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Abstract—High performance grid computing is a key enabler
of large scale collaborative computational science. With the
promise of exascale computing, high performance grid systems
are expected to incur electricity bills that grow super-linearly
over time. In order to achieve cost effectiveness in these systems,
it is essential for the scheduling algorithms to exploit electricity
price variations, both in space and time, that are prevalent
in the dynamic electricity price markets. In this paper, we
present a metascheduling algorithm to optimize the placement
of jobs in a compute grid which consumes electricity from
the day-ahead wholesale market. We formulate the scheduling
problem as a Minimum Cost Maximum Flow problem and
leverage queue waiting time and electricity price predictions
to accurately estimate the cost of job execution at a system.
Using trace based simulation with real and synthetic workload
traces, and real electricity price data sets, we demonstrate
our approach on two currently operational grids, XSEDE and
NorduGrid. Our experimental setup collectively constitute more
than 433K processors spread across 58 compute systems in 17
geographically distributed locations. Experiments show that our
approach simultaneously optimizes the total electricity cost and
the average response time of the grid, without being unfair to
users of the local batch systems.

I. INTRODUCTION

High performance grid computing involving supercomputer

systems at distributed sites plays an important role in acceler-

ating scientific advancement and facilitating multi-institutional

and multi-disciplinary collaborations. Extreme Science and

Engineering Discovery Environment (XSEDE), Open Science

Grid and European Grid Infrastructure are some examples of

computational grid infrastructure that support science gate-

ways to enable communities to use HPC systems. The opera-

tional costs of these systems have become comparable to the

cost of hardware acquisition, and service providers regularly

budget millions of dollars annually for electricity bills [1].

Hence it is imperative to include power and electricity cost

minimization in job scheduling decisions in high performance

computational grids.

A large body of work has been developed to reduce the

power consumption of data center servers, by switching off

unused nodes [2], using voltage and frequency scaling to

run servers at low power [3], and using renewable energy

sources to reduce the carbon footprint of computation [4].

This work is supported by Department of Science and Technology (DST),
India via the grant SR/S3/EECE/0095/2012.

However, such approaches which reduce the power consump-

tion by lowering CPU frequency or voltage, slow down HPC

applications and result in unacceptable loss of performance

and system utilization. Deregulation of the electricity power

markets and the creation of power trading zones in many

countries offer opportunities to purchase wholesale power

under various dynamic pricing schemes. Dynamic electricity

price markets are popular and cater to large industries and

manufacturing units. In such markets, scheduling algorithms

can exploit spatial and temporal electricity price differentials

and schedule workloads at servers which have cheap power.

Typically, the wholesale energy market consists of a day-

ahead market and a real time market. In the day-ahead market,

consumers of electricity submit bids with their expected power

requirements for the following day (demand), and suppliers

of electricity submit bids with their expected generation and

supply volumes for the coming day (supply). The trading

agency which accepts these bids, sets a clearing price for each

hour of the coming day, based on the supply and demand bids.

In contrast, real-time markets operate at a faster rate, and the

prices can fluctuate, say every 5 minutes, based on the actual

supply and demand scenario in the market. Real time markets

have been considered for supplying electricity for Internet

data centers [5]–[8]. With the increasing power requirements

in HPC, we anticipate that in the near future, HPC system

operators will consider these markets as a potential source of

cheap power. HPC sites like Argonne National Lab (ANL) are

already considering using electricity according to time-of-use

pricing [1]. We use the day-ahead hourly electricity prices be-

cause the day-ahead markets are suitable for HPC workloads.

The loads on these systems are predictable at a coarse level

and can be used by administrators to submit accurate demand

bids for procuring power supply the following day. Moreover,

the prices in the day-ahead market fluctuate smoothly and can

be predicted using time series forecasting techniques. These

predictions can be used for intelligent scheduling decisions.

For a scheduler to estimate the total electricity price for

a job execution before allocating the job to a system with

hourly price variations, it is important to know the period

of execution in the system. Production parallel systems in

many supercomputing sites are batch systems that provide

space sharing of available processors among multiple parallel

applications or jobs. Well known parallel job management

frameworks including PBS are used to provide job queuing
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and execution services for users on these supercomputers. With

multiple users contending for the compute resources, a batch

queue submission incurs time due to waiting in the queue

before the resources necessary for its execution are allocated.

The queue waiting time ranges from a few seconds to even a

few days on production systems, and is dependent on the load

of the system, the batch scheduling policy and the number

of processors requested by the user. Thus, the queue waiting

time and hence the starting time of the job on the system is

not known in advance. For the execution time and the ending

time of the job, we use the estimated run time (ERT) provided

by the user in the job script. The ERT of the job is required

for system schedulers which employ backfilling to increase

system utilization, and is thus supported by many of the job

management frameworks including PBS. When the user does

not specify the ERT, the maximum runtime limit is assumed.

In this paper, we have developed a metascheduling strategy

that considers hourly electricity price variations in a day-ahead

market and predicted response times to schedule HPC parallel

jobs to geographically distributed HPC systems of a grid.

Our metascheduler simultaneously minimizes electricity cost

and response times by exploiting electricity price differences

across states and countries to schedule jobs at systems where

the cost of servicing the job is minimized while ensuring that

the users do not suffer degradation in system response time.

