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Abstract—High performance grid computing is a key enabler of large scale collaborative computational science. With the promise of

exascale computing, high performance grid systems are expected to incur electricity bills that grow super-linearly over time. In order to

achieve cost effectiveness in these systems, it is essential for the scheduling algorithms to exploit electricity price variations, both in

space and time, that are prevalent in the dynamic electricity price markets. In this paper, we present a metascheduling algorithm to

optimize the placement of jobs in a compute grid which consumes electricity from the day-ahead wholesale market. We formulate the

scheduling problem as a Minimum Cost Maximum Flow problem and leverage queue waiting time and electricity price predictions to

accurately estimate the cost of job execution at a system. Using trace based simulation with real and synthetic workload traces, and

real electricity price data sets, we demonstrate our approach on two currently operational grids, XSEDE and NorduGrid. Our

experimental setup collectively constitute more than 433K processors spread across 58 compute systems in 17 geographically

distributed locations. Experiments show that our approach simultaneously optimizes the total electricity cost and the average response

time of the grid, without being unfair to users of the local batch systems.

Index Terms—Grids, supercomputers, batch queue systems, queue waiting times, response times, electricity prices, metascheduling,

network flow

Ç

1 INTRODUCTION

HIGH performance grid computing involving supercom-
puter systems at distributed sites plays an important

role in accelerating scientific advancement and facilitating
multi-institutional and multi-disciplinary collaborations.
The operational costs of these systems have become compa-
rable to the cost of hardware acquisition, and service pro-
viders regularly budget millions of dollars annually for
electricity bills [1]. Hence it is imperative to include power
and electricity cost minimization in job scheduling decisions
in high performance computational grids.

A large body of work has been developed to reduce the
power consumption of data center servers, by switching off
unused nodes [2], using voltage and frequency scaling to run
servers at low power [3], and using renewable energy sour-
ces to reduce the carbon footprint of computation [4]. We
consider our work of metascheduling our applications to
sites to reduce time and electricity cost as complementary to
these approaches. Deregulation of the electricity power mar-
kets, creation of power trading zones, and use of renewable
energy in many countries offer opportunities to purchase
wholesale power under various dynamic pricing schemes.

The wholesale energy market consists of a day-ahead
market. In the day-ahead market, consumers of electricity
submit bids with their expected power requirements for the
following day (demand), and suppliers of electricity submit
bids with their expected generation and supply volumes for
the coming day (supply). The trading agency which accepts
these bids, sets a clearing price for each hour of the coming
day, based on the supply and demand bids.

HPC sites and systems can also participate in such
demand-response electricity programs [5]. With the increas-
ing power requirements in HPC, we anticipate that in the
near future, HPC system operators will consider these mar-
kets as a potential source of cheap power. We use the day-
ahead hourly electricity prices because the day-aheadmarkets
are suitable for HPC workloads. The loads on these systems
are predictable at a coarse level and can be used by adminis-
trators to submit accurate demand bids for procuring power
supply the following day. Moreover, the prices in the day-
ahead market fluctuate smoothly and can be predicted using
time series forecasting techniques. These predictions can be
used for intelligent scheduling decisions.

For a scheduler to estimate the total electricity price for a
job execution before allocating the job to a systemwith hourly
price variations, it is important to know the period of execu-
tion in the system. Production parallel systems in many
supercomputing sites are batch systems that provide space
sharing of available processors amongmultiple parallel appli-
cations or jobs. With multiple users contending for the com-
pute resources, a batch queue submission incurs time due to
waiting in the queue before the resources necessary for its exe-
cution are allocated. The queue waiting time ranges from a
few seconds to even a few days on production systems, and is
dependent on the load of the system, the batch scheduling
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policy and the number of processors requested by the user.
Thus, the queue waiting time and hence the starting time of
the job on the system is not known in advance. For the execu-
tion time and the ending time of the job, we use the estimated
run time (ERT) provided by the user in the job script. The ERT
of the job is required for system schedulers which employ
backfilling to increase system utilization, and is thus sup-
ported by many of the job management frameworks includ-
ing PBS. When the user does not specify the ERT, the
maximum runtime limit is assumed.

In this work, an extension to our previous work [6], we
have developed a metascheduling strategy that considers
hourly electricity price variations in a day-ahead market and
predicted response times to schedule HPC parallel jobs to
geographically distributed HPC systems of a grid. Our meta-
scheduler simultaneously minimizes electricity cost and
response times by exploiting electricity price differences
across states and countries to schedule jobs at systems where
the cost of servicing the job is minimized while ensuring that
the users do not suffer degradation in system response time.
Ourmetascheduler uses a framework thatwe have developed
for prediction of queue waiting times. We formulate the job
scheduling problem in our metascheduler as a minimum cost
maximum flow computation in a suitable flow network and
use the network simplex algorithm for optimization [7]. We
evaluated our algorithm with trace based simulations using
synthetic and real workload traces of two production grids:
XSEDE [8] and NorduGrid [9], and real electricity price data
sets. Our approach can potentially save $167K in annual elec-
tricity cost while obtaining 25 percent reduction in average
response time compared to a baseline strategy.We found that
even users who do not use ourmetascheduler, can sometimes
obtain improvements in response time when our algorithm
migrates jobs away from their local systems.

To our knowledge, ours is the first work on metaschedul-
ing HPC workloads across grid systems considering actual
or predicted hourly electricity prices at a predicted period
of job execution.

In Section 2, we motivate and describe the problem defi-
nition. We discuss our methodology including the network
flow formulation in Section 3. The experimental setup is
detailed in Section 4. We present the results and some prac-
tical considerations in Section 5. We describe the related
work in Section 6 and conclude in Section 7.

2 BACKGROUND

Use the concept of periodic scheduling cycles to efficiently
manage job submission and dispatch decisions. When a job is
submitted by a user, themetaschedulermarks the job as pend-
ing for scheduling. During the subsequent scheduling cycle,
the scheduling algorithm assigns a subset of the pending jobs
for processing at a subset of the systems in the grid. In many
currently operational grids, administrators impose restrictions
on the maximum number of jobs that can be submitted to a
particular system in a single scheduling cycle to prevent the
middleware at these systems from being flooded by job sub-
missions [10].Wedenote thismaximumnumber asMaxQ.

Given n geographically distributed grid systems with
day-ahead hourly electricity prices and a meta scheduling
portal for accepting job submissions, the metascheduling

problem is to assign jobs in a scheduling cycle to systems
while simultaneously minimizing the response time and
electricity cost of the job executions.

While our metascheduler may increase the local electricity
cost at a system due to job migrations from submitting to exe-
cution systems, it attempts to reduce the overall operational
cost of the grid. We also claim that the variations in workload
at a particular system due to ourmetascheduler cannot signif-
icantly alter the day-ahead hourly electricity prices at the sys-
tem’s location. This is because the day-ahead market trading
volume is typically many orders of magnitude higher than
the power consumption of a single computing system.

3 METHODOLOGY

We formulate the grid scheduling problem as aminimumcost
maximum flow computation and use the network simplex
algorithm to find the optimal flow. To compute the cost of
scheduling a job on a system, we require predictions of the
response time of the job at the system and the electricity cost
required to execute the job.We describe our approach for pre-
diction of response time in Section 3.1, and prediction of elec-
tricity price in Section 3.2. In Section 3.3.1, we define the cost
function and the flow network used in our approach.

