
Pipelined Preconditioned s-step Conjugate Gradient
Methods for Distributed Memory Systems

Manasi Tiwari
Department of Computational and Data Sciences

Indian Institute of Science
Bengaluru, India

manasitiwari@iisc.ac.in

Sathish Vadhiyar
Department of Computational and Data Sciences

Indian Institute of Science
Bengaluru, India

vss@iisc.ac.in

Abstract—Preconditioned Conjugate Gradient (PCG) method
is a widely used iterative method for solving large linear systems
of equations. Pipelined variants of PCG present independent
computations in the PCG method and overlap these computa-
tions with non-blocking allreduces. We have developed a novel
pipelined PCG algorithm called PIPE-sCG (Pipelined s-step
Conjugate Gradient) that provides a large overlap of global
communication and computations at higher number of cores
in distributed memory CPU systems. Our method achieves
this overlap by introducing new recurrence computations. We
have also developed a preconditioned version of PIPE-sCG. The
advantages of our methods are that they do not introduce any
extra preconditioner or sparse matrix vector product kernels in
order to provide the overlap and can work with preconditioned,
unpreconditioned and natural norms of the residual, as opposed
to the state-of-the-art methods. We compare our method with
other pipelined CG methods for Poisson problems and demon-
strate that our method gives the least runtimes. Our method
gives up to 2.9x speedup over PCG method, 2.15x speedup over
PIPECG method and 1.2x speedup over PIPECG-OATI method
at large number of cores.

Index Terms—Preconditioned Conjugate Gradient, Distributed
Memory Systems, Pipelining, Overlapping communication and
computations, s-step Methods

I. INTRODUCTION

Solving partial differential equations (PDEs) over space and
time is a key component of many high performance computing
applications in computational fluid dynamics, thermal simula-
tions and so on. The PDEs obtained from such applications
are discretized using finite volume, finite element or finite
difference methods. These discretization methods result in a
linear system of equations Ax = b. Generally, the A matrix
obtained by using these schemes is large and sparse and such
systems can be solved using iterative methods. A popular
class of iterative methods used for solving these systems
are Krylov Subspace methods. The basic idea behind Krylov
Subspace methods when solving a linear system Ax = b is
to build a solution within the Krylov subspace composed of
several powers of matrix A multiplied by vector b, that is,
{b, Ab,A2b, ..., Amb}.

Conjugate Gradient (CG) [1] [2] method is a widely used
Krylov Subspace method which is instrumental in finding the
solution of linear systems with symmetric sparse positive def-
inite matrices. A preconditioner is often applied to the system
to condition the input system and to improve convergence.

The key computational kernels in Preconditioned Conjugate
Gradient (PCG) method are Sparse Matrix Vector Product
(SPMV), Preconditioner Application (PC), Vector-Multiply-
Adds (VMAs) and Dot Products. The dot products use allre-
duce operations in distributed memory systems. The bottleneck
in PCG for distributed memory systems is the synchronization
that happens across all cores due to the blocking allreduce
operations in the algorithm.

The existing research by Saad [3], Meurant [4], Azevedo et
al. [5] and Chronopoulos et al. [6] has worked on reducing
the number of allreduces to one per iteration as opposed to
the three that exists in the original PCG. Additionally in [6],
Chronopoulos et al. propose the s-step CG (sCG) method
in which the number of allreduces are reduced to one per
s iterations at the expense of introducing one extra SPMV
kernel. The preconditioned version of the s-step CG method
(PsCG) is presented in [7]. The non-blocking collectives like
MPI IAllreduce were introduced in the MPI-3 standard [8]
and the overlapping of allreduce with useful work was made
possible. Pipelined PCG (PIPECG) proposed by Ghysels et al
[9] uses a CG variant which has one allreduce per iteration.
By introducing extra VMAs, they overlap this non-blocking
allreduce with an SPMV and a PC.

In this work, we propose a novel pipelined PCG method
for distributed memory systems, called PIPE-sCG (Pipelined
s-step Conjugate Gradient) which has one allreduce per s
iterations and overlaps it with s SPMVs and s can be defined
at run time. We start with sCG [6] which has s+1 SPMVs
per iteration and reduce the number of SPMVs to s per
iteration. Then, we eliminate the dependencies between the dot
products and s SPMVs by using new recurrence computations
and thereafter overlap the non-blocking allreduce for dot
products with s SPMVs. We also propose a preconditioned
version of PIPE-sCG called PIPE-PsCG. For this, we introduce
preconditioning to the PIPE-sCG method. As opposed to the
preconditioned sCG(i.e. PsCG) method which has s+1 PCs
and s+1 SPMVs in each iteration, the PIPE-PsCG method has
s PCs and s SPMVs in each iteration. Then, the non-blocking
allreduce for dot products can be overlapped with these s
PCs and s SPMVs. Furthermore, PIPE-PsCG method can
compare the user defined tolerance with any of preconditioned,
unpreconditioned or natural residual norm without introducing

215

2021 IEEE International Conference on Cluster Computing (CLUSTER)

978-1-7281-9666-4/21/$31.00 ©2021 IEEE
DOI 10.1109/Cluster48925.2021.00061

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lu
st

er
 C

om
pu

tin
g

(C
LU

ST
ER

) |
 9

78
-1

-7
28

1-
96

66
-4

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
lu

st
er

48
92

5.
20

21
.0

00
61

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

any extra PC or SPMV kernels as opposed to state-of-the-art
methods. We perform a detailed cost analysis of the PIPE-
PsCG method and compare it with other PCG variants. We test
the performance of PIPE-PsCG method on various problems
and present results. PIPE-PsCG gives up to 2.9x speedup over
PCG method, 2.15x speedup over PIPECG method and 1.2x
speedup over PIPECG-OATI method at large number of cores.

The rest of the paper is organized as follows: Section II
gives the related work, Section III gives background related
to PCG, s-step CG and preconditioned s-step CG, Section
IV describes our algorithm for PIPE-sCG and preconditioned
PIPE-sCG method using recurrence computations, Section
V presents the computational cost analysis and comparison
of our method to other related works. Section VI presents
experiments, results and discussions for our proposed method
and Section VII gives the conclusion and future work.

II. RELATED WORK

Pipelined variants of PCG attempt to eliminate the depen-
dencies in the computations of the PCG algorithm and overlap
the resultant non-dependent computations using non-blocking
allreduces. Apart from the PIPECG method [9] mentioned
in section I, there have been other efforts for overlapping
communication and computations.