Our metascheduler uses a framework that we have developed

for prediction of queue waiting times. We formulate the job

scheduling problem in our metascheduler as a minimum cost

maximum flow computation in a suitable flow network and use

the network simplex algorithm for optimization. We evaluated

our algorithm with trace based simulations using synthetic

and real workload traces of two production grids: XSEDE

[9] and NorduGrid [10], and real electricity price data sets.

Our approach can potentially save $167K in annual electricity

cost while obtaining 25% reduction in average response time

compared to a baseline strategy. We found that even users

who do not use our metascheduler, can sometimes obtain

improvements in response time when our algorithm migrates

jobs away from their local systems.

To our knowledge, ours is the first work on metascheduling

HPC workloads across grid systems considering actual or

predicted hourly electricity prices at a predicted period of job

execution.

In Section II, we motivate and describe the problem defini-

tion. We discuss our methodology including the network flow

formulation in Section III. The experimental setup is detailed

in Section IV. We present the results and some practical

considerations in Section V. We describe the related work in

Section VI and conclude in Section VII.

II. BACKGROUND

Popular metaschedulers like Condor-G [11] use the concept

of periodic scheduling cycles to efficiently manage job sub-

mission and dispatch decisions. When a job is submitted by a

user, the metascheduler marks the job as pending for schedul-

ing. During the subsequent scheduling cycle, the scheduling

algorithm assigns a subset of the pending jobs for processing

at a subset of the systems in the grid. In many currently

operational grids, administrators impose restrictions on the

maximum number of jobs that can be submitted to a particular

system in a single scheduling cycle to prevent the middleware

at these systems from being flooded by job submissions [11].

We denote this maximum number as MaxQ.

Given n geographically distributed grid systems with day-

ahead hourly electricity prices and a meta scheduling portal

for accepting job submissions, the metascheduling problem

is to assign jobs in a scheduling cycle to systems while

simultaneously minimizing the response time and electricity

cost of the job executions.

While our metascheduler may increase the local electricity

cost at a system due to job migrations from submitting to

execution systems, it attempts to reduce the overall operational

cost of the grid. We also claim that the variations in work-

load at a particular system due to our metascheduler cannot

significantly alter the day-ahead hourly electricity prices at

the system’s location. This is because the day-ahead market

trading volume is typically many orders of magnitude higher

than the power consumption of a single computing system.

III. METHODOLOGY

We formulate the grid scheduling problem as a minimum

cost maximum flow computation and use the network simplex

algorithm to find the optimal flow. To compute the cost of

scheduling a job on a system, we require predictions of the

response time of the job at the system and the electricity cost

required to execute the job. We describe our approach for

prediction of response time in Section III-A, and prediction of

electricity price in Section III-B. In Section III-C, we define

the cost function and the flow network used in our approach.

A. Response time prediction

In batch queue systems, similar jobs which arrive during

similar system queue and processor states, experience similar

queue waiting times. We have developed an adaptive algorithm

for prediction of queue waiting times on a parallel system

based on spatial clustering of the history of job submissions

at the system [12]. To obtain the prediction for a job J on

a system S, J is represented as a point in a feature space

using the job characteristics (request size, estimated run time)

specified by the user, the queue state at the system at the

current time (sums of request sizes of queued jobs, estimated

run times of queued jobs, elapsed waiting time of queued jobs)

and the state of the compute nodes at the current time (number

of occupied nodes, total elapsed running time of the jobs, total

estimated run times of the jobs). We compute the Manhattan

distance of each history job with the target job, and consider

history jobs with small distance values as being similar to the

target job. Then, we use Density Based Spatial Clustering of

Applications with Noise (DBSCAN) to find clusters of similar

jobs. DBSCAN also allows us to eliminate outliers among the

history jobs. If we find clusters which are very similar to the

target job, i.e., clusters with low average distance, we use the
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weighted average of waiting times of jobs in the cluster as the

prediction for the job, J . If we do not find clusters which are

very similar to the job, the job features of the history jobs and

the queue waiting times experienced by these jobs are used

to train a ridge regression model. The features of the target

job are supplied as input to this model to obtain the predicted

queue waiting time.

To test our predictions, we evaluated our framework using

production supercomputer workload traces with varying site

and job characteristics, including two Top500 systems, ob-

tained from Parallel Workloads Archive [13]. Across work-

loads, our predictions results in up to 22% reduction in

the average absolute error and up to 56% reduction in the

percentage prediction errors over existing strategies including

QBETS [14] and IBL [15]. Our prediction system also gave

accurate predictions for most of the jobs. For example, for the

workload of ANL’s Intrepid system our predictor gave highly

accurate predictions with less than 15 minutes absolute error

for more than 70% of the jobs. We also observed prediction

errors of less than one hour for 88-98% of the jobs for large-

scale systems including CEA Curie of France which is a

Top500 system, DAS2 of Netherlands, and SDSC Paragon of

USA. Our prediction system is also practically applicable to a

real environment. In all cases, our predictor consumes less than

a second for a prediction. Our predictor is currently deployed

on an 800 core system in our home department, delivering

queue waiting time predictions to users with less than 30%

error. In a real implementation, all the information required by

our predictor can be obtained using a single command (e.g.,

’qstat -a’ in PBS).