3.1 Response Time Prediction

In batch queue systems, similar jobs which arrive during
similar system queue and processor states, experience simi-
lar queue waiting times. We have developed an adaptive
algorithm for prediction of queue waiting times on a parallel
system based on spatial clustering of the history of job sub-
missions at the system [11]. To obtain the prediction for a job
J on a system S, J is represented as a point in a feature space
using the job characteristics (request size, estimated run
time) specified by the user, the queue state at the system at
the current time (sums of request sizes of queued jobs, esti-
mated run times of queued jobs, elapsed waiting time of
queued jobs) and the state of the compute nodes at the cur-
rent time (number of occupied nodes, total elapsed running
time of the jobs, total estimated run times of the jobs). We
compute the Manhattan distance of each history job with the
target job, and consider history jobs with small distance val-
ues as being similar to the target job. Then, we use Density
Based Spatial Clustering of Applications with Noise
(DBSCAN) to find clusters of similar jobs. DBSCAN also
allows us to eliminate outliers among the history jobs. If we
find clusters which are very similar to the target job, i.e., clus-
ters with low average distance, we use the weighted average
of waiting times of jobs in the cluster as the prediction for the
job, J . If we do not find clusters which are very similar to the
job, the job features of the history jobs and the queue waiting
times experienced by these jobs are used to train a ridge
regression model. Using an iterative least squares minimiza-
tion, ridge regression obtains a linear model which is robust
to the ill-conditioning present in our feature matrix. The fea-
tures of the target job are supplied as input to this model to
obtain the predicted queuewaiting time.

To find the response time of a job on a target system, we
invoke our queue waiting time predictor to find the pre-
dicted start time of the job, ts. Then, we use the estimated
run time supplied by the user to predict the end time of the
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job. While the user estimates are known to be inaccurate
[12], the estimates serve as strict upper bounds on the run-
times since job schedulers used in HPC systems terminate a
job when its runtime exceeds the user estimated runtime.

Since the ERT supplied by the user is relevant only for
the submission system, we use a scaling factor to adjust the
ERT for the target system. This scaling factor is computed
by taking the ratio of the performance per core (in GFlops)
of the target system and the submission system. For a job
which is submitted at a system Si, for which we require an
estimate of the runtime at system Sj, we obtain the perfor-
mance per core of both systems, and scale the ERT of the job
as ERTSj ¼ ERTSi � ppcSi=ppcSj where ERTSi is the esti-
mated run time of the job provided by the user on system
Si, ppcSi is the performance per core of system Si. The pre-
dicted end time of the job on the system Sj is
te ¼ ts þERTSj . We describe our approach for estimating
the power per core of a system in Section 4.

Migration of jobs from submission to execution sites
involves transfer of data and executables. In practice, the
data size parameter can be given as input by the user, and
the cost of data movement can be computed using the data
size and the properties of the link (latency and bandwidth)
between the submission and the execution sites. multiple
systems prior to the job submission and hence the cost of
job migration between the systems is negligible.

3.2 Electricity Price Prediction

To obtain the electricity prices during the job’s execution
period at a target system, we find the predicted start and
end time of the job using our response time predictor. Given
the predicted start and end times of the job on the system,
we check whether the job’s predicted execution duration is
within the end of the day (midnight). In this case, the corre-
sponding electricity prices during the execution period in
the day-ahead electricity market are known. When the exe-
cution period does not fully lie within the hours of the cur-
rent day, i.e., te is after midnight on the submission day, we
predict the prices for the duration that lies beyond mid-
night. We use a Seasonal Autoregressive Integrated Moving
Average (SARIMA) model to model the electricity prices
fluctuations in the day-ahead market. SARIMA models are
commonly used to obtain forecasts for time series data
which exhibit seasonal trends across days and months.
Since we observed that the prices in the day-ahead market
have high lag-24 autocorrelation, we use the SARIMA
model with a seasonal period of 24 hours. The various
parameters required for the SARIMA model were tuned
using a training set of the electricity price data. We used
unit order terms for the autoregressive and moving average
seasonal and non-seasonal components of the model for our
experiments.

3.3 MCMF: Minimum Cost Maximum Flow

Minimum cost maximum flow (MCMF) is a fundamental
network flow model which aims to maximize the amount of
shipment of a single commodity through a network while
minimizing the cost of the shipment. MCMF can be solved
using a number of approaches including cycle canceling,
linear programming and network simplex algorithms. We
first define the minimum cost flow (MCF) problem and use

it to define the minimum cost maximum flow problem. The
MCF problem is defined as follows. Let GðV;EÞ be a flow
network with source vertex s 2 V and sink vertex t 2 V .
Each edge ðu; vÞ 2 E has capacity cðu; vÞ > 0, flow fðu; vÞ
and cost pðu; vÞ. In other words, the capacity, flow and cost
are mappings from E ! Rþ. The capacity of the edge
denotes the maximum flow possible along the edge and the
cost denotes the price of unit flow along an edge. The flow
network, cost and capacity mappings are input for the prob-
lem and the flow mapping, f , is the output.

Given some required flow value d from s to t, the prob-
lemMCF ðG; c; p; dÞ is

min
X

ðu;vÞ2E
pðu; vÞ � fðu; vÞ; (1)

subject to the following flow constraints

Capacity : fðu; vÞ � cðu; vÞ; (2a)

Skew symmetry : fðu; vÞ ¼ �fðv; uÞ; (2b)

Flow conservation :X
u:ðu;vÞ2E

fðu; vÞ ¼
X

u:ðv;uÞ2E
fðv; uÞ 8u 2 V n fs; tg (2c)

Required flow :
X

ðs;vÞ2E
fðs; vÞ ¼

X
ðv;tÞ2E

fðv; tÞ ¼ d: (2d)

TheMinimumCostMaximum Flowproblem is to find the
maximumvalue of dwhich can produce a feasible flow in the
correspondingMCF problem. Formally,MCMF ðG; c; pÞ is

max d 2 Rþ : MCF ðG; c; p; dÞ has a feasible solution.f g: (3)

Minimum cost flow problem can be solved using linear
programming because the objective function and the con-
straints are linear. Given integer capacities and costs, a
solver for MCF can be used to compute the maximum feasi-
ble value of d by using a binary search on the set of integers
up to the total outgoing capacity of the source vertex. The
network simplex algorithm [7] relies on the observation that
the minimum cost flow problem has at least one optimal
spanning tree solution, i.e., the set of edges with non zero
flow form a spanning tree for the flow network. In each iter-
ation, the algorithm pivots from one spanning tree solution
to the next by replacing a tree-arc with a non tree-arc, in a
manner that resembles the simplex algorithm for linear pro-
gramming. The network simplex algorithm runs in
Oðminðn2m lognC; n2m2 lognÞÞÞ, where n is the number of
nodes, m is the number arcs and C is the maximum cost on
any arc [7]. Since the optimized implementations of network
simplex algorithm are usually very fast in practice, we
adopt it for our research.

3.3.1 Metascheduling Using MCMF

To schedule a set of jobs to a set of systems, we represent the
jobs and systems as nodes in a flow network. We consider a
system to be compatible for a job, if the total cores in the sys-
tem is more than the request size of the job and the maxi-
mum wall time permitted in the system is more than the
user estimated run time of the job. For each job, we add an
arc of unit capacity from the job to each compatible system.
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A flow of unit value along an arc from J to S represents
scheduling J on S. We assign the cost of each job-system arc
as a weighted linear combination of the predicted response
time of the job and the electricity price required to execute
the job on the system.