PIPECG3, a pipelined version of the PCG method with three
term recurrence relations was proposed by Eller et al [10]. It
launches a single allreduce in every two iterations and overlaps
the single allreduce with two SPMVs and two PCs. However,
this has been shown to have low accuracy than the original
three two-term recurrence PCG variants. In our previous work
[11], we had proposed PIPECG-OATI (One Allreduce per Two
Iterations) in which we used iteration combination and non-
recurrence computations to launch one non-blocking allreduce
in two iterations and overlap it with two PCs and two SPMVs.
We had shown that PIPECG-OATI gives up to 3x performance
improvement over all the other state-of-art pipelined methods.
While this previous work uses one allreduce per two iterations,
our current work aims to provide a flexible framework to use
one allreduce every s iterations and overlap it with s PCs and
s SPMVs.

Pipelined PCG with deep pipelines (PIPELCG) was in-
troduced in [12] [13] in order to overlap more work with
allreduce at higher core counts. PIPELCG starts with Gener-
alised Minimal Residual (GMRES) as the base algorithm and
overlaps each allreduce with s PCs and s SPMVs. However,
it launches a non-blocking allreduce in each iteration and can
only work with natural norm of the residual. To accommodate
unpreconditioned and preconditioned norms, PIPELCG would
require an extra PC and SPMV in each iteration. Our method
PIPE-sCG starts with sCG (s-step Conjugate Gradient) as the
base algorithm. It launches one non-blocking allreduce in s
iterations and overlaps it with s PCs and s SPMVs. PIPE-sCG
can work with all kinds of norms without introducing any extra
PC and SPMV.

Communication avoiding s-step CG method is proposed by
Hoemmen in [14]. It used the Matrix Powers kernel which

reduces the communication due to SPMVs. However, the use
of matrix powers kernel with s-step CG makes it difficult to use
certain preconditioners. Hence, they propose a Communication
avoiding CG (CA-CG) method which is based on the three
term recurrence variant of CG method. CA-CG uses matrix
powers kernel and can be used with any preconditioner. PIPE-
PsCG doesn’t use matrix powers kernel as the aim of our work
is to overlap the global communication induced by allreduce,
and not reduce the communication induced by SPMV itself.
PIPE-PsCG can work with any preconditioner. The matrix
powers kernel can be used with PIPE-PsCG to reduce the
SPMV communication but it can prevent from using certain
preconditioners. Therefore, we don’t use matrix powers kernel
in our work.

III. BACKGROUND

PCG: The Preconditioned Conjugate Gradient Method
(PCG) introduced by Hestenes and Stiefel [1] is given in
Algorithm 1. It iteratively solves M−1Ax = M−1b where
both M and A are symmetric and positive definite square
matrices of size NxN . The method starts with an initial

Algorithm 1 Preconditioned Conjugate Gradient (PCG)
1: r0 = b−Ax0; u0 =M−1r0;
2: γ0 = (u0, r0); norm0 =

√
(u0, u0)

3: for i=0,1... do
4: if i > 0 then
5: βi = γi/γi−1
6: else
7: βi = 0
8: end if
9: pi = ui + βipi−1

10: s = Api
11: δ = (s, pi)
12: α = γi/δ
13: xi+1 = xi + αpi
14: ri+1 = ri − αs
15: ui+1 =M−1ri+1

16: γi+1 = (ui+1, ri+1);
17: normi+1 =

√
(ui+1, ui+1)

18: end for

solution x0. The residual vector of the original system is
ri = b − Axi, the residual of the preconditioned system is
ui =M−1ri and pi is the direction vector. We keep updating
x0 with the new direction vector in each iteration till the
residual norm reaches a user defined tolerance. If the exact
solution is x∗ = A−1b, then the error at step i is defined as
ei = x∗−xi. All subsequent approximations xi lie in a Krylov
subspace Ki(M

−1A, u0), which is defined as:
Ki(M

−1A, u0) = span{u0,M−1Au0, .., (M−1A)i−1u0}
The CG iteration generates a sequence of iterates xi ∈

x0+Ki(M
−1A, u0), with the property that at step i, the error

functional ‖ei‖A =
√
eiTAei is minimized.

As shown in Algorithm 1, the computational kernels in
PCG’s for loop are Sparse Matrix Vector Product (SPMV)

216

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

in line 10, Preconditioner Application (PC) in line 15, Vector-
Multiply-Adds (VMAs) in lines 9, 13 and 14 and dot products
in lines 11, 16 and 17. The SPMV often only requires
communication with the neighbouring nodes which has been
implemented efficiently in state-of-the-art libraries. Depending
on the type of PC we are using, there might be no commu-
nication at all or communication with neighbouring nodes.
Communication efficient PCs already exist in state-of-the-art
libraries. VMAs require no communication.

Dot products use allreduce which requires all the cores
to synchronize and send their local dot products so that the
global dot product can be calculated. In the original PCG
Algorithm 1, the allreduce used in the dot products cannot
be overlapped with any work because the results of the dot
products are needed immediately in the next step. So the
cores remain idle till the communication for calculating global
dot product completes. Also, there are three allreduces per
iteration, so the cores have to incur synchronization and idling
cost thrice. As the number of cores increase, the time taken
for allreduce increases, thus the cores remain idle for a longer
time and this becomes the bottleneck and hinders obtaining
good performance for PCG at higher number of cores.

s-step CG (sCG): The s-step Conjugate Gradient Method
(sCG) proposed by Chronopoulos et al. [6] is given in Al-
gorithm 2. It iteratively solves Ax = b. The basic idea
behind the sCG method is to perform s consecutive iterations
of the original CG method in one iteration. While each
iteration of the PCG method computes a direction vector and
minimizes the error functional for that direction vector, each
iteration of the sCG method forms direction spaces instead of
single direction vectors (as in CG), and minimizes the error
functional over each space.

In algorithm 2, we first select an initial solution x0. Then,
we use the s linearly independent directions {ri, .., As−1ri}
to lift the iteration s dimensions out of the ith step Krylov
subspace {r0, .., Aisr0}. These linearly independent directions
are stored in Q. Then, we calculate 2s vector moments or dot
products as we will need them for calculating α′s and β′s.
The dot products that we need to calculate are:
vm = {(r0, r0), (r0, Ar0), (r0, A2r0), .., (r0, A

sr0),
(Ar0, A

sr0), .., (A
s−1r0, A

sr0)}.
For even iterates, the linearly independent directions must

be made A-conjugate to the preceding s directions, which are
{pi−11, .., pi−1s} stored in P . For this we need the β′s. After
the linearly independent directions are made A-conjugate to
the previous directions, they are stored in Q and their entries
are called {pi1, .., pis} Finally, the error functional must be
minimized simultaneously in all s new directions to obtain
the new solution vector xi+1 and residual ri+1. For this we
need the α′s. The vector of α′s and the matrix of β′s are
calculated in Scalar Work. For the odd iterates, exact same
steps are followed but the {pi1, .., pis} are stored in P and the
{pi−11, .., pi−1s} stored in Q. For an elaborate description of
the sCG method, see [6].