To find the response time of a job on a target system, we

invoke our queue waiting time predictor to find the predicted

start time of the job, ts. Then, we use the estimated run time

(ERT) supplied by the user to predict the end time of the job.

While the user estimates are known to be inaccurate [16], the

estimates serve as strict upper bounds on the runtimes since

job schedulers used in HPC systems terminate a job when its

runtime exceeds the user estimated runtime. In this work, we

use these estimates to demonstrate the benefits that can be

obtained for the grid systems from participation in dynamic

electricity markets. We show in our experiments that using

these estimates results in improved scheduling decisions over

a strategy that does not use predictions, but only considers

the loads at the time of the submission. We expect that using

improved runtime prediction strategies can lead to additional

benefits.

Since the ERT supplied by the user is relevant only for the

submission system, we use a scaling factor to adjust the ERT

for the target system. We assume that the applications in our

workload have similar scalability characteristics as HPL (High

Performance Linpack) benchmark. We compute the scaling

factor by obtaining the ratio of the HPL performance per core

(in GFlops) of the target system and the submission system.

For a job which is submitted at a system Si, for which we

require an estimate of the runtime at system Sj , we obtain the

performance per core of both systems, and scale the ERT of

the job as ERTSj = ERTSi × ppcSi/ppcSj where ERTSi

is the estimated run time of the job provided by the user on

system Si, ppcSi
is the performance per core of system Si.

The predicted end time of the job on the system Sj is te =
ts + ERTSj

. We describe our approach for estimating the

power per core of a system in Section IV.

Migration of jobs from submission to execution sites in-

volves transfer of data and executables. In practice, the data

size parameter can be given as input by the user, and the cost

of data movement can be computed using the data size and

the properties of the link (latency and bandwidth) between the

submission and the execution sites. However, in this study, we

do not consider data transfer times because our workloads do

not include the necessary information about job file transfers

and network state, and the current workload models [13], [17],

[18] for synthetic logs do not generate data sizes. We assume

that the executable binaries and data needed for a job are set

up at multiple systems prior to the job submission and hence

the cost of job migration between the systems is negligible.

B. Electricity price prediction

To obtain the electricity prices during the job’s execution

period at a target system, we find the predicted start and end

time of the job using our response time predictor. Given the

predicted start and end times of the job on the system, we

check whether the job’s predicted execution duration is within

the end of the day (midnight). In this case, the corresponding

electricity prices during the execution period in the day-ahead

electricity market are known. When the execution period does

not fully lie within the hours of the current day, i.e., te is

after midnight on the submission day, we predict the prices

for the duration that lies beyond midnight. We use a Seasonal

Autoregressive Integrated Moving Average (SARIMA) model

to model the electricity prices of the previous days. SARIMA

models are commonly used to obtain forecasts for time series

data which exhibit seasonal trends across days and months.

Since we observed that the prices in the day-ahead market have

high lag-24 autocorrelation, we use the SARIMA model with a

seasonal period of 24 hours. The various parameters required

for the SARIMA model were tuned using a training set of

the electricity price data. Our predictions for electricity prices

were found to be highly accurate with the datasets used in our

experiments, yielding average percentage prediction errors of

less than 10%.

C. MCMF: Minimum Cost Maximum Flow

Minimum cost maximum flow (MCMF) is a fundamental

network flow model which aims to maximize the amount of

shipment of a single commodity through a network while

minimizing the cost of the shipment. MCMF can be solved

using a number of approaches including cycle canceling, linear

programming and network simplex algorithms.

To schedule a set of jobs to a set of systems, we represent

the jobs and systems as nodes in a flow network. We consider

a system to be compatible for a job, if the total cores in

the system is more than the request size of the job and the
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maximum wall time permitted in the system is more than the

user estimated run time of the job. For each job, we add an

arc of unit capacity from the job to each compatible system.

A flow of unit value along an arc from J to S represents

scheduling J on S. We assign the cost of each job-system arc

as a weighted linear combination of the predicted response

time of the job and the electricity price required to execute

the job on the system.

To compute the cost of assigning a job J to a system S,

we predict the start time and end time of J on S as ts and

te, respectively. Assuming that the job is submitted at time

t, the response time of the job is TJ = te − t. In each

scheduling cycle, the metascheduler polls each system in the

grid to obtain its current queue and processor state in order

to invoke the response time predictor for each job on each

compatible system. Using these predictions for each job on

each system, we find the maximum and minimum predicted

response times in this scheduling cycle as Tmax and Tmin.

The cost of scheduling the job J at the system S, in terms of

response time, is defined as

CT (J, S) = (TJ − Tmin)/(Tmax − Tmin). (1)

We model the electricity prices at the location of the system S
to obtain a function φ̂S(t) which gives the predicted electricity

price during the time t. The cost of scheduling the job at this

system, in terms of electricity price is defined as

CE(J, S) =

∑te
t=ts

PJ,S ×Δ× φ̂S(t)− Emin

Emax − Emin
(2)

where PJ,S denotes the power consumption of J on S, Δ
denotes the period of the day-ahead electricity market, and

Emax and Emin denote the maximum and minimum predicted

electricity cost observed in the current scheduling cycle. Since

we use prices from the day-ahead hourly market, Δ = 1 hour

in all our experiments. We describe our approach to calculate

PJ,S in Section IV.