To compute the cost of assigning a job J to a system S,
we predict the start time and end time of J on S as ts and te,
respectively. Assuming that the job is submitted at time t,
the response time of the job is TJ ¼ te � t. In each schedul-
ing cycle, the metascheduler polls each system in the grid to
obtain its current queue and processor state in order to
invoke the response time predictor for each job on each
compatible system. Using these predictions for each job on
each system, we find the maximum and minimum pre-
dicted response times in this scheduling cycle as Tmax and
Tmin. The cost of scheduling the job J at the system S, in
terms of response time, is defined as

CT ðJ; SÞ ¼ ðTJ � TminÞ=ðTmax � TminÞ: (4)

We model the electricity prices at the location of the system

S to obtain a function f̂SðtÞ which gives the predicted elec-
tricity price during the time t. The cost of scheduling the job
at this system, in terms of electricity price is defined as

CEðJ; SÞ ¼
Pte

t¼ts
PJ;S � D� f̂SðtÞ � Emin

Emax � Emin
; (5)

where PJ;S denotes the power consumption of J on S, D
denotes the period of the day-ahead electricity market, and
Emax and Emin denote the maximum and minimum pre-
dicted electricity cost observed in the current scheduling
cycle. Since we use prices from the day-ahead hourly mar-
ket, D ¼ 1 hour in all our experiments. We describe our
approach to calculate PJ;S in Section 4.

We define the cost of scheduling J on S as

CðJ; SÞ ¼ wt � CT ðJ; SÞ þ ð100� wtÞ � CEðJ; SÞ; (6)

where wt is the relevance of the response time in the cost
function. CT ðJ; SÞ and CEðJ; SÞ are normalized by the corre-
sponding minimum and maximum values to unit-less
quantities so that wt can be used for weightage of the two
terms irrespective of their absolute value. Our formulation
shown in Equation (6 is based on the nadir-utopia normali-
zation method by Kim and Weck [13]. In every scheduling
cycle, the objective function is re-normalized to adapt it to
the current predictions of electricity price and queue wait-
ing time.

We connect an arc of unit capacity from the source node s
to each job and an arc of capacityMaxQ from each system to
the sink node t. The costs of these edges are set to 0. For a set
of m jobs and n systems, we illustrate this network in Fig. 1
where each arc is labeled with two parameters, namely, the
capacity of the edge and the cost of unit flow through the
edge. We scale the costs of the network edges by multiply-
ing with a large constant (100), and round off the values to
integers. In such a network, the Integrality Theorem of max-
imum flow networks [14] guarantees that the maximum
flow is integral and each unit capacity edge in our network
has a flow value of either 0 or 1. We compute a maximum
flow of minimum cost in this network using the network
simplex algorithm available in the Python package, Net-
workX. After computing the minimum cost flow, we inspect
the job-system arcs and select the arcs which have non-zero
flow. For each arc from J to S which has non zero flow, we
schedule the job J on system S. By the flow conservation
principles, we are guaranteed that a) not more than one sys-
tem is selected for a job and b) no system receives more
thanMaxQ jobs during one scheduling cycle.

4 EXPERIMENTAL SETUP

We performed trace based simulation of real and synthetic
grid workloads using real electricity price data sets and
power consumption profiles of compute systems to test the
effectiveness of our approach.1

4.1 Workload and Scheduler Simulator

We conduct simulations using grid traces which are in Stan-
dard Workload Format (SWF) [15] or Grid Workload For-
mat (GWF) [16]. Each line in the SWF/GWF trace denotes a
job and records the arrival time, run time, number of cores,
user estimated runtime and other job parameters. GWF
traces also record the system where the job was originally
submitted. While using SWF traces during synthetic trace
generation, we appended each line in the trace with the sub-
mission system. To conduct trace driven simulations, we
used an extended version of the Python Scheduler Simula-
tor (pyss) developed by the Parallel Systems Lab in Hebrew
University [17]. pyss accepts a workload trace, system size
and scheduling algorithm as inputs and replays the job
arrival events, start and end of job execution events to simu-
late the state of the system with the input workload. Since
pyss simulates only one system, we extended it to support
multiple systems. We implemented a metascheduler class
that acts as a common interface between the job submissions
and the various execution systems. We configured pyss to
use the EASY backfilling algorithm [18] to schedule jobs at
the individual systems.

4.2 Grid Systems

We simulate two currently operational grids which collec-
tively span 58 individual compute systems, 17 countries
and states, 10 electricity transmission operators, 7 time
zones and more than 250k job submissions. For each system,

Fig. 1. Flow network used for scheduling. The edges are labelled as
(edge capacity, cost of unit flow).

1. Our simulator, metascheduler, predictors and data sets are avail-
able in https://github.com/MARS-CDS-IISc/mcmf-metascheduler-
predictors.

MURALI AND VADHIYAR: METASCHEDULING OF HPC JOBS IN DAY-AHEAD ELECTRICITY MARKETS 617

https://github.com/MARS-CDS-IISc/mcmf-metascheduler-predictors
https://github.com/MARS-CDS-IISc/mcmf-metascheduler-predictors


we obtained the number of cores and maximum wall time
of a job from publicly advertised system information.

4.2.1 XSEDE

The Extreme Science and Engineering Discovery Environ-
ment (XSEDE) project is a large scale compute gridwhich con-
nects many universities and research centers in the US. For
high performance computing, XSEDE connects eight super-
computing systems situated across different states in the US.
For our simulation experiments, we used eight CPU-only sys-
tems of XSEDE and its previous incarnation, TeraGrid. Each
individual XSEDE system uses the Portable Batch System
(PBS) or SunGrid Engine (SGE) for jobmanagement, and grid
submissions are processed through Condor-Gmetascheduler
[10].Wemodel the jobs in the productionworkload.

4.2.2 NorduGrid

NorduGrid is a very large grid with 80 systems spread
across 12 countries with a majority of the systems located in
the Nordic countries. We simulated 50 selected systems of
NorduGrid which constitute over 90 percent of the total
CPU cores available in the grid. The grid configuration was
obtained from [9].

4.3 Workload

For simulating the jobs at a system, we used a synthetic work-
load for XSEDE and real workload traces for NorduGrid.

4.3.1 XSEDE

We generated synthetic workload traces for each system
using the workload models available in Parallel Workloads
Archive [15]. For generating the job arrival time, request
size and run time, we use the model proposed by Lublin
and Feitelson [19]. arrival times and requests sizes. To gen-
erate the user estimates of runtime, we used the model pro-
posed by Tsafrir et al. [20]. The model requires two inputs:
the maximum value of the user estimate at a system and the
number of jobs for which the estimates are to be generated.
For both XSEDE and NorduGrid, we obtained the maxi-
mum values of user estimates for each system from publicly
advertised system information.

In [21], Hart provides various summary statistics about
the run times, job sizes and inter-arrival times of the pro-
duction jobs in XSEDE/TeraGrid. We manually adjusted
the parameters of Lublin and Tsafrir models to match the
aggregate statistics of the synthetic workload with the
reported XSEDE/TeraGrid statistics. Statistics of our syn-
thetic workload match the characteristics reported by Hart.
The average job runtime in our workload is 8.8 hours while
the actual average runtime in TeraGrid is 9 hours. The aver-
age number of job arrivals at a system per hour is 3.22 in
our workload, while the actual value is 3.27.

4.3.2 NorduGrid

In NorduGrid, we used a real workload available in Grid
Workloads Archive [16]. The archive records each job’s sub-
mission system, submission time, requested processors and
runtime. We used Tsafrir model with the maximum
observed runtime as input parameter to assign user esti-
mated runtimes for each job.