As shown in Algorithm 2, the computational kernels in
sCG’s for loop are s+1 SPMVs in lines 11, 12 (for even

iterates), lines 17, 18 (for odd iterates); Linear Combinations
(LCs) in lines 9, 10(even iterates), 15, 16(odd iterates); and 2s
dot products in line 13 (even iterates) and 19 (odd iterates).
The scalar work on line 7 involves solving two s x s linear
systems using any direct solver. We use LU factorization for
solving these systems and obtain α′s and β′s. Since, in an
iteration the method will execute either the if or the else
clause, we observe that in each iteration, there will be s+1
SPMVs and 2s dot products. However, the allreduce for these
2s dot products can be combined into a single allreduce. Thus
the s-step CG method provides one allreduce in each iteration
where each iteration does the work of s consecutive steps of
the PCG method. Effectively, s-step CG method provides one
allreduce per s iterations of the PCG method.

Algorithm 2 s-step Conjugate Gradient Method (sCG)
1: Select x0
2: Set P = 0
3: Compute Q = {r0 = b−Ax0, Ar0, A2r0, .., A

s−1r0}
4: Compute Asr0
5: vm = {(r0, r0), (r0, Ar0), ...(As−1r0, A

sr0)}
6: for i=0,1,2.. do
7: Scalar Work
8: if i even then
9: Q = Q+ P [β1, β2,, βs]

10: xi+1 = xi +Qα
11: P = {ri+1 = b−Axi+1, Ari+1, .., A

s−1ri+1}
12: Compute Asri+1

13: vm = {(ri+1, ri+1), .., (A
s−1ri+1, A

sri+1)}
14: else
15: P = P +Q[β1, β2,, βs]
16: xi+1 = xi + Pα
17: Q = {ri+1 = b−Axi+1, Ari+1, .., A

s−1ri+1}
18: Compute Asri+1

19: vm = {(ri+1, ri+1), .., (A
s−1ri+1, A

sri+1)}
20: end if
21: end for

Preconditioned s-step CG (PsCG): The Preconditioned s-
step Conjugate Gradient Method (PsCG) introduced in [7] is
given in Algorithm 3. It iteratively solves M−1Ax = M−1b.
Here, {ui =M−1ri, .., (M

−1A)s−1ui} are the linearly inde-
pendent direction vectors used to lift the iteration s dimensions
out of the ith Krylov Subspace. The sCG method generates
a sequence of iterates xi ∈ x0 + Ki(A, r0) whereas the
PsCG method generates a sequence of iterates xi ∈ x0 +
Ki(M

−1A, u0). As shown in Algorithm 3, the computational
kernels in PsCG for loop are s+1 PCs and s+1 SPMVs in
lines 12, 13, 14 (even iterates) , 19, 20 and 21(odd iterates);
LCs in lines 10, 11 (even iterates), 17, 18(odd iterates); and
2s dot products in line 15(even iterates) and 22(odd iterates).

IV. METHODOLOGY

As shown in Algorithm 2, one iteration of sCG actually
performs the work of s iterations of the PCG method. However,
s iterations of the PCG method have s SPMVs whereas one

217

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Preconditioned s-step Conjugate Gradient
Method (PsCG)

1: Select x0
2: Set P = 0
3: Compute r0 = b−Ax0, u0 =M−1r0
4: Q = {u0,M−1Au0, .., (M−1A)s−1u0}
5: Compute (M−1A)su0
6: vm = {(r0, u0), (r0,M−1Au0), (r0, (M−1A)2u0), ..,

(A(M−1A)s−1u0, (M
−1A)su0)}

7: for i=0,1,2.. do
8: Scalar Work
9: if i even then

10: Q = Q+ P [β1, β2,, βs]
11: xi+1 = xi +Qα
12: Compute ri+1 = b−Axi+1, ui+1 =M−1ri+1

13: P ={ui+1,M
−1Aui+1, ..(M

−1A)s−1ui+1}
14: Compute (M−1A)sui+1

15: vm = {(ri+1, ui+1), (ri+1,M
−1Aui+1), ..,

(A(M−1A)s−1ui+1, (M
−1A)sui+1)}

16: else
17: P = P +Q[β1, β2,, βs]
18: xi+1 = xi + Pα
19: Compute ri+1 = b−Axi+1, ui+1 =M−1ri+1

20: Q ={ui+1,M
−1Aui+1, ..(M

−1A)s−1ui+1}
21: Compute (M−1A)sui+1

22: vm = {(ri+1, ui+1), (ri+1,M
−1Aui+1), ..,

(A(M−1A)s−1ui+1, (M
−1A)sui+1)}

23: end if
24: end for

iteration of sCG has s+1 SPMVs. So, there is an extra SPMV
in the sCG iteration. SPMV is the most computationally
expensive kernel in the PCG iteration and even one extra
SPMV provides a large overhead. Furthermore, as shown in
Algorithm 2, the dot products need the results of the SPMVs
that happen immediately before them. Thus, it is imperative
that the SPMVs are executed before dot products. Similarly,
the computations that follow the dot products need the results
of the dot products. Hence, while the allreduce for the dot
product progresses, the cores have to be idle as there is no
independent computation that can be overlapped with that
communication. Similarly, for PsCG, one iteration has s+1
PCs as compared to s PCs in s iterations of the PCG method.
PC is also a computationally expensive kernel which provides
overhead. Additionally, as shown in algorithm 3, the dot
products depend on the result of the PCs and SPMVs before
them. There is a dependency between the PCs, SPMVs and
dot products and there are no independent computations that
can be overlapped with the allreduce.

In the upcoming era of exascale supercomputers, when we
run the sCG method at higher number of cores, the allreduce
cost will become the most dominant term in the total execution
time. It is necessary that we overlap this allreduce cost with
useful computations so that the cores don’t remain idle.

In order to build communication overlapping variant of the

sCG method, we have to eliminate the dependencies between
the dot products and the SPMVs so that the SPMVs can
be executed by the cores while the communication for non-
blocking allreduce of the dot products takes place. Hence, the
cores wouldn’t have to be idle. Still, the sCG method has one
drawback which would overshadow the benefits of overlapping
the allreduce communication with SPMVs. That drawback is
the extra SPMV in each iteration. If we expect to see any kind
of performance benefits from overlapping the communication
and computations in sCG when compared to the original PCG
and other pipelined variants, the amount of computations in
all methods should be same. Therefore, the primary challenge
here is to remove the extra SPMV from the sCG method. Once
we have the sCG method with s SPMVs, we can proceed
to eliminate the dependencies between the dot products and
SPMVs.

This section is organized as follows. We first derive the sCG
method with s SPMVs in IV-A. We then develop the pipelined
sCG method in IV-B. Finally, we derive the preconditioned
version of the pipelined sCG method in IV-C.