We define the cost of scheduling J on S as

C(J, S) = wt × CT (J, S) + (100− wt)× CE(J, S) (3)

where wt is the relevance of the response time in the cost

function. CT (J, S) and CE(J, S) are normalized by the corre-

sponding minimum and maximum values to unitless quantities

so that wt can be used for weightage of the two terms

irrespective of their absolute value. Our formulation shown

in Equation 3 is based on the nadir-utopia normalization

method by Kim and Weck [19]. In every scheduling cycle, the

objective function is re-normalized to adapt it to the current

predictions of electricity price and queue waiting time.

We connect an arc of unit capacity from the source node s
to each job and an arc of capacity MaxQ from each system

to the sink node t. The costs of these edges are set to 0.

For a set of m jobs and n systems, we illustrate this network

in Figure 1 where each arc is labeled with two parameters,

namely, the capacity of the edge and the cost of unit flow

through the edge. We scale the costs of the network edges

by multiplying with a large constant (100), and round off the

s

Jobs

J1

J2

J3

··
·

Jm

Systems

S1

S2

S3

Sn

··
·

t

(1,0)

(1,0)

(M
axQ, 0)

(M
ax
Q, 0)

(1, C(J1, S1))

··
·

(1, C(Jm, Sn))

Fig. 1: Flow network used for scheduling. The edges are

labelled as (edge capacity, cost of unit flow).

values to integers. In such a network, the Integrality Theorem

of maximum flow networks [20] guarantees that the maximum

flow is integral and each unit capacity edge in our network has

a flow value of either 0 or 1. We compute a maximum flow

of minimum cost in this network using the network simplex

algorithm available in the Python package, NetworkX. After

computing the minimum cost flow, we inspect the job-system

arcs and select the arcs which have non-zero flow. For each

arc from J to S which has non zero flow, we schedule the

job J on system S. By the flow conservation principles, we

are guaranteed that a) not more than one system is selected

for a job and b) no system receives more than MaxQ jobs

during one scheduling cycle. While our current maximum flow

network does not consider the limits imposed on the number

of jobs executed on a system per user or community at any

given time, that are imposed in resources like XSEDE, our

network can be trivially extended to consider these limits.

IV. EXPERIMENTAL SETUP

We performed trace based simulation of real and synthetic

grid workloads using real electricity price data sets and

power consumption profiles of compute systems to test the

effectiveness of our approach. In this section we explain each

component of the experimental setup.

A. Workload and Scheduler Simulator

We conduct simulations using grid traces which are in

Standard Workload Format (SWF) [13] or Grid Workload

Format (GWF) [21]. Each line in the SWF/GWF trace denotes

a job and records the arrival time, run time, number of cores,

user estimated runtime and other job parameters. GWF traces

also record the system where the job was originally submitted.

While using SWF traces during synthetic trace generation, we

appended each line in the trace with the submission system. To

conduct trace driven simulations, we used an extended version

of the Python Scheduler Simulator (pyss) developed by the

Parallel Systems Lab in Hebrew University [22]. pyss accepts

a workload trace, system size and scheduling algorithm as

inputs and replays the job arrival events, start and end of job

execution events to simulate the state of the system with the

input workload. Since pyss simulates only one system, we
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TABLE I: The XSEDE Grid

System Location Cores Power
(watts/core)

Performance
(Gflops/core)

Blacklight Pittsburgh 4096 87.89 9.00

Darter Tennessee 11968 30.58 20.79

Gordon San Diego 16160 22.17 21.10

Trestles San Diego 10368 42.66 9.64

Mason Indiana 576 39.95 7.43

Lonestar Texas 22656 15.83 13.32

Queenbee Louisiana 5440 16.25 9.37

Steele Purdue 4992 83.75 13.33

extended it to support multiple systems. We implemented a

metascheduler class that acts as a common interface between

the job submissions and the various execution systems. We

configured pyss to use the EASY backfilling algorithm [23]

to schedule jobs at the individual systems.

B. Grid systems

We simulate two currently operational grids which collec-

tively span 58 individual compute systems, 17 countries and

states, 10 electricity transmission operators, 7 time zones and

more than 250k job submissions. For each system, we obtained

the number of cores and maximum wall time of a job from

publicly advertised system information.
1) XSEDE: The Extreme Science and Engineering Discov-

ery Environment (XSEDE) project is a large scale compute

grid which connects many universities and research centers in

the US. For high performance computing, XSEDE connects

eight supercomputing systems situated across different states

in the US. For our simulation experiments, we used eight

CPU-only systems of XSEDE and its previous incarnation,

TeraGrid. The XSEDE system configuration ia shown in Table

I. Each individual XSEDE system uses the Portable Batch

System (PBS) or Sun Grid Engine (SGE) for job manage-

ment, and grid submissions are processed through Condor-

G metascheduler [11]. We model the jobs in the production

workload.
2) NorduGrid: NorduGrid is a very large grid with 80 sys-

tems spread across 12 countries with a majority of the systems

located in the Nordic countries. We simulated 50 selected

systems of NorduGrid which constitute over 90% of the total

CPU cores available in the grid. The grid configuration was

obtained from [10].