For queue waiting time and electricity price predictions,
we used a subset of jobs and electricity price data as training
information. Queue waiting time is predicted for a job at a
system by considering the previous 2,000 job submissions at
the system as the training input. For predicting the electric-
ity prices, we use the prices of the previous three days as
training input for the SARIMA model. In Table 2, we show
our simulation configuration including the number of jobs
and the duration that is simulated for each grid.

4.4 Variable Electricity Prices

For different systems, we obtained the hourly electricity pri-
ces in the day-ahead market from the electricity operator in
the respective power market. For regions without variable
electricity pricing, corresponding to one system in XSEDE
and 24 systems in NorduGrid, we used the applicable fixed
industrial electricity price. For systems in XSEDE, we used
historical market prices for June 2014 available from the
regional energy operators of the Federal Energy Regulatory
Commission [22]. In NorduGrid, we obtained the market
prices for Denmark, Sweden, Norway, Finland, Latvia and
Lithuania from Nord Pool Spot [23] and for Slovenia
from BSP SouthPool [24]. For systems in United Kingdom,
Ukraine, and Switzerland, we used the applicable fixed
industrial prices. Overall, in NorduGrid, our electricity
price data set spans three months from January-March 2014
and includes variable electricity prices for 26 systems.

4.5 Job Power Consumption and Execution
Characteristics

We require estimates of job power consumption and run-
time at each system to quantify the impacts of job migration
on metrics relevant for users and system administrators.

4.5.1 Job Power Consumption

To estimate the power consumption of a job at a system, we
assume that the job has the same power consumption charac-
teristics as High Performance Linpack (HPL). The work by
Kamil et al. [25] experimentally demonstrates that the HPL
power consumption can be used to closely approximate the
power consumption of production scientific applications. For
each system in XSEDE, we obtained the peak power con-
sumption from Top500 and Green500 datasets, computed the
HPL power consumption per core, and scaled it by the num-
ber of cores used by a job to find the power consumption of a
job. Thus, if a job requires n cores on a machine which has a
total of N cores and advertised HPL power is PHPL, the job
power consumption is considered as PJ ¼ n� ðPHPL=NÞ.

TABLE 1
The XSEDE Grid

System Location Cores Power
(watts/core)

Performance
(Gflops/core)

Blacklight Pittsburgh 4,096 87.89 9.00
Darter Tennessee 11,968 30.58 20.79
Gordon San Diego 16,160 22.17 21.10
Trestles San Diego 10,368 42.66 9.64
Mason Indiana 576 39.95 7.43
Lonestar Texas 22,656 15.83 13.32
Queenbee Louisiana 5,440 16.25 9.37
Steele Purdue 4,992 83.75 13.33
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Table 1 shows the values ofHPL power consumption per core
for each system. For NorduGrid, we were unable to obtain
HPL benchmark data on each system. Hence, we resorted to
white papers published by the chip manufacturers to obtain
the power consumption per core. Similar to XSEDE,we scaled
these numbers with the requested number of cores to find the
power consumption of each job.

4.5.2 Runtime Scaling

Weassume that the applications in ourworkload have similar
scalability characteristics asHPL. For XSEDE,we obtained the
HPL peak performance (Rmax in TFlops) of a system using
Top500 data and normalized it by the number of cores in the
system to find the performance per core. For a pair of systems
Si and Sj, we compute the scaling factor scaleij as the ratio of
the performance per core for Si andSj.When a job ismigrated
from Si to Sj, we adjust the job’s estimated runtime as
rj ¼ ri � scaleij where ri is the estimated runtime of the job in
system Si. We computed such scaling factors for every pair of
systems using Top500 data. For NorduGrid, we obtained the
theoretical peak performance of a core in the system (in
GFlops) from architecturewhite papers.

For HPL, it is reasonable to scale runtime across systems
only using the number of cores, and not use other factors
including memory bandwidth and communication perfor-
mance. This is because the runtime of HPL is primarily domi-
nated by the computation time ðOðN3Þ and less by the
communication times ðOðN2Þ [26]. The computation time
scales linearlywith the number of processor cores. This is also
confirmed by a recent study, where the memory bandwidth
was found to have no impact on HPL performance, and the
impact due to communication bandwidth and latency were
found to be negligibly small [27]. This is further confirmed by
the Rmax HPL performance of large-scale systems considered
in our study, where Rmax of the Top500 systems are typically
about 90 percent of Rpeak, which is found solely using the
number of cores. Modern day applications for large-scale sys-
tems acheive or are developed to achieve linear scalability,
similar to HPL. Hence, we use only the number of cores to
scale the runtime to a different system.

4.6 Evaluation Metrics

To evaluate the benefits of our approach, we employ a num-
ber of metrics as described below.

� Average response time
� Total electricity cost. For a job Ji which executes on

system Sj, the electricity cost is computed as:

eðJi; SjÞ ¼
XTWij

þTRij

t¼TWij

Pij � D� fSj
ðtÞ

where Pij is the power consumption of Ji on Sj in
watts, D denotes the period of the day-ahead electric-
ity market, TWij

and TRij
are the waiting time and

running incurred for Ji on Sj in hours, and fSj
ðtÞ is

the hourly price variation function for Sj expressed
in currency per watts. For the day-ahead hourly mar-
ket, D is set to one hour.

� Bounded slowdown. For a job with waiting time TW

and running time TR in seconds, bounded slowdown

is defined as BS ¼ max TWþTR
maxðTR;10Þ ; 1

n o
.

� System utilization. Utilization at a particular system is
computed by dividing the sum of the CPU hours of
jobs scheduled at the system by the product of the
makespan and total processors available in the sys-
tem. utilization aims to measure the fraction of the
system core hours which delivered useful work.

� System instantaneous load. Instantaneous load is
defined as the sum of the CPU hours of both the run-
ning and queued jobs divided by the total processors
available in the system at a particular instant.

� Fairness to System. The annual reports published by
various supercomputing service providers which are
part of XSEDE, show that, the response times of jobs
processed at the system, and the number of core hours
delivered to specific project allocations and users, are
considered importantmetrics for quantifying the qual-
ity of service of each provider. Hence, it is important
for service providers to ensure that their participation
in the grid does not adversely affect the users of the
local batch system. To evaluate the quality of service,
we compute the speedup obtained due to the use of
our metascheduling algorithm, compared to the base-
line. Specifically, for a job J , which is submitted at
system Si, which has response time Rlocal

J when meta-
scheduling is not used and Rgrid

J in the presence of
metascheduling, we compute the quality of service

offered to the job as: qosScoreðSi; JÞ ¼ Rlocal
J

R
grid
J

. We then

compute the fairness score for a system as the geomet-
ric mean of the QoS scores of all the jobs submitted at
the system. If a system has high fairness score, it indi-
cates that the users of the system are benefitted by the
system’s participation in the grid.

5 RESULTS AND DISCUSSION

In this section, we present various results on our metasched-
uling approach including reduction in response time, sav-
ings in cost, and overall statistics. We refer to our approach
based on the Minimum Cost Maximum Flow algorithm as
MCMF. During our experiments, we observed that our
Python implementation running on an Intel Core i7 3.4 Ghz
processor with 16 GB RAM takes 8.4 seconds on average for
computing the scheduling cost and constructing the flow
network, and 16.3 seconds on average for computing the
minimum cost flow and the subsequent job submissions to
individual systems. We compare our strategy with a base-
line strategy BS, in which the jobs are executed at the sub-
mission system.