A. sCG method with s SPMVs

In algorithm 2, as we examine the s+1 SPMVs that are
calculated, we observe that ri+1 is calculated as ri+1 = b −
Axi+1. We know that xi+1 = xi + Qα for even iterates and
xi+1 = xi + Pα for odd iterates. The entries of P or Q are
{pi1, pi2, .., pis}.
Therefore, the expansion of xi+1 is:
xi+1 = xi + αi

1pi
1 + αi

2pi
2 + ..+ αi

spi
s

Substituting xi+1 in ri+1 = b−Axi+1, we get:
ri+1 = b−A(xi + αi

1pi
1 + αi

2pi
2 + ..+ αi

spi
s)

=⇒ ri+1 = b−Axi−αi
1Api

1−αi
2Api

2− ..−αi
sApi

s

Substituting ri = b−Axi:
ri+1 = ri − αi

1Api
1 − αi

2Api
2 − ..− αi

sApi
s

=⇒ ri+1 = ri − {Api1, Api2, ..., Apis}α
We introduce two matrices, AQ and AP . Their ini-

tial entries are {Ari, A2ri.., A
sri}. For even iterates,

AQ has to be made A-conjugate to AP which has
{Api−11, Api−12, .., Api−1s}. So, we introduce a recurrence
relation:
AQ = AQ+AP [β1, β2,, βs]

After this, the contents of AQ are:
AQ = {Api1, Api2, .., Apis}

For even iterates, AP has to be made A-conjugate to AQ
which has {Api−11, Api−12, .., Api−1s}. So, we introduce a
linear combination which is a recurrence relation:
AP = AP +AQ[β1, β2,, βs]

After this, the contents of AP are:
AP = {Api1, Api2, .., Apis}

Thus ri+1 becomes:
ri+1 = ri −AQα for even iterates.
ri+1 = ri −APα for odd iterates.
All the new matrices, their initial entries and the recurrence

LCs to populate them are shown in algorithm 4 in red. Putting
it all together, we have obtained sCG method with s SPMVs

218

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

in each iteration, present on line 14 and 15 (even iterates) and
on line 23 and 24 (odd iterates).

Algorithm 4 sCG method with s SPMVs
1: Select x0
2: Set P = 0, AP = 0
3: Compute Q = {r0 = b−Ax0, Ar0, A2r0, .., A

s−1r0}
4: Compute Asr0
5: vm = {(r0, r0), (r0, Ar0), ...(As−1r0, A

sr0)}
6: for i=0,1,2.. do
7: Scalar Work
8: if i even then
9: AQ = {Ari, A2ri, .., A

sri}
10: Q = Q+ P [β1, β2,, βs]
11: AQ = AQ+AP [β1, β2,, βs]
12: xi+1 = xi +Qα
13: ri+1 = ri −AQα
14: P = {ri+1, Ari+1, .., A

s−1ri+1}
15: Compute Asri+1

16: vm = {(ri+1, ri+1), .., (A
s−1ri+1, A

sri+1)}
17: else
18: AP = {Ari, A2ri, .., A

sri}
19: P = P +Q[β1, β2,, βs]
20: AP = AP +AQ[β1, β2,, βs]
21: xi+1 = xi + Pα
22: ri+1 = ri −APα
23: Q = {ri+1, Ari+1, .., A

s−1ri+1}
24: Compute Asri+1

25: vm = {(ri+1, ri+1), .., (A
s−1ri+1, A

sri+1)}
26: end if
27: end for

B. PIPE-sCG method

In order to overlap the non-blocking allreduce of the dot
products with SPMVs, we have to eliminate the depen-
dencies between them. As we can observe from algorithm
4, the dot products use the result of the s SPMVs i.e.
{Ari+1, A

2ri+1, .., A
sri+1}.

For even iterates, we have:
ri+1 = ri −AQα

Then we can obtain {Ari+1, A
2ri+1, .., A

sri+1} using the
following recurrence LC (linear combination):
Ari+1 = Ari −A(AQ)α
A2ri+1 = A2ri −A2(AQ)α

...
Asri+1 = Asri −As(AQ)α

We introduce a matrix of matrices AQm whose entries will be
{AQ,A(AQ), .., As(AQ)}. The initial entries of AQm are:
AQm[0] = AQ = {Ari, A2ri, .., A

sri}
AQm[1] = A(AQ) = {A2ri, A

3ri, .., A
s+1ri}

AQm[2] = A2(AQ) = {A3ri, A
4ri, .., A

s+2ri}

...

Algorithm 5 Pipelined sCG method with s SPMVs (PIPE-
sCG)

1: Select x0
2: Set P = 0
3: for i=0,1,..,s do
4: APm[i] = 0
5: end for
6: Compute Q = {r0 = b−Ax0, Ar0, A2r0, .., A

s−1r0}
7: Compute Asr0
8: vm = {(r0, r0), (r0, Ar0), ...(As−1r0, A

sr0)}
9: MPI Iallreduce on vm

10: Compute As+1r0, ..., A
2sr0

11: for i=0,1,2.. do
12: Scalar Work
13: if i even then
14: for i=0,1,..,s do
15: AQm[i] = Ai+1Q
16: end for
17: Q = Q+ P [β1, β2,, βs]
18: for j=0,1,..,s do
19: AQm[j] = AQm[j] +APm[j][β1, β2,, βs]
20: end for
21: xi+1 = xi +Qα
22: for j=0,1,..,s-1 do
23: P [j] = Q[j]−AQm[j]α
24: end for
25: Asri+1 = Asri −AQm[s]α
26: vm = {(ri+1, ri+1), .., (A

s−1ri+1, A
sri+1)}

27: MPI Iallreduce on vm
28: Compute As+1ri+1, ..., A

2sri+1

29: else
30: for i=0,1,..,s do
31: APm[i] = Ai+1P
32: end for
33: P = P +Q[β1, β2,, βs]
34: for j=0,1,..,s do
35: APm[j] = APm[j] +AQm[j][β1, β2,, βs]
36: end for
37: xi+1 = xi + Pα
38: for j=0,1,..,s-1 do
39: Q[j] = P [j]−APm[j]α
40: end for
41: Asri+1 = Asri −APm[s]α
42: vm = {(ri+1, ri+1), .., (A

s−1ri+1, A
sri+1)}

43: MPI Iallreduce on vm
44: Compute As+1ri+1, ..., A

2sri+1

45: end if
46: end for

219

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

AQm[s] = As(AQ) = {As+1ri, A
s+2ri, .., A

2sri}
We observe that entries of AQm require the s SPMVs
As+1ri, A

s+2ri, .., A
2sri. But we had not calculated these

SPMVs earlier. So, we have to compute these s SPMVs.
However, we notice that the result of the new SPMVs is not
needed by the dot products. So the new s SPMVs can be
computed while the allreduce of the dot products progresses.
Also, the entry AQm[i] has to be made A-conjugate to entry
APm[i]. So, we introduce the recurrence LCs:
AQm[0] = AQm[0] +APm[0][β1, β2,, βs]
AQm[1] = AQm[1] +APm[1][β1, β2,, βs]