C. Workload

For simulating the jobs at a system, we used a synthetic

workload for XSEDE1 and real workload traces for Nor-

duGrid.
1) XSEDE: We generated synthetic workload traces for

each system using the workload models available in Parallel

Workloads Archive [13]. For generating the job arrival time,

request size and run time, we use the model proposed by

Lublin and Feitelson [17]. To generate the user estimates of

runtime, we used the model proposed by Tsafrir et.al. [18].

1We were not able to obtain real workloads for XSEDE.

In [24], Hart provides various summary statistics about

the run times, job sizes and inter-arrival times of the pro-

duction jobs in XSEDE/TeraGrid. We manually adjusted the

parameters of Lublin and Tsafrir models to match the ag-

gregate statistics of the synthetic workload with the reported

XSEDE/TeraGrid statistics. Statistics of our synthetic work-

load match the characteristics reported by Hart. The average

job runtime in our workload is 8.8 hours while the actual

average runtime in TeraGrid is 9 hours. The average number

of job arrivals at a system per hour is 3.22 in our workload,

while the actual value is 3.27.

2) NorduGrid: In NorduGrid, we used a real workload

available in Grid Workloads Archive [21]. The archive records

each job’s submission system, submission time, requested

processors and runtime. We used Tsafrir model with the

maximum observed runtime as input parameter to assign user

estimated runtimes for each job.

For queue waiting time and electricity price predictions, we

used a subset of jobs and electricity price data as training

information. Queue waiting time is predicted for a job at a

system by considering the previous 2000 job submissions at

the system as the training input. For predicting the electricity

prices, we use the prices of the previous three days as training

input for the SARIMA model. In Table II, we show our

simulation configuration including the number of jobs and the

duration that is simulated for each grid.

TABLE II: Simulation Configuration

Test configuration

Grid Systems Cores Jobs Days

XSEDE 8 76256 10000 15

NorduGrid 50 356856 126344 90

D. Variable electricity prices

For different systems, we obtained the hourly electricity

prices in the day-ahead market from the electricity operator in

the respective power market. For regions without variable elec-

tricity pricing, corresponding to one system in XSEDE and 24

systems in NorduGrid, we used the applicable fixed industrial

electricity price. For systems in XSEDE, we used historical

market prices for June 2014 available from the regional energy

operators of the Federal Energy Regulatory Commission [25].

In NorduGrid, we obtained the market prices for Denmark,

Sweden, Norway, Finland, Latvia and Lithuania from Nord

Pool Spot [26] and for Slovenia from BSP SouthPool [27].

For systems in United Kingdom, Ukraine, and Switzerland,

we used the applicable fixed industrial prices. Overall, in

NorduGrid, our electricity price data set spans three months

from January-March 2014 and includes variable electricity

prices for 26 systems.

E. Job power consumption and execution characteristics

1) Job power consumption: To estimate the power con-

sumption of a job at a system, we assume that the job
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has the same power consumption characteristics as High

Performance Linpack (HPL). The work by Kamil et.al. [28]

experimentally demonstrates that the HPL power consumption

can be used to closely approximate the power consumption of

production scientific applications. For each system in XSEDE,

we obtained the peak power consumption from Top500 and

Green500 datasets, computed the HPL power consumption

per core, and scaled it by the number of cores used by a

job to find the power consumption of a job. Thus, if a job

requires n cores on a machine which has a total of N cores and

advertised HPL power is PHPL, the job power consumption

is considered as PJ = n × (PHPL/N). Table I shows the

values of HPL power consumption per core for each system.

For NorduGrid, we were unable to obtain HPL benchmark data

on each system. Hence, we resorted to white papers published

by the chip manufacturers to obtain the power consumption

per core. Similar to XSEDE, we scaled these numbers with

the requested number of cores to find the power consumption

of each job.
2) Runtime scaling: For XSEDE, we obtained the HPL

peak performance (Rmax in TFlops) of a system using Top500

data and normalized it by the number of cores in the system

to find the performance per core, and obtained scaling factor

for a pair of systems as mentioned before. We computed such

scaling factors for every pair of systems using Top500 data.

For NorduGrid, we obtained the theoretical peak performance

of a core in the system (in GFlops) from architecture whitepa-

pers.

F. Evaluation metrics

To evaluate the benefits of our approach, we employ a

number of metrics as described below.

• Average response time: For each job, the response time

is the sum of the queue waiting and running times at a system.

• Total electricity cost: For a job Ji which executes on

system Sj , the electricity cost is computed as:

e(Ji, Sj) =
∑TWij

+TRij

t=TWij
Pij ×Δ× φSj

(t)

where Pij is the power consumption of Ji on Sj in watts, Δ
denotes the period of the day-ahead electricity market, TWij

and TRij
are the waiting time and running incurred for Ji on

Sj in hours, and φSj (t) is the hourly price variation function

for Sj expressed in currency per watts. For the day-ahead

hourly market, Δ is set to one hour.

• System utilization: Utilization at a particular system is

computed by dividing the sum of the CPU hours of jobs

scheduled at the system by the product of the makespan

and total processors available in the system. Thus, utilization

aims to measure the fraction of the system core hours which

delivered useful work.