Our strategy is primarily different from existing efforts
[1], [28] in terms of using waiting time predictions to esti-
mate the benefits in response time and electricity cost for
the execution period of a job, and in terms of using the
hourly electricity prices during the execution to estimate the

TABLE 2
Simulation Configuration

Test configuration

Grid Systems Cores Jobs Days

XSEDE 8 76,256 10,000 15
NorduGrid 50 356,856 126,344 90
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total cost. Hence we compare our approach with two strate-
gies, the first strategy called INST which does not consider
predictions but makes decisions based on instantaneous
loads of the systems at the time of the job submissions, and
the second strategy called TWOPRICE which does not con-
sider hourly prices but considers only two prices per day,
namely, on-peak and off-peak. The INST strategy which
assumes immediate execution start of a job is implemented
by feeding the waiting times as zeros to our MCMF strategy.
The TWOPRICE strategy is implemented by considering the
on-peak hours as 12 pm to midnight and calculating the off-
peak and on-peak prices as the 10th and 90th percentile of
the day-ahead market prices for the simulation period. Note
that the INST and TWOPRICE strategies are grid schedul-
ing strategies since they allow sharing and migration of jobs
across the grid systems.

5.1 Prediction Accuracy

Our MCMF metascheduler uses predictions for three
parameters, namely, queue waiting times using our wait-
time predictor [11], response times using user estimated
runtime, and electricity prices using SARIMAmodel. In this
section, we evaluate the prediction accuracies for the queue
waiting time and electricity price predictions, and the use-
fulness of these predictions for metascheduling. The user
estimated runtimes (ERTs) are generally known to have
gross over-approximations and hence have large prediction
errors [12]. Section 5.3 shows the sensitivity of our meta-
scheduler to the errors in these predictions.

5.1.1 Queue Waiting Time Prediction

We evaluated our queue waiting time prediction framework
using production supercomputer workload traces with
varying site and job characteristics, including two Top500
systems, obtained from Parallel Workloads Archive [15].
The detailed results and analyses are contained in our previ-
ous work [11]. In summary, our predictions results in up to
22 percent reduction in the average absolute error and up to
56 percent reduction in the percentage prediction errors
over existing strategies including QBETS [29] and IBL [30]

across workloads. Our prediction system also gave accurate
predictions for most of the jobs. For example, for the work-
load of ANL’s Intrepid system our predictor gave highly
accurate predictions with less than 15 minutes absolute
error for more than 70 percent of the jobs. Our predictor is
currently deployed on an 800 core system in our home
department, delivering queue waiting time predictions to
users with less than 30 percent error.

For our current work related to metascheduling, we dem-
onstrate the relevance of our predictor with the given pre-
diction errors for our metascheduling system that uses one-
hour day-ahead electricity markets. Fig. 2 shows the distri-
bution of the average absolute errors (AAEs) for different
ranges of actual response times of the jobs for three sample
supercomputer traces, namely, CEA Curie of France which
is a Top500 system, DAS2 of Netherlands, and SDSC Para-
gon of USA. The parameters of these supercomputer traces
are given in Table 3. We find that the AAEs were less than
one hour for 88-98 percent of the jobs, thus demonstrating
that our queue waiting time predictor is sufficiently accu-
rate for metascheduling in day-ahead electricity markets in
which prices fluctuate at a frequency of one hour.

5.1.2 Electricity Price Prediction

In Fig. 3, we show the sample prediction results for forecast-
ing of electricity prices in Texas. For this experiment, we
predicted the electricity prices for a single day using the his-
torical prices of the previous three days. The market prices
for the day-ahead hourly electricity market were obtained
for June 1-20, 2014 from the datasets of Electric Reliability
Council of Texas [31]. We can see that curves for the pre-
dicted and actual prices are very close. The average percent-
age prediction error was found to be only 8 percent.

Fig. 2. Distribution of average absolute errors (AAEs) for different ranges
of actual response times in CEA curie, DAS2 and SDSC paragon.

TABLE 3
Supercomputer Traces

Trace name Trace duration
(months)

Number of
Completed Jobs

CEA Curie 20 266,099
DAS2 12 39,915
SDSC Paragon 12 32,199

Fig. 3. Electricity price predictions for Texas.
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5.2 Overall Results

In this section, we analyze the overall reductions in
response times and electricity cost by our algorithm and
compare with the other approaches. Table 4 shows the com-
parison results. The table shows the results of our MCMF
algorithm with different values of wt. Recall that wt denotes
the weight of the response time term in the cost function
minimized by MCMF.

For XSEDE, we observe that with wt ¼ 25%, our MCMF
strategy simultaneously achieves 24.6 percent reduction in
average response time and $6964 savings in total electricity
cost, compared to the baseline, for the 15-day period. This
reduction in electricity cost can potentially translate to a pro-
jected savings of $167K dollars per year for the whole grid.
Fig. 4 shows the trade off between response time and cost for
our MCMF algorithm for different values of wt compared to
the other strategies. We see that when response time is not
considered for optimization (wt ¼ 0), we obtain up to $43,686
reduction in electricity cost with a 1.7x increase in average
response time over the baseline. Thus, for one year of opera-
tion, we can potentially save $1.04M for the whole grid. Con-
sidering that the annual electricity budget of Argonne
National Laboratory’s primary supercomputer is $1M [1], the
savings obtained by our approach are significant.

From Table 4 and Fig. 4, we can also see that our MCMF
algorithm (wt ¼ 25%) outperforms TWOPRICE by $8535.7
in terms of cost. This is because TWOPRICE is unaware of
fine grained price fluctuations every hour. INST degrades
the baseline response time by 5.5x although it achieves bet-
ter cost. The reason for INST achieving lower cost and high
response times in most of the cases is because at the begin-
ning of the simulation, INST migrates jobs to good systems
with low electricity cost and low response times. But soon
enough, when the systems become loaded, INST continues
to keep pushing jobs to the same systems without being
aware of the queue waiting times caused by the high loads
on the systems. So being aware of electricity cost helps INST
to achieve low cost, while not being aware of waiting time
results in high load imbalance across systems, and hence
high response times. Compared to INST, MCMF ðwt ¼ 10%Þ
obtains 3.1x reduction in response time for the same cost.
We also see that our MCMF algorithm (wt ¼ 0%) outper-
forms INST in both response time and electricity cost.

For NorduGrid, we observed improvements in both
response time and electricity cost when wt ¼ 92:5%. For this

workload, the response time improves by 11.7 percent and
electricity cost reduced by € 3788.7 over the baseline. Thus,
in NorduGrid, our projected electricity cost savings are €
15.1K per year. Similar to XSEDE, our MCMF algorithm has
lesser response time and electricity cost than TWOPRICE
and INST.

These results show that our MCMF algorithm can
achieve the twin goals of reducing both response time and
total electricity cost of large scale grids. The results also
underscore the importance of both queue waiting time pre-
dictions and hourly electricity prices in our MCMF strategy.

5.3 Sensitivity to Prediction Errors

In this section, we study the effect of prediction errors on
the metascheduler. We show results with XSEDE for the
10,000 jobs.

Our electricity price predictions are fairly accurate. This
is validated in our experiments by comparing with the
actual hourly electricity price data in the day-ahead market
for the eight states that constituted the XSEDE grid. In
75 percent of the 10,000 jobs, our predictions gave less than
15 percent prediction errors. In about all the cases, the pre-
dictions gave less than 20 percent errors. Since the hourly
electricity prices did not vary drastically from one day to
the next, our SARIMA model was able to model the prices
with reasonable accuracy.

