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SUMMARY

Production parallel systems are space-shared, and resource allocation on such systems is usually performed
using a batch queue scheduler. Jobs submitted to the batch queue experience a variable delay before the
requested resources are granted. Predicting this delay can assist users in planning experiment time-frames
and choosing sites with less turnaround times and can also help meta-schedulers make scheduling decisions.
In this paper, we present an integrated adaptive framework, Qespera, for prediction of queue waiting times on
parallel systems. We propose a novel algorithm based on spatial clustering for predictions using history of job
submissions and executions. The framework uses adaptive set of strategies for choosing either distributions
or summary of features to represent the system state and to compare with history jobs, varying the weights
associated with the features for each job prediction, and selecting a particular algorithm dynamically for
performing the prediction depending on the characteristics of the target and history jobs. Our experiments
with real workload traces from different production systems demonstrate up to 22% reduction in average
absolute error and up to 56% reduction in percentage prediction error over existing techniques. We also
report prediction errors of less than 1 h for a majority of the jobs. Copyright © 2015 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Traditionally, large compute systems offer massively parallel operations using a large set of
processors, specialized interconnects, and appropriate resource management software.The design
and implementation of suitable resource management middleware are crucial to enable produc-
tive research usage of these systems. In High Performance Computing (HPC) systems, the high
system acquisition cost mandates the deployment of system software that imposes minimum over-
heads on user applications and scheduling algorithms that can maximize the system utilization.
Most production supercomputers allow users to submit jobs through batch submission queues and
employ scheduling policies that use space sharing of the available processors to partition resources
among multiple users or applications. Well-known parallel job management frameworks like IBM
LoadLeveler [1], portable batch system (PBS) [2], platform load-sharing facility (LSF) [3], and
Maui scheduler [4] are used to provide resource management services for system administrators
and job queuing and execution services for users on these supercomputers. These frameworks allow
system administrators to use policies like backfilling, which increase utilization by modifying the
First Come First Serve (FCFS) queuing order by allowing a job to start before previously submitted
jobs. Policies like fair share, user and queue prioritization, and limits on the number of queued and
running jobs are also implemented to allow equitable access to resources.
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Figure 1. Queue waiting times seen in production HPC systems.

On space-sharing systems, it is expected that users request a set of compute nodes for a particular
duration of time. With multiple users contending for the compute resources, a batch queue submis-
sion incurs time because of waiting in the queue before the resources necessary for its execution are
allocated. The queue waiting time ranges from a few seconds to even a few days on most produc-
tion systems. Figure 1 shows the box plot of queue waiting times observed in the workloads at five
production systems featured in parallel workloads archive (PWA) [5]. In each box, the lower and
upper edges denote the lower and upper quartile of the set of queue waiting times and the middle
line shows the median. The whiskers mark the interquartile deviation (1.5�) from the median. From
the large number of outlier points with high waiting times and the small values of lower quartile and
median, we can see that queue waiting times vary widely within and across systems.

Prediction of queue waiting times for jobs enables users to estimate job turnaround time, which
can be used for planning and task management. Additionally, reliable predictions will allow the
users to tune job parameters like requested number of nodes or estimated running time to achieve
faster response times. Such predictions can also be efficiently used by a meta-scheduler to make
automatic scheduling decisions for selecting the appropriate number of processors and queues for
job execution. Usage statistics of predictors like queue bounds estimation from time series (QBETS)
[6] that was used to provide bounds on the queue waiting times in TeraGrid [7] and the Karnak Pre-
diction Service [8], which is currently used in seven Extreme Science and Engineering Discovery
Environment [9] supercomputers, indicate that users are keen to incorporate predictions for manag-
ing experiment time lines and to efficiently schedule complex scientific workflows across multiple
supercomputing sites [10].