• System instantaneous load: Instantaneous load is defined

as the sum of the CPU hours of both the running and queued

jobs divided by the total processors available in the system at

a particular instant.

• Fairness to System: A system or site’s participation in

grid should not affect the quality of service provided to the

jobs that are submitted to the system. Specifically, a high

speed system after joining the grid may become highly loaded

due to migration of jobs submitted at low speed systems.

To evaluate the quality of service, we compute the speedup

obtained due to the use of our metascheduling algorithm,

compared to the baseline. Specifically, for a job J , which

is submitted at system Si, which has response time Rlocal
J

when metascheduling is not used and Rgrid
J in the presence

of metascheduling, we compute the quality of service offered

to the job as: qosScore(Si, J) =
Rlocal

J

Rgrid
J

. We then compute the

fairness score for a system as the average of the QoS scores

of all the jobs submitted at the system. If a system has high

fairness score, it indicates that the users of the system are

benefitted by the system’s participation in the grid.

V. RESULTS AND DISCUSSION

During our experiments, we observed that our Python imple-

mentation running on an Intel Core i7 3.4Ghz processor with

16GB RAM takes 8.4 seconds on average for computing the

scheduling cost and constructing the flow network, and 16.3
seconds on average for computing the minimum cost flow and

the subsequent job submissions to individual systems. We refer

to our approach based on the Minimum Cost Maximum Flow

algorithm as MCMF. We compare our strategy with a baseline

strategy BS, in which the jobs are executed at the submission

system.

Our strategy is primarily different from existing efforts [1],

[5] in terms of using waiting time predictions to estimate

the benefits in response time and electricity cost for the

execution period of a job, and in terms of using the hourly

electricity prices during the execution to estimate the total cost.

Hence we compare our approach with two strategies, the first

strategy called INST which does not consider predictions but

makes decisions based on instantaneous loads of the systems

at the time of the job submissions, and the second strategy

called TWOPRICE which does not consider hourly prices but

considers only two prices per day, namely, on-peak and off-

peak. The INST strategy which assumes immediate execution

start of a job is implemented by feeding the waiting times

as zeros to our MCMF strategy. The TWOPRICE strategy

is implemented by considering the on-peak hours as 12pm

to midnight and calculating the off-peak and on-peak prices

as the 10th and 90th percentile of the day-ahead market

prices for the simulation period. Note that the INST and

TWOPRICE strategies are grid scheduling strategies since they

allow sharing and migration of jobs across the grid systems.

A. Overall Results

In this section, we analyze the overall reductions in response

times and electricity cost by our algorithm and compare with

the other approaches. Table III shows the comparison results.

The table shows the results of our MCMF algorithm with

different values of wt. Recall that wt denotes the weight of the

response time term in the cost function minimized by MCMF.

For XSEDE, we observe that with wt = 25%, our MCMF

strategy simultaneously achieves 24.6% reduction in average
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TABLE III: Overall Simulation Results

Grid Strategy Average
response time
(minutes)

Total electric-
ity cost ($ or
e)

XSEDE

MCMF (wt = 25%) 477.5 $224021.6

TWOPRICE (wt = 25%) 473.3 $232557.3

MCMF (wt = 0%) 1095.4 $187298.9

INST 3460.8 $205876.5

Baseline 633.7 $230985.6

NorduGrid

MCMF (wt = 92.5%) 1678.6 e12819.6

TWOPRICE (wt = 92.5%) 1724.4 e12991.7

INST 5210.2 e14613.6

Baseline 1900.3 e16608.3
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Fig. 2: Overall simulation results in XSEDE

response time and $6964 savings in total electricity cost,

compared to the baseline, for the 15-day period. This reduction

in electricity cost can potentially translate to a projected

savings of $167K dollars per year for the whole grid. Figure

2 shows the trade off between response time and cost for

our MCMF algorithm for different values of wt compared

to the other strategies. We see that when response time is

not considered for optimization (wt = 0), we obtain up to

$43686 reduction in in electricity cost with a 1.7x increase in

average response time over the baseline. Thus, for one year

of operation, we can potentially save $1.04M for the whole

grid. Considering that the annual electricity budget of Argonne

National Laboratory’s primary supercomputer is $1M [1], the

savings obtained by our approach are significant.

From Table III and Figure 2, we can also see that our

MCMF algorithm (wt = 25%) outperforms TWOPRICE by

$8535.7 in terms of cost. This is because TWOPRICE is

unaware of fine grained price fluctuations every hour. INST

degrades the baseline response time by 5.5x although it

achieves better cost. The reason for INST achieving lower

cost and high response times in most of the cases is because

at the beginning of the simulation, INST migrates jobs to

good systems with low electricity cost and low response times.

But soon enough, when the systems become loaded, INST

continues to keep pushing jobs to the same systems without

being aware of the queue waiting times caused by the high

loads on the systems. So being aware of electricity cost helps

INST to achieve low cost, while not being aware of waiting
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Fig. 3: Instantaneous Load Variation in XSEDE

time results in high load imbalance across systems, and hence

high response times. Compared to INST, MCMF (wt = 10%)
obtains 3.1x reduction in response time for the same cost. We

also see that our MCMF algorithm (wt = 0%) outperforms

INST in both response time and electricity cost.