However, the predictions in queue waiting times and
runtimes can have large prediction errors for some jobs. As
mentioned earlier, the user-estimated runtimes we use are
generally known to have large prediction errors. Hence in
this section, we study the sensitivity of our metascheduler
due to the prediction errors in queue waiting and runtime
predictions. For studying sensitivity to prediction errors in
queue waiting times, we perform perturbation experiments.
For each set of perturbation experiments, we perturb our
predicted waiting time for each job by adding a random
value in the range ½1; P � time units to the initial predicted
waiting time, where P is the perturbation threshold. We
perform five sets of perturbation experiments correspond-
ing to thresholds of 1, 3, 6, 12 and 24 hours. We consider the
the same set of 10,000 jobs for each perturbation experiment.
Table 5 shows the metascheduling results for jobs for the
different perturbation experiments. The first row of the
table for the perturbation threshold of 0 hours corresponds
to unperturbed results. The table also shows the average
PPE in queue waiting time predictions for each perturbation
experiment. As expected, the average PPEs increase with

TABLE 4
Overall Simulation Results

Grid Strategy Average
response time
(minutes)

Total
electricity
cost ($ or € )

XSEDE

MCMF ðwt ¼ 25%Þ 477.5 $224,021.6
TWOPRICE ðwt ¼ 25%Þ 473.3 $232,557.3
MCMF ðwt ¼ 0%Þ 1,095.4 $187,298.9
INST 3,460.8 $205,876.5
Baseline 633.7 $230,985.6

NorduGrid

MCMF ðwt ¼ 92:5%Þ 1,678.6 € 12,819.6
TWOPRICE ðwt ¼ 92:5%Þ 1,724.4 € 1,2991.7
INST 5,210.2 € 14,613.6
Baseline 1,900.3 € 16,608.3

Fig. 4. Overall simulation results in XSEDE.
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increasing perturbation threshold, implying larger errors in
queue waiting time predictions for larger thresholds.

We find that the average response times due to our MCMF
strategy are relatively stable across different prediction errors,
especially when the prediction errors are reasonable. Only for
very large percentage prediction errors with average PPEs of
greater than 200 percent corresponding to thresholds of 12
and 24 hours, we see a noticeable increase in the average
response times. As shown in our previouswork [11], the aver-
age PPE in our queue waiting time predictions is less than
100 percent for most of the real supercomputing traces. We
find that the increase in prediction errors did not have an
impact at all in the average electricity price yielded by our
metascheduler. Thus, our MCMF metascheduler is fairly
robust to the prediction errors in queuewaiting times.

The user-estimated runtimes already had large predic-
tion errors. Hence, in our original unperturbed experiments,
we categorized the 10,000 jobs into different sets corre-
sponding to different ranges of percentage prediction errors
in runtimes. For each set of jobs, we then compared
the average response times due to our MCMF metaschedu-
ler with the other methods. Table 6 shows the percent
improvement or degradation in average response times due
to our MCMF metascheduler over the other methods. We
find that the improvements or degradations over a particu-
lar method does not vary by large amounts with the predic-
tion errors in runtimes. Our MCMF strategy resulted in
about 22-35 percent improvement over the baseline for all
the sets of jobs. Similarly, the MCMF improvement over
INST is in the range 84-90 percent, and both the MCMF and
the TWOPRICE strategies perform equivalent for all the sets
of jobs corresponding to different prediction errors in run-
times. Thus, our metascheduler is also robust to the predic-
tion errors in runtimes.

5.4 Effect of Job Size

We also measured how differences in job size impact the
savings obtained by our MCMF algorithm over the baseline.
For measuring the impact of job size, we divided the jobs
into three classes. We denote jobs having less than 512 CPU
hours work as small, between 512 and 4096 CPU hours as
medium and jobs larger than 4096 CPU hours as large. In
Fig. 5, we see that the savings in response time and electric-
ity cost per job increase with job size. Since larger jobs con-
sume more electricity and system core hours, placing these
jobs in optimal locations results in larger improvements
compared to jobs of smaller size. The difference in the abso-
lute savings in response time for large jobs in XSEDE and
NorduGrid arises from the difference in average job run-
time in the two grids. On average, jobs in NorduGrid are
3.4x longer than jobs in XSEDE. Hence, migrating the long
running jobs in NorduGrid to faster systems gives larger
absolute improvements in response time compared to
XSEDE. In XSEDE, we obtain reduction in electricity cost
from improved placement of large and medium sized jobs.

5.5 Load and Power Variations

We looked at hourly instantaneous load at each system to
understand the hourly behavior of our scheduling policy
and compared with the other policies. We used wt ¼ 25%
for these experiments. In Fig. 6, we contrast the instanta-
neous load of Mason, the slowest and smallest system in the
grid with Gordon, one of the largest and fastest systems.

TABLE 5
Metascheduling Results for Different Perturbations

to Qwait Time Predictions

Perturbation
Threshold
(hours)

Average
PPE (%)

Average Response
Time (minutes)

Average Electricity
Price ($)

0 3 458.5 22.85
1 25 457.9 22.90
3 62 457.4 23.05
6 116 462.3 23.04
12 221 493.6 23.02
24 386 518.5 22.98

TABLE 6
Metascheduling Results for Different Ranges

of Runtime Prediction Errors

PPE in
ERT (%)

Number
of Jobs

% Imp. over
Baseline (%)

% Imp. over
INST (%)

% Imp. over
TWOPRICE (%)

0-10 1,637 21.83 83.67 -0.10
10-20 1,456 25.57 88.23 -0.07
20-30 799 25.62 88.47 -0.28
30-50 1,070 28.81 87.36 -0.18
50-100 1,342 27.63 85.48 -0.24
100-200 1,247 29.82 87.69 -0.46
> 200 2,448 34.56 90.18 -0.35

Fig. 5. Effect on job size on savings.

Fig. 6. Instantaneous load variation in XSEDE.
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We see that INST achieves very poor load balancing because
it is oblivious to response time. We also see that during the
peak hours of electricity pricing at Mason, our MCMF algo-
rithm minimizes the instantaneous load among the consid-
ered strategies. In Gordon, we see that our approach utilizes
the system heavily even during a price peak at hour 30. This
is because Gordon has the highest performance and the 3rd
lowest service cost among the systems in XSEDE. We can
see that by moving jobs to fast systems which have less ser-
vice cost, our algorithm is able to simultaneously optimize
electricity cost and response time better than the other
strategies.

We also observed the hourly power consumption due to
the scheduling policies. We used wt ¼ 25% for these experi-
ments. In Fig. 7, we compare the hourly power consumption
of Blacklight and Lonestar, which are respectively, the costli-
est and cheapest systems in the grid. We see that all the elec-
tricity price-aware strategies, namely MCMF, INST, and
TWOPRICE consume much less power than the baseline in
the Blacklight system. During hours 50-60 when Blacklight
experiences peak electricity price, the power consumption of
our MCMF algorithm is better than both INST and TWO-
PRICE. However, in Lonestar, the fluctuations in electricity
price do not influence the load or power consumption signifi-
cantly even during peak hours of electricity pricing because it
is both the largest and the cheapest system in the grid.

5.6 Fairness Towards Individual Grid Systems

In this section, we compute the job service fairness score of
each system when user submissions can be either through
the metascheduling portal or the local batch system. In one
of our experiments for XSEDE, Expt1, we studied the job
service scores when all users submit their jobs through the
metascheduler, i.e., every job is a grid submission. The fair-
ness scores for this experiment are indicated in Fig. 8 by the
blue bars. In another experiment, Expt2, we studied the case
where only a subset of the jobs are grid submissions.

