrix-vector multiplication on

throughput-oriented processors. In: SC 2009 (2009)
6. Ghysels, P., Vanroose, W.: Hiding global synchronization latency in the precondi-

tioned conjugate gradient algorithm. Parallel Comput. (2014)
7. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear sys-

tems. Journal of research of the National Bureau of Standards 49, 409–436 (1952)
8. Labs, P.: Paralution v1.1.0 (2020), http://www.paralution.com/
9. Li, R., Saad, Y.: Gpu-accelerated preconditioned iterative linear solvers. J. Super-

comput. 63(2) (2013)