For NorduGrid, we observed improvements in both response

time and electricity cost when wt = 92.5%. For this workload,

the response time improves by 11.7% and electricity cost

reduced by e3788.7 over the baseline. Thus, in NorduGrid,

our projected electricity cost savings are e15.1K per year.

Similar to XSEDE, our MCMF algorithm has lesser response

time and electricity cost than TWOPRICE and INST.

B. Load, Utilization and Power Variations

We looked at hourly instantaneous load at each system to

understand the hourly behavior of our scheduling policy and

compared with the other policies. We used wt = 25% for these

experiments. In Figure 3, we contrast the instantaneous load

of Mason, the slowest and smallest system in the grid with

Gordon, one of the largest and fastest systems. We see that

INST achieves very poor load balancing because it is oblivious

to response time. We also see that during the peak hours of

electricity pricing at Mason, our MCMF algorithm minimizes

the instantaneous load among the considered strategies. In

Gordon, we see that our approach utilizes the system heavily

even during a price peak at hour 30. This is because Gordon

has the highest performance and the 3rd lowest service cost

among the systems in XSEDE. We can see that by moving jobs

to fast systems which have less service cost, our algorithm is

able to simultaneously optimize electricity cost and response

time better than the other strategies.

We also studied the variation of overall utilization in dif-

ferent systems due to our metascheduler, and show the results

for XSEDE. We define service unit cost (SUC) as the product

of the average electricity price at the system’s location and the

power per core. SUC represents the average cost in dollars (or

euros) required to deliver one CPU hour of computation at

the system. In XSEDE, we arranged the systems in increasing

order of SUC and labelled the first four systems as cheap
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Fig. 4: Variation of system utilization in XSEDE

and the remaining as costly. Similarly we used the HPL peak

performance of the systems to label them as slow and fast.
In our experiments, we investigated the effect of service unit

cost and machine performance on system utilization. Figure

4 shows that as the importance of response time is increased,

jobs are migrated from slow systems (Lonestar, Blacklight) to

fast systems (Gordon, Darter). We also see that Gordon has

higher utilization than Darter because it has lower SUC. We

also note that since Blacklight is relatively costly and slower

than the other three systems, it’s utilization is low in all the

configurations.

We also observed the hourly power consumption due to the

scheduling policies. We used wt = 25% for these experiments.

In Figure 5, we compare the hourly power consumption of

Blacklight and Lonestar, which are respectively, the costliest

and cheapest systems in the grid. We see that all the electricity

price-aware strategies, namely MCMF, INST, and TWOPRICE

consume much less power than the baseline in the Blacklight

system. During hours 50-60 when Blacklight experiences

peak electricity price, the power consumption of our MCMF

algorithm is better than both INST and TWOPRICE. However,

in Lonestar, the fluctuations in electricity price do not influence

the load or power consumption significantly even during peak

hours of electricity pricing because it is both the largest and

the cheapest system in the grid.

C. Fairness towards individual grid systems

The annual reports published by various supercomputing

service providers which are part of XSEDE, show that, the

response times of jobs processed at the system, and the number

of core hours delivered to specific project allocations and

users, are considered important metrics for quantifying the

quality of service of each provider. Hence, it is important

for service providers to ensure that their participation in the

grid does not adversely affect the users of the local batch

system. In this section, we compute the job service fairness

score of each system when user submissions can be either

through the metascheduling portal or the local batch system.

In one of our experiments for XSEDE, Expt1, we studied the
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job service scores when all users submit their jobs through

the metascheduler, i.e., every job is a grid submission. The

fairness scores for this experiment are indicated in Figure 6

by the blue bars. In another experiment, Expt2, we studied the

case where only a subset of the jobs are grid submissions.

To perform these experiments, we choose a fixed fraction

of grid submissions, fg (e.g., fg = 0.5 denotes that 50%

of the jobs are submitted to the metascheduler), and for

each job submission, we conduct a single Bernoulli trial with

probability of success equal to fg . Jobs with successful trials

are routed through the metascheduler and the remaining jobs

are considered as submissions to local batch system. We

performed the experiments for fg = 0.5, repeated each run

5 times and averaged the scores. In Figure 6, the green bars

indicate the fairness scores for the 50% grid submissions and

the red bars indicate the fairness scores for the 50% local batch

queue submissions. We indicate the service fairness of the

baseline strategy with a line which is labelled as BS. Service

fairness scores more than 1 indicate improved response times

compared to the baseline.

When all jobs are grid submissions, we can see that all

systems have values more than 1 except Gordon. This indicates

that jobs which originated at these systems obtained benefits
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in response time due to metascheduling. Gordon, which has

service fairness slightly less than 1, is the fastest and 3rd

cheapest system in the grid. Hence, our MCMF algorithm

migrates many jobs to this system. But, the jobs processed

at Gordon incur an average waiting time of only half an hour,

which indicates that the users of this system did not suffer

much due to grid participation. Jobs which originated at slow

smaller sized systems like Queenbee, Mason and Blacklight,

obtained large benefits from metascheduling.

When only a subset of the jobs are grid submissions, we

see that both users of the grid and the local batch system ob-

tained benefits in response time. Grid users obtained improved

performance because of job migration. Local users obtained

improved performance at systems like Queenbee, Mason and

Blacklight because grid submissions were migrated away from

these systems, leaving more resources free to process local

submissions. Thus, we see that a system’s participation in

a grid which uses our metascheduling algorithm, provides

benefits even for users who do not submit through the grid

portal.