To perform these experiments, we choose a fixed fraction
of grid submissions, fg (e.g., fg ¼ 0:5 denotes that 50 percent
of the jobs are submitted to the metascheduler), and for
each job submission, we conduct a single Bernoulli trial
with probability of success equal to fg. Jobs with successful
trials are routed through the metascheduler and the remain-
ing jobs are considered as submissions to local batch system.

We performed the experiments for fg ¼ 0:5, repeated each
run 5 times and averaged the scores using geometric mean.
In Fig. 8, the green bars indicate the fairness scores for the
50 percent grid submissions and the red bars indicate the
fairness scores for the 50 percent local batch queue submis-
sions. We indicate the service fairness of the baseline strat-
egy with a line which is labelled as BS. Service fairness
scores more than 1 indicate improved response times com-
pared to the baseline.

When all jobs are grid submissions, we can see that all
systems have values more than 1 except Gordon. This indi-
cates that jobs which originated at these systems obtained
benefits in response time due to metascheduling. Gordon,
which has service fairness slightly less than 1, is the fastest
and 3rd cheapest system in the grid. In the baseline strategy,
the average response time of jobs is close to zero, i.e., no
waiting in the queue. Hence, our MCMF algorithm migrates
many jobs to this system. But, the jobs processed at Gordon
incur an average waiting time of only half an hour, which
indicates that the users of this system did not suffer much
due to grid participation. Jobs which originated at slow
smaller sized systems like Queenbee, Mason and Blacklight,
obtained large benefits from metascheduling.

When only a subset of the jobs are grid submissions, we see
that both users of the grid and the local batch system obtained
benefits in response time. Grid users obtained improved per-
formance because of job migration. Local users obtained
improved performance at systems like Queenbee, Mason and
Blacklight because grid submissions were migrated away
from these systems, leaving more resources free to process
local submissions. Thus, we see that a system’s participation
in a grid which uses our metascheduling algorithm, provides
benefits even for users who do not submit through the grid
portal.

5.7 Sensitivity to Metascheduling Parameters

We studied the effect of three important parameters of our
algorithm: wt, MaxQ and the percentage of grid submis-
sions. Recall that wt denotes the weight of the response time
term in the cost function minimized by MCMF and MaxQ
represents the number of jobs that MCMF can schedule at a
system in one scheduling cycle. Varying wt and MaxQ
allows us to study the structure of the optimization space
and provides insights which can be used for making sched-
uling policy decisions.

5.7.1 Varying wt

Varying wt allows the grid administrators to control the rel-
ative importance of minimizing response time versus

Fig. 7. Power consumption variation in XSEDE.

Fig. 8. Job service fairness for systems in XSEDE
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minimizing total electricity cost. These objectives can be
conflicting in the presence of daily fluctuations of electricity
price. Fig. 9 shows the effect of varying wt in XSEDE and
NorduGrid using 10,000 jobs. For response time and elec-
tricity cost, BSX and BSNG represent the baseline value in
XSEDE and NorduGrid, respectively. We see that increasing
the relevance of response time (electricity cost) leads to a
decrease in response time (electricity cost). We observed
that when only response time is minimized (wt ¼ 100%) we
are able to obtain 48-49 percent reduction in response time
over the baseline in both XSEDE and NorduGrid.

Similarly, when only electricity cost is considered
(wt ¼ 0%), our scheduling strategy obtains 18 and 46 percent
reduction in total electricity cost in XSEDE and NorduGrid,
respectively. It is interesting to note that, in NorduGrid, for
all values of wt, our MCMF algorithm outperforms the base-
line in terms of electricity cost. In XSEDE, we can see that for
wt values between 20-40 percent, both response time and
electricity cost are better than the baseline. So, we selected
wt ¼ 25% as the optimal value for XSEDE. In NorduGrid we
selected wt ¼ 92:5%. Compared to XSEDE, in NorduGrid,
we require a high value of wt to get improvements in
response time. This is because the cost function minimized
by MCMF is skewed depending on the magnitude of the
response time and electricity cost. In NorduGrid, we
observed that average runtime is 3.4x greater than XSEDE
and the average electricity cost of a job is 177x lesser than
XSEDE. The optimal values of wt are different in XSEDE and
NorduGrid because of the differences in the range of reponse
times and electricity costs in each grid. Grid administrators
can use a test workload to obtain these trends using our
framework and decide an appropriate value ofwt depending
on the budget and user service agreements.

5.7.2 Varying the Percentage of Grid Submissions

Typically, large scale grids expose their resources to users
with a local batch scheduler at each system and a global
metascheduling system which facilitates remote job submis-
sion. Grid administrators also partition their resources for
local and remote submissions to offer differentiated job ser-
vice classes. In this section, we investigate the effect of limit-
ing the percentage of grid job submissions.

We performed experiments for different fractions of grid
submissions, fg. Each result with a given fg corresponds to

an average of five runs. The results for XSEDE are shown in
Fig. 10. In each graph, we indicate the response time/cost of
the baseline strategy with a line which is labelled as BS. We
see that even with a small percentage of grid submissions
we gain benefits in response time and electricity cost com-
pared to the baseline strategy, when the cost function
considers response time (wt 6¼ 0%) and electricity cost
(wt 6¼ 100%), respectively. Since the error bars at each point
in the graph are small, it implies that the improvements are
not sensitive to the exact subset of jobs chosen for the
experiments. With 100 percent job submissions through a
metascheduler and for wt=50 percent, we gain 40.8 percent
reduction in average response time with almost the same
electricity cost as the BS. Hence, for further experiments, we
use fg ¼ 1:0 for both XSEDE and NorduGrid.

5.7.3 Varying MaxQ

MaxQ which denotes the number of jobs that can be submit-
ted to a system during a scheduling cycle determines the total
number of jobs that themetascheduler can dispatch in a cycle.
It is important to chooseMaxQ carefully because when queue
waiting time is predicted for a job, the predictor is not aware
of the other jobs that may be submitted to the same system
during the same scheduling cycle. Hence, allowing a large
value for MaxQ can lead to worsening of response times
because of errors in the queuewaiting time predictions.

For XSEDE, we observed that average response time
reduces whenMaxQ is increased from 1 to 2 because jobs are
not held in the metascheduler queue. When MaxQ is further
increased the average response time increases. We also
observed that the trend is more pronounced in the bounded
slowdown metric which is shown in Fig. 11. We use
MaxQ ¼ 1 to denote the case where we do not impose any
limit on the number of job submissions to a system in a
scheduling cycle. For the NorduGrid workload, we observed
that increasing MaxQ improves the average response time
and bounded slowdown even withMaxQ ¼ 1. This behav-
ior arises from the difference in average inter-arrival time of
the two workloads. In XSEDE, the average inter-arrival rate
is less than 4 jobs per hour compared to 67 jobs per hour in
NorduGrid. So each scheduling cycle in NorduGrid receives
significantly more jobs than XSEDE and large MaxQ allows
the scheduler to submit more jobs to individual systems in
each cycle. Based on these observations, we chooseMaxQ as
2 and1 in XSEDE andNorduGrid respectively.

Fig. 9. Effect of varying wt on response time and cost.

Fig. 10. Tradeoffs observed for different % of grid submissions in
XSEDE.
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5.8 Power Consumption and Data Communication
Models

Our previous experiments did not consider data transfers
between the submission and the execution site. In this sec-
tion, we consider a data transfer and communication model
in which data movement from the submission site is initi-
ated simultaneously with the job migration and submission
to the execution site. We extended our execution model to
include the data transfer time as

responseTime ¼ ðmaxðcommT; qwT Þ þ execT Þ; (7)

where qwT is the queue waiting time on the site to which the
job is migrated and executed (execution site), commT is the
time for communication of data between the submission to
the execution site, and execT is the execution time in the
submission site. Our metascheduler used this response time
to make its decision.