...
AQm[s] = AQm[s] +APm[s][β1, β2,, βs]

For odd iterates, the same procedure as above is followed,
except that we define a matrix of matrices called APm whose
initial entries are defined in the same way as even iterates.
Then these entries are made A-conjugate to AQm. Finally
the s SPMVs {Ari+1, A

2ri+1, .., A
sri+1} are calculated as:

Ari+1 = Ari −A(AP)α
A2ri+1 = A2ri −A2(AP)α

...
Asri+1 = Asri −As(AP)α

All the new matrices, their initial entries, the recurrence LCs to
update them and the new SPMVs are shown in algorithm 5 in
red. Putting it all together, we have obtained a pipelined sCG
(PIPE-sCG) method with s SPMVs in each iteration, present
on line 28 (even iterates) and on line 44 (odd iterates). These
s SPMVs can be overlapped with a non-blocking allreduce
present on line 27(even iterates) and line 43(odd iterates).

C. PIPE-PsCG method

We apply preconditioning to PIPE-sCG method in algorithm
5. For even iterates, when we apply preconditioning, the dot
products to be calculated (as shown in algorithm 3) are: vm =
{(ri+1, ui+1), (ri+1,M

−1Aui+1), .., (A(M
−1A)s−1ui+1,

(M−1A)sui+1)}.
Calculation of vm requires ri+1. In preconditioned method,
the entries of P are {ui+1,M

−1Aui+1, ..(M
−1A)s−1ui+1}.

It stores the preconditioned residual ui+1 and not
ri+1. So, we introduce a matrix P2 which stores
{ri+1, AM

−1ri+1, ..(AM
−1)s−1ri+1}. The rest of the

entries are useful in intermediate computations. Since, we
cannot calculate the entries of P2 directly using PC and
SPMV kernels, we introduce the following recurrence LC for
calculating it: P2[j] = Q2[j]−AQ2m[j]α.
Q2 has the same entries as P2 but from odd iterates. Q2 is
made A-conjugate to previous P2 using the recurrence LC:
Q2 = Q2 + P2[β1, β2,, βs].
We introduce a new matrix of matri-
ces AQ2m, which has the initial entries
{(AM−1)Q2, (AM−1)2Q2), .., (AM−1)s+1Q2)}.
Then AQ2m[j] is made A-conjugate to AP2m[j] using the
recurrence LCs:

Algorithm 6 Pipelined Preconditioned sCG method(PIPE-
PsCG)

1: Select x0
2: Set P = 0, P2 = 0
3: for i=0,1,..,s do
4: APm[i] = 0
5: AP2m[i] = 0
6: end for
7: Compute r0 = b−Ax0, u0 =M−1r0
8: Compute AM−1r0,M−1AM−1r0, ..., (M−1A)sM−1r0
9: Q = {u0,M−1Au0, .., (M−1A)s−1u0}

10: Q2 = {r0, AM−1r0, .., (AM−1)s−1r0}
11: vm = {(r0, u0), (r0,M−1Au0), (r0, (M−1A)2u0), ..,

(A(M−1A)s−1u0, (M
−1A)su0)}

12: MPI Iallreduce on vm
13: Compute A(M−1A)sM−1r0, (M−1A)s+1M−1r0, ...,

(M−1A)2sM−1r0
14: for i=0,1,2.. do
15: Scalar Work
16: if i even then
17: for i=0,1,..,s do
18: AQm[i] = (M−1A)i+1Q
19: AQ2m[i] = (AM−1)i+1Q2
20: end for
21: Q = Q+ P [β1, β2,, βs]
22: Q2 = Q2 + P2[β1, β2,, βs]
23: for j=0,1,..,s do
24: AQm[j] = AQm[j] +APm[j][β1, β2,, βs]
25: AQ2m[j] = AQ2m[j] +AP2m[j][β1, β2,, βs]
26: end for
27: xi+1 = xi +Qα
28: for j=0,1,..,s-1 do
29: P [j] = Q[j]−AQm[j]α
30: P2[j] = Q2[j]−AQ2m[j]α
31: end for
32: (AM−1)sri+1 = (AM−1)sri −AQm[s]α
33: (M−1A)sui+1 = (M−1A)sui −AQ2m[s]α
34: vm = {(ri+1, ui+1), (ri+1,M

−1Aui+1), ..,
(A(M−1A)s−1ui+1, (M

−1A)sui+1)}
35: MPI Iallreduce on vm
36: Compute A(M−1A)sM−1ri+1, (M

−1A)s+1M−1ri+1,
.., (M−1A)2sM−1ri+1

37: else
38: Call Odd Iterates
39: end if
40: end for

220

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

Algorithm 7 Odd Iterates
1: for i=0,1,..,s do
2: APm[i] = (M−1A)i+1P
3: AP2m[i] = (AM−1)i+1P2
4: end for
5: P = P +Q[β1, β2,, βs]
6: P2 = P2 +Q2[β1, β2,, βs]
7: for j=0,1,..,s do
8: APm[j] = APm[j] +AQm[j][β1, β2,, βs]
9: AP2m[j] = AP2m[j] +AQ2m[j][β1, β2,, βs]

10: end for
11: xi+1 = xi + Pα
12: for j=0,1,..,s-1 do
13: Q[j] = P [j]−APm[j]α
14: Q2[j] = P2[j]−AP2m[j]α
15: end for
16: (AM−1)sri+1 = (AM−1)sri −AQm[s]α
17: (M−1A)sui+1 = (M−1A)sui −AQ2m[s]α
18: vm = {(ri+1, ui+1), (ri+1,M

−1Aui+1), ..,
(A(M−1A)s−1ui+1, (M

−1A)sui+1)}
19: MPI Iallreduce on vm
20: Compute A(M−1A)sM−1ri+1, (M

−1A)s+1M−1ri+1,
.., (M−1A)2sM−1ri+1

AQ2m[j] = AQ2m[j] +AP2m[j][β1, β2,, βs]
We introduce similar recurrence LCs for odd iterates. All the
new matrices, their initial entries, the recurrence LCs to update
them and the new PCs and SPMVs are shown in algorithm
6 and 7 in red. Putting it all together, we have obtained
a pipelined PsCG (PIPE-PsCG) method with s PCs and s
SPMVs in each iteration, present on line 36 (even iterates)
of algorithm 6 and on line 20 (odd iterates) of algorithm 7.
These s PCs and s SPMVs can be overlapped with a non-
blocking allreduce present on line 35(even iterates) and line
19(odd iterates).