D. Sensitivity to wt

Recall that wt denotes the weight of the response time term

in the cost function minimized by MCMF. Varying wt allows

the grid administrators to control the relative importance of

minimizing response time vs minimizing total electricity cost.

These objectives can be conflicting in the presence of daily

fluctuations of electricity price. Figure 7 shows the effect of

varying wt in XSEDE and NorduGrid using 10000 jobs. For

response time and electricity cost, BSX and BSNG represent

the baseline value in XSEDE and NorduGrid, respectively. We

see that increasing the relevance of response time (electricity

cost) leads to a decrease in response time (electricity cost). We

observed that when only response time is minimized (wt =
100%) we are able to obtain 48− 49% reduction in response

time over the baseline in both XSEDE and NorduGrid.

Similarly, when only electricity cost is considered (wt =
0%), our scheduling strategy obtains 18% and 46% reduction

in total electricity cost in XSEDE and NorduGrid, respectively.

It is interesting to note that, in NorduGrid, for all values

of wt, our MCMF algorithm outperforms the baseline in

terms of electricity cost. In XSEDE, we can see that for wt

values between 20-40%, both response time and electricity

cost are better than the baseline. So, we selected wt = 25%
as the optimal value for XSEDE. In NorduGrid we selected

wt = 92.5%. Compared to XSEDE, in NorduGrid, we require

a high value of wt to get improvements in response time.

This is because the cost function minimized by MCMF is

skewed depending on the magnitude of the response time

and electricity cost. In NorduGrid, we observed that average

runtime is 3.4x greater than XSEDE and the average electricity

cost of a job is 177x lesser than XSEDE. Grid administrators

can use a test workload to obtain these trends using our

framework and decide an appropriate value of wt depending

on the budget and user service agreements.

VI. RELATED WORK

Approaches which reduce power consumption by lowering

CPU frequency or voltage [3] may not be widely and uni-

formly applicable across the entire grid due to the autonomous

systems that are involved. Hence we do not describe related

works which primarily employ such techniques to achieve

power savings.

Single HPC system scheduling: The works of Yang et. al.

[1] and Zhou et. al. [29] formulate the electricity price aware

job scheduling problem for a single computing system as a 0-

1 knapsack model. These works do not use hourly electricity

prices. Instead, they consider two electricity price values corre-

sponding to on and off-peak hours. Their algorithm is applied

during peak hours to maximize utilization while maintaining

the power consumption within a power budget that is specified

a-priori. Our work considers hourly electricity pricing and

have shown improvements over a strategy which uses only

on-peak and off-peak prices.

Datacenter scheduling: The concept of geographic load
balancing [6] has been used for distributing Internet traffic

across distributed data centers. Qureshi et.al. [7] proposed

electricity price aware request routing for Akamai’s web traffic

workload. Liu et. al. [6] proposed geographic load balancing

of Hotmail traffic requests to achieve energy savings. Rao et.

al. [5] use minimum cost flow for scheduling service requests

in geographically distributed Internet data centers. Ren and

He developed COCA [8], a scheduling framework which uses

Lyapunov optimization to minimize operational cost of the

data center while satisfying carbon neutrality constraints. This

work uses one hour ahead electricity price prediction.

These approaches are applicable only for Internet data

center workloads and not batch system workloads. They

assume that requests are uniform with similar service times

and employ techniques which use overall request arrival and

service rate statistics. In a typical HPC or grid workload,

requests/jobs are highly non-uniform in terms of running time,

requested number of processors and queueing delay. These

works consider that the request is serviced in the submission
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hour and do not consider requests which require many hours

or days of computation. Thus, the combination of workload

and service policy used in HPC centers cannot be accurately

modeled by these previous works. Our work predicts the

execution period of a job using a history based queue waiting

time predictor and considers actual/predicted electricity prices

during this future period.

Grid scheduling: Mutz and Wolski [30], developed auc-

tion based algorithms for implementing job reservations in

grid systems. Sabin et. al. [31] proposed a metascheduling

algorithm based on the multiple simultaneous reservations at

different systems in a heterogeneous multi-site environment.

None of these previous works are cognizant of electricity price

or job power characteristics. To our knowledge, ours is the first

work on metascheduling HPC workloads across grid systems

which optimizes both response time and electricity cost.

VII. CONCLUSIONS

In this paper, we presented a Minimum Cost Maximum

Flow based formulation of the grid scheduling problem to

optimize the total electricity price and average response time of

HPC jobs in large scale grids operating in day-ahead electricity

markets. Using two currently operational computational grids,

we demonstrated that our algorithm can effectively use predic-

tions of queue waiting time and electricity prices to optimize

job placement across the grid. We compared our algorithm to

aggressive baselines and showed that using hourly electricity

pricing is more beneficial than approaches which use only

fixed on and off-peak prices. We also showed most systems

which participate in the grids which use our metascheduling

algorithm, are able to offer improvements in response time

for both grid and local users. In future, we plan to show the

benefits of our metascheduling considering different prediction

models for response times, and performing sensitivity studies

with different prediction errors.
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