Our previous results were also obtained with the assump-
tion that the power consumption by the applications is the
same as the consumption by HPL. This is based on studies
using comprehensive simulation by Kamil et al. [25]. Subse-
quently, real experiments with diverse set of applications on
large scale systems in the work by Laros et al. [32] and Song
et al. [33] suggest that the power consumption can vary
between -40 to +40 percent of HPL’s power consumption,
with no specific skew towards higher or lower values. In this
section, we experimented with three different power con-
sumption models: an average-HPL-power model in which we
randomly chose the power consumption of a job in the range
of -40 to +40 percent of HPL’s power consumption, a lower-
than-HPL-power model corresponding to the range -40 to 0
percent in which 0 percent corresponds to using the HPL’s
power consumption, and a higher-than-HPL-powermodel cor-
responding to the range 0 to +40 percent percent.

We conducted experiments using 10K jobs, and involv-
ing both the above mentioned communication and power
consumption models. In the first set of experiments, we
show the effect of the communication models in our results.
For this, we chose the power consumption model as average-
HPL-power model. For each job in our experiment, we ran-
domly chose the data size of the job as one of 0, 1 KB, 1 MB,
10 MB, 100 MB, 500 MB, 1 GB, 10 GB, 100 GB, 500 GB, 1 TB,
and 10 TBytes. We used the latency and grid-ftp bandwidth

data available in [34] and [35] for the communication links
in XSEDE. Table 7 shows comparison results with the com-
munication model.

Similar to the overall results shown in Table 4, we find
similar comparisons when including network transfer
times. With wt set to 25 percent, we find that when com-
pared to the baseline MCMF gives reduction of 150 minutes
in average response time. However, the electricity cost due
to MCMF is about $4K more than the cost due to the base-
line. But the advantage of MCMF is that it can be tuned to
suit the needs of a supercomputer site. By setting its wt

parameter to 20 percent, we find that it outperforms the
baseline in both the average response time and the electric-
ity cost. MCMF also outperforms the TWOPRICE method in
terms of electricity cost with savings of more than $5K with
only a 20-minute increase in average response time. The
TWOPRICE algorithm obtains worse electricity cost than
MCMF because it does not consider fine grained variations
in electricity price. Similar to the earlier results of Table 4,
MCMF gives large-scale reductions in response times when
compared to INST while giving higher electricity cost. The
INST algorithm which does not consider queue waiting
time suffers from large response times. However its perfor-
mance is better than the earlier case of Table 4 since consid-
ering network bandwidth allowed it to move jobs away
from systems with low network bandwidth.

We now show the effect of different power consumption
models on the results. For these experiments, we restricted
the data size to 1 TBytes. Table 8 shows the comparisons.
We find that with the variations in the power consumptions
across the rows, the response times show only small-scale
or even negligible variations in all the methods. The total
electricity costs, as expected, increase across the rows
almost uniformly for all the methods. Thus, MCMF contin-
ues to maintain its relative position wrt the other methods
irrespective of the power consumption model: its average
response time is about 2 hours less than that of the baseline
and less than half of the response time of the INST method,
and its electricity cost is about $5K less than the cost of the
TWOPRICE method for comparable response times.

5.9 Practical Considerations

In each scheduling cycle, the meta scheduler collects infor-
mation about the queue and processor status of each system
in the grid and the current list of pending jobs. This infor-
mation is processed by our MCMF algorithm and the jobs
are submitted to the appropriate systems. From the web sta-
tistics published by NorduGrid, we observed the informa-
tion collection phase takes less than 30 seconds for all the 80
systems in the grid. During our experiments, we observed

Fig. 11. Effect of varyingMaxQ.

TABLE 7
Simulation Results Involving Communication Model

Strategy Average response
time (minutes)

Total electricity
cost ($)

MCMF ðwt ¼ 25%Þ 518.2 229,784.7
Baseline 678.4 225,085.7
MCMF ðwt ¼ 20%Þ 640.7 220,479.4
TWOPRICE ðwt ¼ 25%Þ 499.0 234,341.7
INST 1,172.5 201,411.5
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that our Python implementation running on an Intel Core i7
3.4 Ghz processor with 16GB RAM takes 8.4 seconds on
average for computing the scheduling cost and constructing
the flow network, and 16.3 seconds on average for comput-
ing the minimum cost flow and the subsequent job submis-
sions to individual systems. Assuming that a scheduling
cycle happens every few minutes [10], we conclude that our
implementation is fast enough to be deployed in currently
operational grids.

6 RELATED WORK

Approaches which reduce power consumption by lowering
CPU frequency or voltage [3] may not be widely and uni-
formly applicable across the entire grid due to the autono-
mous systems that are involved. Hence we do not describe
related works which primarily employ such techniques to
achieve power savings.

Single HPC system scheduling. The works of Yang et. al. [1]
and Zhou et. al.[36] formulate the electricity price aware job
scheduling problem for a single computing system as a 0-1
knapsack model. These works do not use hourly electricity
prices. Instead, they consider two electricity price values
corresponding to on and off-peak hours. Their algorithm is
applied during peak hours to maximize utilization while
maintaining the power consumption within a power budget
that is specified a-priori. We also consider hourly electricity
pricing and have shown improvements over a strategy
which uses only on-peak and off-peak prices.

Datacenter scheduling. The concept of geographic load balanc-
ing [37] has been used for distributing Internet traffic across
distributed data centers. Qureshi et al. [38] proposed electric-
ity price aware request routing for Akamai’sweb trafficwork-
load. Liu et. al. [37] proposed geographic load balancing of
Hotmail traffic requests to achieve energy savings. Ren and
He developed COCA [39], a scheduling framework which
uses Lyapunov optimization to minimize operational cost of
the data center while satisfying carbon neutrality constraints.
Thiswork uses one hour ahead electricity price prediction.

These approaches are applicable only for Internet data
center workloads and not batch system workloads. They
assume that requests are uniform with similar service times
and employ techniques which use overall request arrival
and service rate statistics. These works consider that the
request is serviced in the submission hour and do not con-
sider requests which require many hours or days of compu-
tation. Thus, the combination of workload and service
policy used in HPC centers cannot be accurately modeled
by these previous works.

Grid scheduling. England and Weissman [40] have studied
the benefits of sharing parallel jobs in computational grids for

both homogeneous and heterogeneous grids. Mutz and
Wolski [41], developed auction based algorithms for imple-
menting job reservations in grid systems. Chard et. al. [42]
proposed an auction based scheduling framework where
participating virtual organizations collaboratively arrive at
scheduling decisions. Sabin et. al. [43] proposed a metasched-
uling algorithm based on the multiple simultaneous reser-
vations at different systems in a heterogeneous multi-site
environment. None of these previous works are cognizant of
electricity price or job power characteristics. To our knowl-
edge, ours is the first work on metascheduling HPC work-
loads across grid systems which optimizes both response
time and electricity cost.

7 CONCLUSIONS

In this paper, we presented a Minimum Cost Maximum
Flow based formulation of the grid scheduling problem to
optimize the total electricity price and average response
time of HPC jobs in large scale grids operating in day-
ahead electricity markets. Using two currently operational
computational grids, we demonstrated that our algorithm
can effectively use predictions of queue waiting time and
electricity prices to optimize job placement across the grid.
We also showed most systems which participate in the
grids which use our metascheduling algorithm, are able to
offer improvements in response time for both grid and
local users.
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