V. COMPUTATIONAL COST ANALYSIS AND COMPARISON
WITH DIFFERENT METHODS

In this section, we analyse and compare PIPE-PsCG with
state-of-the-art variants of PCG in Table I. The #Allr column
shows the number of allreduces per s iterations for every
method. The Time column shows the time taken per s iterations
for global allreduce (G), Preconditioner (PC) and Sparse
Matrix Vector Product (SPMV). The FLOPS column lists the
number of Floating Point Operations (xN) in VMAs and dot
products for s iterations. For PsCG and PIPE-PsCG methods,
the recurrence LCs can be seen as a series of VMAs and we
can calculate the number of flops in these VMAs. The Memory
column counts the number of vectors that need to be kept in
the memory (excluding x and b).

The PCG method [1] has 3s allreduces per s iterations. It
uses blocking allreduces and provides no overlap with useful
work. Therefore, the times for the 3s allreduces and s PCs and
s SPMVs add up. The PIPECG method [9] has s allreduces

Method #Allr Time for allreduce (G),
Preconditioner (PC) and
SPMV operations

FLOPS Memory

PCG 3s s(3G+PC+SPMV) 12s 4
PIPECG s s(max(G, PC+SPMV)) 22s 9
PIPELCG s max(G,s(PC+SPMV) 6s2 +

14s
14

PIPECG3 ds/2e ds/2e(max(G,2(PC+SPMV))) 90*ds/2e 25
PIPECG-
OATI

ds/2e ds/2e(max(G,2(PC+SPMV))) 80*ds/2e 19

PsCG 1 G+(s+1)(PC+SPMV) 2s2 +
4s+ 2

2s+2

PIPE-
PsCG

1 max(G,s(PC+SPMV) 4s3 +
12s2 +
2s+ 5

4s2 +
12s +
5

TABLE I
DIFFERENCES BETWEEN VARIOUS PCG METHODS FOR S ITERATIONS OF

EXECUTION.

per s iterations and overlaps one allreduce with one PC and
one SPMV.

The PIPELCG method [12] has s allreduces per s iterations.
Due to the inherent nature of the PIPELCG algorithm, it
requires an extra PC and SPMV in each iteration to com-
pute preconditioned and unpreconditioned residual norms.
The entries in table I for PIPELCG are for natural residual
norm. PIPE-PsCG can compute the natural, preconditioned
and unpreconditioned residual norms without introducing any
extra PCs or SPMVs.

The PIPECG3 method [10] and PIPECG-OATI method [11]
execute two iterations of PCG in each of their own iteration.
So, s iterations of PCG will mean ds/2e iterations of PIPECG3
and PIPECG-OATI. In each of their iterations, they overlap
the allreduce with 2 PCs and 2 SPMVs. The PsCG method
[7] has one allreduce per s iterations and has s+1 PCs and s+1
SPMVs in each iteration. But it uses blocking allreduce and
cannot overlap that allreduce with useful work.

PIPE-PsCG has one allreduce per s iterations and uses
non-blocking allreduce which helps in overlapping s PCs
and s SPMVs with the allreduce. Therefore, the time taken
per s iterations is the time taken for allreduce or the time
for s PCs and s SPMVs, whichever is larger. The PIPE-
PsCG method will give performance improvements over other
methods when the time taken for global allreduce (G) is
completely overlapped by the s PCs and s SPMVs in the
problem. Since G increases as number of cores increase, we
expect performance improvements at higher number of cores.
We also note that the number of FLOPS in PIPE-PsCG are
significantly more than the other methods. We see results
related to this in the s sensitivity analysis in Section VI.
We also see that the memory required by the PIPE-PsCG
method is more than other pipelined variants but we have not
seen this being a problem for any of the problems that we
have worked on as large systems often have abundant main
memory in their nodes. The use of multiple nodes to reduce
the computational cost means a large amount of aggregated
memory from multiple nodes and thus, we don’t run out of
memory.

PIPECG, PIPELCG, PIPECG3 and PsCG have been shown

221

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

to stagnate at higher values of relative residuals than the PCG
method. In all the pipelined variants, including PIPE-PsCG,
rounding errors are introduced in the residuals due to the
introduction of recurrence relations.

VI. EXPERIMENTS AND RESULTS

A. Experiment Setup
We ran tests on our Institute’s supercomputer cluster called

SahasraT, a Cray-XC40 machine which has 1376 compute
nodes. Each node has two CPU sockets with 12 cores each,
128GB RAM and connected using Cray Aries interconnect.
We have implemented our PIPE-PsCG method in the PETSc
library [15]. We use cray-mpich version 7.7.2. For the non-
blocking collective MPI Iallreduce to make progress, it is
necessary to configure our customised PETSc code with –
LIBS=-ldmapps for dynamic linking to the DMAPP library
and set MPICH NEMESIS ASYNC PROGRESS to 1 in the
job script.

We show the performance of our methods by solving the
Poisson differential equation on a regular 3D grid discretized
with a 125-point stencil. We also show the performance on
matrices from the SuiteSparse Matrix Collection [16] obtained
from real world application. The equation Ax = b is solved
in the tests. The RHS vector b is initialized to Ax∗ where
x∗ is assigned to a vector of ones. The solution vector x0 is
initialized to a vector of zeroes.

Our methods, PIPE-sCG and PIPE-PsCG, are compared
with PCG, PIPECG, PIPECG3, PIPECG-OATI and PsCG
(Preconditioned s-step CG) methods available in PETSc. We
use Jacobi Preconditioner in all preconditioned variants un-
less stated otherwise. We present results for strong scaling,
sensitivity to s, experiments with different preconditioners and
accuracy experiments.

B. Strong Scaling Experiments and Results
Figure 1 shows the strong scaling of different methods on

a 125pt Poisson problem with 1 million (1M) unknowns on
up to 120 nodes (2880 cores). All the methods are run to
convergence for a relative tolerance of 10−5. We plot the
speedup obtained by each method with respect to PCG on one
node (24 cores). Here, s=3 for PsCG, PIPE-sCG and PIPE-
PsCG.

We observe from Figure 1 that PCG reaches 11.3x speedup
at 40 nodes and then the speedup degrades as the number of
nodes increase further because the allreduce time increases as
the number of nodes increase and PCG does not overlap it
with any computation. For PIPECG, we observe that 14.79x
speedup is gained at 40 nodes and then the speedup starts
degrading because after 40 nodes, the allreduce times become
larger than the time taken for one PC and one SPMV. We
see that PIPECG3 and PIPECG-OATI both perform better
than PCG and PIPECG reaching 17.77x and 19.76x speedup
respectively because they overlap two PCs and two SPMVs
with the allreduce and provide optimized VMA implementa-
tions. However, their speedups also start degrading from 60
nodes on-wards because after 60 nodes, the allreduce times

Fig. 1. Strong scaling of different methods on a 125-pt Poisson problem with
1M unknowns on up to 120 nodes.

become larger than the time taken for two PCs and two
SPMVs. We see that PsCG performs better than PCG reaching
12.79x speedup because it reduces number of allreduces to
one per three iterations. But it always performs worse than all
the other methods because it has an extra PC and SPMV in
each iteration. We observe that PIPE-PsCG starts performing
better than PIPECG from 50 nodes on-wards and better than
PIPECG3 and PIPECG-OATI from 60 nodes on-wards because
it overlaps more computations with the increased allreduce
costs. We observe that PIPE-sCG performs worse than PIPE-
PsCG as it takes more iterations to converge due to lack of
preconditioning.