Developing a site-independent prediction system that supplies the user a real valued waiting
time prediction at the instant of job submission is challenging because of a complex interplay
between scheduling algorithms, queue and user-specific usage policies, node failures, unpredictable
job arrival patterns, and queue churn induced by job cancellations. Scheduling algorithms that use
backfilling or policies that resemble shortest job first allocation result in dynamically varying sys-
tem and queue states. Coupled with irregular job arrival patterns, it becomes difficult to anticipate
the state changes of the batch queue and design scheduling algorithm agnostic prediction strategies.
Additionally, site-specific node partitioning constraints on architectures such as BlueGene/P make
the problem harder.

In this paper, we present an integrated adaptive framework, Qespera,‡ to predict queue wait-
ing times for jobs submitted to production parallel systems. We propose a novel algorithm based
on spatial clustering for examining the cluster structure of similar jobs in the history. Using the
cluster structure, our adaptive method chooses an appropriate prediction model among a standard

‡Espera means wait in Spanish.
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deviation minimizer (SDM), ridge regression, and a nearest neighbor (NN) predictor. Our frame-
work uses the processor occupancy state and batch queue state along with job characteristics like
requested number of nodes and user estimated running time to find similar jobs in the history.

The following are the primary contributions of our work.

� The use of distributions over feature summaries to represent queue and processor occupancy
states.
� Features that consider user-specific system utilization/demand policies that are prevalent in

many supercomputing sites.
� A novel algorithm that uses spatial clustering to predict job waiting time based on very

similar past submissions.
� An adaptive scheme that selects the most relevant features for prediction for each individual

job.
� A simple characterization of the feature neighborhood of a job that is used to select the correct

prediction model for each job.

We have evaluated our adaptive prediction framework using workload simulation traces from the
PWA [5]. Our test set comprises production workloads with varying site and job characteristics,
including two Top500 systems. Across workloads, our predictions result in up to 22% reduction in
the average absolute error and up to 56% reduction in the percentage prediction errors over existing
techniques. We also report prediction errors of less than 1 h for a majority of the jobs for most
workloads. In addition, for one of the systems, we use hardware failure traces and site-specific
scheduling policies to determine the reasons for large prediction errors for some jobs. We are able to
account for the high prediction errors for most of these jobs. We have also integrated our framework
with OpenPBS and deployed it on a cluster in our department.

In Section 2, we present existing prediction algorithms. In Section 3, the proposed framework is
described in detail, including the job and system features used, calculation of distances between the
jobs, and prediction models used for obtaining predicted queue waiting times. Section 4 describes
the experimental setup and evaluation results for various supercomputer job traces. In this section,
we present comparison results with two previously proposed wait time prediction strategies. In
Section 5, we share our experience of deploying our framework in a cluster in our department.
Section 6 discusses certain aspects that impact the predictions. Section 7 includes a summary of the
paper and plans for future work.

2. RELATED WORK

Earlier efforts on prediction of queue waiting times can be broadly classified into non-statistical and
statistical methods. Non-statistical methods are based on exact simulation of the scheduling algo-
rithm and decisions that would be made by the scheduler in real time. This approach inherently
limits the applicability of these techniques because scheduling policies are hard to model and com-
plete information about the scheduler is usually not published. In contrast, statistical methods do
not assume specific scheduling algorithms or run time models.

2.1. Non-statistical methods

Smith et al. [11, 12] propose methods to infer job run times using similar previous submissions,
and these estimates are used to simulate the scheduling algorithms including FCFS Serve, Least
Work First, and backfilling [13] to estimate queue waiting times. The work by Downey [14] pro-
posed mean and median-based predictors that assume a log uniform model of job execution times
to estimate the waiting time of the job at the head of an FCFS queue. This approach cannot be used
to obtain an estimated queue waiting time at the time of job submission. Hence, this approach is
not suitable for metascheduling using queue waiting and response time predictions. In contrast, our
proposed framework provides a queue waiting time prediction at the instant of job submission. It
is not restricted to a specific scheduling policy and can be deployed across platforms with different
resource allocation policies. Some of these previous efforts also use run time estimates for predic-
tion of queue waiting times. Prediction errors for run time can propagate to yield large errors in the
waiting time predictions.
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Some supercomputer systems utilize discrete-event simulators that simulate the exact resource
management policies employed in the system. An example is the QSIM simulator framework
employed in the Argonne National Laboratory (ANL) to simulate Cobalt [15] resource management
strategies. Such simulators are used for analyzing various what-if scenarios including adjusting user
run time estimates [16] and can also be used to estimate queue waiting times on the particular
system. Such estimates are also used to build robust job schedulers [17].

2.2. Statistical methods

The QBETS [6] is a forecasting system that uses quantile statistics of the history of job submis-
sions to provide bounds on the queue wait times with a quantitative confidence level. QBETS uses
a predictor based on non-parametric inference, an automated change-point detector to trim history,
a hierarchical clustering algorithm to identify jobs having similar characteristics, and queue length-
based downtime detection algorithm to identify system failures that affect job queuing delay. Using
these components, QBETS can handle varying workload characteristics and customized queuing
policies. However, QBETS gives conservative upper-bound predictions, which leads to large pre-
diction errors for a majority of jobs. A primary limitation of QBETS is that it does not consider the
state of the system and uses only the job characteristics, which we show is insufficient for efficient
predictions of queue wait times.

The work by Smith [18] uses a weighted heterogeneous Euclidean-overlap distance metric to
compare job attributes and find similarities between the target job and history jobs. Kernel weighted
average (WA) is used to obtain a prediction from history submissions, and a genetic algorithm is used
to tune the weights for the distance function. The instance-based learning (IBL) method by Li et al.
[19–21] considers both the job characteristics and the system states for the prediction of queue wait-
ing times. This work considers more features than the prediction methods of Smith [18] and includes
other predictors like 1-NN, the n-WA of n-NN, and locally weighted linear regression. These works
also use a genetic algorithm to obtain a static weight vector, which is used to improve the similar-
ity computations. We differ from this work on many aspects including an improved representation
of the system state using distributions and user-specific job submission policies, a problem-specific
prediction model, use of clustering techniques to give importance to similar queue waiting times in
the history jobs, a dynamically varying weighting scheme to handle local trends in the workload,
and an adaptive method to vary the prediction model for each job. We show that our method gives
improved queue waiting time predictions over QBETS and IBL.

A recent work by Kumar and Vadhiyar [22] defines boundaries in the history of prior job submis-
sions for predictions. These boundaries denote an estimate of the closeness of the history system
state to the current state and allow them to classify the history jobs as near-term, mid-term, and far-
term. Using these history job classes, they define a set of criteria based on the current queue and
system state, which can be used to infer a bound on the waiting time. However, their method is
limited to identifying whether a job belongs to the class of jobs with waiting time less than 1 h.

3. METHODOLOGY

In this section, we provide a complete description of the algorithm used to predict queue waiting
times in parallel systems. We present an overall view of the algorithm, followed by a description
of each component. A fundamental assumption in our method is that similar jobs that arrive dur-
ing a similar system queue and processor states experience similar queue wait times. When a new
job arrives in the job queue, the job scheduler takes a decision based on the arriving job’s attributes
and the current system state. Given a set of jobs and an appropriate definition of job similarity, a
deterministic scheduling algorithm is expected take the same actions for jobs with similar resource
requirements. Before such jobs start execution, they will experience a series of similar system
changes if their queue and processor states at the time of arrival are approximately the same. Hence,
we expect that such jobs will have similar queue waiting times.

We use two kinds of statistics with respect to features that describe processor and queue
states: feature summary and distributions. We found that using distributions helps in capturing the
similarities of jobs better than using feature summary if the distributions are not uniform. Using
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a training set, one of these two statistics is chosen. These statistics are used along with the job
attributes to characterize a job at the time of its submission. We then use a weighted distance met-
ric to calculate the similarities of the target job with the history jobs. We follow an online learning
approach that uses a clustering algorithm to quickly characterize the feature neighborhood of the
target job based on the distances from the history jobs. Depending on the cluster structure, we use
one of three methods to calculate the predicted queue waiting time of the target job: an SDM, NN
method, and ridge regression.