In conclusion, for the 125-pt problem with 1M unknowns,
PIPE-PsCG provides up to 2.18x speedup wrt PCG, up
to 1.84x speedup wrt PIPECG, up to 1.41x speedup wrt
PIPECCG3, up to 1.26x speedup wrt PIPECG-OATI and 2x
speedup wrt to PsCG. All these speedups are obtained at 80
nodes.

Figure 2 shows the strong scaling of different methods on
the ecology2 matrix from the SuiteSparse Matrix Collection
[16] on up to 120 nodes. As shown in Table II, it has 1M
unknowns. All the methods are run to convergence for a
relative tolerance of 10−2. Here, s=3 for PsCG, PIPE-sCG and
PIPE-PsCG. For the ecology2 matrix, PIPE-PsCG provides up
to 2.9x speedup wrt PCG, up to 2.15x speedup wrt PIPECG,
up to 1.4x speedup wrt PIPECG3, up to 1.2x speedup wrt
PIPECG-OATI and 2.43x speedup wrt to PsCG. All these
speedups are obtained at 120 nodes.

The 2x speedup of our PIPE-PsCG over PsCG for both
problems shows that while it is important to reduce the number
of allreduces as in PsCG, true performance benefits can be
obtained for large number of cores only by reducing the
number of SPMVs per iteration and by efficiently overlapping
the allreduces with useful computations.

For the ecology2 matrix, the relative tolerance was set to

222

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Strong scaling of different methods on a ecology2 matrix with 1M
unknowns on up to 120 nodes.

10−2 because the methods PsCG, PIPE-sCG and PIPE-PsCG
do not converge for a relative tolerance of 10−5. As discussed
in Section V, the residual norms in all these methods stagnate
at a higher value. In order to achieve the same lower values of
residual norms as PCG method, we combine the PIPE-PsCG
method with the method from our previous work, the PIPECG-
OATI method. It works as follows: until the residual stagnation
starts, PIPE-PsCG method is used to advance the solution of
the linear system. As soon as residual stagnation begins, we
extract the solution x∗ calculated by PIPE-PsCG method and
provide it as initial solution to the PIPECG-OATI method.
Then, the PIPECG-OATI method advances the solution until
the relative tolerance of 10−5 is reached. We call this method
as Hybrid-pipelined method as it is a hybrid between PIPE-
PsCG and PIPECG-OATI methods.

Matrix N nnz PCG PIPECG PIPECG-
OATI

Hybrid-
pipelined

ecology2 999999 4995991 1.52 2.302 3.87 3.96
thermal2 1228045 8580313 2.15 3.04 3.52 4.16
Serena 1391349 64131971 2.23 4.47 7.15 8.28

TABLE II
COMPARISON OF CG METHODS FOR MATRICES FROM SUITESPARSE

MATRIX COLLECTION ON 120 NODES. SPEEDUPS ARE SHOWN WRT PCG
ON ONE NODE.

The performance of the Hybrid-pipelined method is shown
on matrices from the SuiteSparse Matrix collection in Table II.
All the methods are run to convergence for relative tolerance
of 10−5 on 120 nodes. Speedups are shown with respect to
PCG on one node. We observe that the most speedup (shown
in bold) is provided by Hybrid-pipelined method for differ-
ent matrices. We observe that the Hybrid-pipelined method
provides increased benefits over PIPECG-OATI method when
the number of non-zeroes (nnz) are higher (as in case of
Serena) because the matrices with more nnz’s provide more
computations to be overlapped with the allreduce at higher

number of cores.

C. Sensitivity to s
Figure 3 shows the performance of PIPE-PsCG method for

different s values on a 125pt 3D Poisson problem with 1M
unknowns on up to 140 nodes (3360 cores). All the methods
run to convergence for a relative tolerance of 10−5. We
compare the results for three values of s. At s=3, PIPE-PsCG
has one allreduce per 3 iterations, at s=4 it has one allreduce
per four iterations and at s=5 it has one allreduce per five
iterations. We observe that PIPE-PsCG at s=3 performs better

Fig. 3. s Sensitivity analysis of the PIPE-PsCG method for 125pt 1M Poisson
problem up to 140 nodes

than s=4 and s=5 till 70 nodes. Similarly, PIPE-PsCG at s=4
performs better than s=5 till 100 nodes. This can be explained
as follows. At lower number of cores, the cost of one allreduce
is small. Thus, having fewer allreduces in the entire execution
and overlapping it with large amount of computations doesn’t
give significant performance benefits. Additionally, for higher
values of s, FLOPS become a significant overhead as shown
in Section V. Therefore, the net result is that we end up losing
performance. At higher number of cores, the cost of allreduce
becomes significant and thus, having fewer allreduces in the
entire execution and overlapping it with large amount of
computation gives significant performance benefits which is
enough to compensate for the overhead introduced by FLOPS.
We conclude that PIPE-PsCG with high value of s starts giving
performance benefits at higher number of cores.

D. Preconditioners
In this section, we present the results of using different

preconditioners with the various PCG variants. We use three
preconditioners available in PETSc library, SOR (Successive
Over Relaxation), MG (Multigrid) and GAMG (Geometric-
Algebraic Multigrid). These preconditioners reduce the num-
ber of iterations needed to reach convergence. Figure 4 shows
the performance of various PCG variants for these precondi-
tioners on the 125pt 1M Poisson problem at 120 nodes. All the

223

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

methods run to convergence for a relative tolerance of 10−5.
We plot the speedup obtained by each method with respect to
PCG on one node. Here, s=3 for PsCG and PIPE-PsCG.

Fig. 4. Different preconditioners on 125pt 1M Poisson problem at 120 nodes

We observe that PIPE-PsCG gives the largest speedup for
all preconditioners. PsCG performs worse than even PCG.
Despite having fewer allreduces, it has an extra PC and SPMV
in every iteration. If we use a simple preconditioner like Jacobi
preconditioner, then PsCG is able to overcome the overhead of
extra PC and SPMV due to the fewer allreduces and perform
better than PCG as shown in figures 1 and 2. However, for
advanced preconditioners like SOR, MG, and GAMG, the cost
of PC is higher and an extra PC and SPMV provide much
overhead and PsCG performs worse than PCG.