We describe the job features in Section 3.1 and the distance function in Section 3.2. The criteria
used to analyze the cluster structure of the feature neighborhood and the prediction models are
presented in Section 3.3.

3.1. Job features

At the time of arrival of a job in a supercomputer queue, certain jobs will be running on the nodes
of the system and certain other jobs will be waiting in the queue. The processor state of the system
contains information about the running jobs, and the queue state contains information about the
waiting jobs. To predict the wait time of the new job, we look for jobs in the past that had similar
resource requirements as the current job and whose processor and queue states were similar. In
order to establish a working definition of job similarity, we quantify the processor and queue states
associated with a job. In this section, we motivate and define a set of features, which are used in
Section 3.2 to define job similarity. In the remainder of this chapter, queue and processor states are
jointly referred to as system state.

Given a job j , we denote the submission time of the job in the queue by ts.j /, the number of
nodes/cores requested by the job by req_size.j /, the estimated wall clock time of the job provided
by the user by ert.j / (estimated run time (ERT)), and the unique id of the user submitting the job by
user.j /. These job attributes can be gathered from the job submission script provided by the user
and are also maintained in workload logs [5].

We represent the system resource states using two types of statistics: distributions and feature
summary. A job feature is represented using either a numeric or nominal attribute. Distributions are
sets of quantities associated with a particular feature. For example, the set of requests sizes of jobs
waiting in the queue can be represented using a histogram distribution. Feature summary, as the
name suggests, summarizes the distributions to produce a representative real value. For example,
a feature summary for the set of requests sizes of the waiting jobs in the queue can be the sum
or average of the request sizes. Numeric attributes are real values that can be ordered using an
appropriate distance function. Nominal attributes are quantities that cannot be ordered and can only
be used for identification. To predict queue wait times for jobs at a supercomputing site, we use the
job attributes in conjunction with either distributions or feature summary for the system state.

One of the important contributions of our work is the use of distributions over feature summary in
some cases to represent and compare system states. The process of summarization loses information,
which can, in some cases, be vital for correct comparisons. In Figure 2, the two processor states of a
64-node machine are indistinguishable if we consider the sum of request sizes or the number of jobs;
however, the distributions of request sizes are clearly different. These two system states are different

Figure 2. Two different processor states for a 64-node machine (represented as a 4� 16 matrix). Each small
square represents a node and each color represents a job.
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from the perspective of job wait time because they will undergo drastically different sequences of
state changes. In certain workloads, where distributions can reveal a distinct bias or skewness for
some features, we found that the use of distributions can greatly improve the similarity computation
and lead to better predictions. We use six distributions to represent the system state at the instant
of arrival of a job: three distributions to represent the characteristics of the waiting jobs and three
distributions to represent the characteristics of the running jobs. Together, these distributions capture
the trends in resource requirements of queued jobs, the current load on the system resources, and
some temporal characteristics of the system state. The distributions used by our predictor are listed
in Table I. Because the explanatory variables of interest in the system state are all discrete quantities
(time is measured in seconds), it is natural to represent each distribution using a histogram. For
example, for obtaining the queue state distribution of request sizes for a particular job submission,
all the waiting jobs at the time of arrival of the job are selected and the histogram of their request
sizes is computed.

We chose these six features because they have direct impact on the queue waiting times and can
be obtained or deduced from the job traces. For example, if the ERT of a job is high, it can expected
that it will wait longer in the queue before it obtains the resources necessary for its execution. At
the instant of a job submission, if the system is heavily occupied, as reflected in a high value for the
sum of sizes of the executing jobs, or if the queue is populated by a significant number of large jobs,
as reflected in a high value for the sum of sizes of queued jobs, we can expect a larger queue waiting
time for the currently submitted job. Similar arguments are applicable to the other features in our
set. In this work, we have not considered job priority as a feature because they are not available for
all job traces.