We observe that the speedup of PIPE-PsCG with respect
to PIPECG-OATI varies for different preconditioners. This
depends on the computational intensity of the preconditioner.
The SOR and MG are not as computationally intensive as
GAMG. Therefore, PIPE-PsCG can provide better overlap of
three PCs and three SPMVs with the allreduce. GAMG is
computationally expensive and PIPECG-OATI provides the
overlap of two PCs and two SPMVS. Compared to this, PIPE-
PsCG provides a little additional overlap with the third PC and
third SPMV. Hence, the performance improvement is low.

We conclude that we can use different preconditioners with
PIPE-PsCG method and get varying performance benefits.

E. Accuracy Experiments and Results
In the CG method, the convergence is checked as:
‖ui‖ < max(rtol ∗ ‖b‖, atol)

where ui is preconditioned residual, rtol is relative tolerance
and atol is absolute tolerance. In PETSc based applications,
rtol is set to 10−5 by default. In the OpenFOAM [17] [18]
based applications which solve pressure Poisson equations, we
see that default value for rtol is set to 10−2.

Figure 5 shows the relative residual values attained by
PCG, PIPECG, PIPECG3, PIPECG-OATI, PsCG and PIPE-
PsCG methods as a function of time for the 125-pt 1M

unknowns. Here, we see that PIPE-PsCG reaches the threshold
of rtol ∗ ‖b‖ (where rtol is set to 10−5) fastest as compared
to all the other methods with PCG being the slowest. Thus we
conclude that for widely used values of rtol, our method can
be used to solve the linear system of equations obtained from
real world applications with performance benefits.

Fig. 5. Solver Accuracy/Performance Experiment for 125-pt 1M Poisson
problem. Relative Residual Values as a function of time at 80 nodes.

VII. CONCLUSION AND FUTURE WORK

In this work, we developed a novel PIPE-sCG method for
distributed memory systems which has one allreduce per s
iterations and overlaps it with s SPMVs using MPI Iallreduce
and s can be defined at run time. In this process, we also
developed a version of sCG which has s SPMVs as opposed to
the s+1 SPMVs in sCG. We also developed a preconditioned
version of PIPE-sCG called PIPE-PsCG in which the non-
blocking allreduce for dot products is overlapped with s
PCs and s SPMVs. An advantage of PIPE-PsCG method
is that it can compare the user defined tolerance with any
of preconditioned, unpreconditioned or natural norm of the
residual without introducing any extra PC or SPMV kernels as
opposed to state-of-the-art methods. We have shown that PIPE-
PsCG gives performance benefits over other PCG variants at
high number of cores when the allreduce cost becomes large
and can be completely overlapped by the s PCs and s SPMVs.
Our method PIPEC-PsCG gives up to 2.9x speedup wrt PCG,
2.15x speedup wrt PIPECG, 1.4x speedup wrt to PIPECG3,
1.2x speedup wrt PIPECG-OATI and 2.43x speedup wrt PsCG
at higher number of cores.

In the future, we plan to automate the process of choosing
the s parameter for the PIPE-PsCG method. We plan to devise
a model which would give the optimum s value when the linear
system dimensions, the number of cores on which we want to
solve the linear system and the desired accuracy are given to
it as input. In this way, the user doesn’t have to worry about
choosing the optimum s.

224

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. R. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of research of the National Bureau of
Standards, vol. 49, pp. 409–436, 1952.

[2] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. USA:
Society for Industrial and Applied Mathematics, 2003.

[3] ——, “Practical use of some krylov subspace methods for solving
indefinite and nonsymmetric linear systems,” SIAM Journal on Scientific
and Statistical Computing, vol. 5, no. 1, pp. 203–228, 1984. [Online].
Available: https://doi.org/10.1137/0905015

[4] G. Meurant, “Multitasking the conjugate gradient method on the cray
x-mp/48,” Parallel Computing, vol. 5, no. 3, pp. 267–280, 1987.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0167819187900378

[5] E. D”Azevedo, V. Eijkhout, and C. Romine, “Lapack working note 56:
Reducing communication costs in the conjugate gradient algorithm on
distributed memory multiprocessors,” University of Tennessee, USA,
Tech. Rep., 1993.

[6] A. T. Chronopoulos and C. W. Gear, “S-step iterative methods for
symmetric linear systems,” J. Comput. Appl. Math., vol. 25, no. 2,
p. 153–168, Feb. 1989. [Online]. Available: https://doi.org/10.1016/
0377-0427(89)90045-9

[7] A. Chronopoulos and C. Gear, “On the efficient implementation of
preconditioned s-step conjugate gradient methods on multiprocessors
with memory hierarchy,” Parallel Computing, vol. 11, no. 1, pp. 37–
53, 1989. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/0167819189900628

[8] “Mpich 3.3.3,” 2019. [Online]. Available: https://www.mpich.org/
[9] P. Ghysels and W. Vanroose, “Hiding global synchronization latency

in the preconditioned conjugate gradient algorithm,” Parallel Comput.,
vol. 40, no. 7, p. 224–238, Jul. 2014. [Online]. Available: https:
//doi.org/10.1016/j.parco.2013.06.001

[10] P. R. Eller and W. Gropp, “Scalable non-blocking preconditioned conju-
gate gradient methods,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’16. IEEE Press, 2016, pp. 204–215.

[11] M. Tiwari and S. Vadhiyar, “Pipelined preconditioned conjugate
gradient methods for distributed memory systems,” in 27th IEEE
International Conference on High Performance Computing, Data,
and Analytics, HiPC 2020, Pune, India, December 16-19, 2020.
IEEE, 2020, pp. 151–160. [Online]. Available: https://doi.org/10.1109/
HiPC50609.2020.00029

[12] J. Cornelis, S. Cools, and W. Vanroose, “The communication-hiding
conjugate gradient method with deep pipelines,” arXiv.org, 2018.

[13] S. Cools, J. Cornelis, and W. Vanroose, “Numerically stable recurrence
relations for the communication hiding pipelined conjugate gradient
method,” arXiv.org, 2019.

[14] M. Hoemmen, “Communication-avoiding krylov subspace methods,”
Ph.D. dissertation, University of California at Berkeley, USA, 2010.

[15] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune,
K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp,
D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C.
McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F.
Smith, S. Zampini, H. Zhang, and H. Zhang, “PETSc Web
page,” https://www.mcs.anl.gov/petsc, 2019. [Online]. Available: https:
//www.mcs.anl.gov/petsc

[16] “Suitesparse matrix collection.” [Online]. Available: https://sparse.tamu.
edu/

[17] “Openfoam,” 2019. [Online]. Available: https://www.openfoam.org/
[18] “Openfoam,” 2020. [Online]. Available: https://cfd.direct/openfoam/

user-guide/v6-fvsolution/

225

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 15:05:00 UTC from IEEE Xplore. Restrictions apply.