In certain cases when the queues have jobs with a large number of different request sizes and
ERTs, the distributions described earlier can resemble the uniform distribution or lack significant
differences in kurtosis or skew, which can be used to obtain a natural ordering. For example, Figure 3
shows four different distributions, D1–D4, of request sizes of running jobs. It is clear that the sys-
tem state represented byD2 has correspond to higher load than the one represented byD1. It is also
reasonable to expect that a 128-node job submitted at an instant corresponding to the system state
D1 is likely to incur less queue waiting time than when it is submitted at state D2. However, such
differences are not apparent in cases of D3 and D4, which strongly resemble the uniform distribu-
tion. Thus, better predictions can be obtained by using distributions for system states, D1 and D2,
and feature summaries for system states, D3 and D4.

In general, when the histograms do not have significant distinctness in shape, we cannot rely on
them to obtain a meaningful quantification of similarity. For such cases, summaries of features are
employed to check resource state similarity. The feature summaries and job attributes used by our
predictor are listed in Table II. In the table, 1 ¹conditionº denotes the indicator function, which is
1 when condition is true and 0 otherwise. The first two features are the job attributes that directly
influence the wait time of the job. For example, if a job requests a higher number of cores, we expect
it to wait for a longer period than a similar job that requires a smaller number of cores. Similarly, if
a user specifies a high value of ERT, the chances of the job getting backfilled are lesser compared
with a similar job with small ERT. The request size of a job is considered as a nominal attribute, and
the ERT is a numeric scalar attribute. The analysis of workloads of supercomputing sites shows that
request sizes tend to be a power of two and that the total number of request sizes used is less. This
implies that for most request sizes, there are a large number of jobs in the workload. Computing the

Table I. Distributions used in distance computation.

No. Type Distribution name

1 Queue Request sizes of queued jobs
2 Queue Estimated run time of queued jobs
3 Queue Elapsed wait time of queued jobs
4 Processor Request sizes of executing jobs
5 Processor Estimated run time of executing jobs
6 Processor Elapsed run time of executing jobs
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Figure 3. Example distributions.

plain difference of request sizes can make the overall distance function biased towards history jobs
with lower request sizes, especially when the request sizes are power-of-two. We use 0=1 distance to
ensure that a majority of the close neighbors have the same request sizes as the target job. When such
neighbors are not available, the close neighborhood of the job will be sparse. We present methods
to handle such feature neighborhoods in Sections 3.3.3 and 3.3.4.

Features 3–8 are the summarizations of the distributions listed in Table I. One of the unique
aspects of our work is that we consider user-based queue and processor features (features 9–16).
These features are intended to include site-specific policies that limit certain user-based demands
or utilization. During the course of our research, we found that certain sites impose limits on the
demands a user can make at a given time to ensure fairness for all users and to prevent a large number
of serial job submissions by the user. For example, the system administrators of the SP2 machine at
the Cornell Theory Center (CTC) used a policy that allowed only the first 6000 node hours of jobs
submitted by a user to move up in the queue. Any requests from a user who has already submitted
jobs requiring a total of at least 6000 node hours of CPU time are blocked at the end of the queue
until one of the earlier jobs starts running [23]. We extend this idea to include policies based on
other common metrics including the number of submitted and running jobs by a particular user.

3.2. Distance computation

Using the features defined in the previous section, a distance function can be used to assign a real
valued similarity score for a pair of jobs. Smaller values of distance indicate higher similarity.

3.2.1. Distribution-based job distance. �2 (pronounced ‘chi-square’) distance metric is used to
order the set of distributions of history jobs according to their similarity to the target job’s
distributions. For two histograms P and Q with K bins, the �2 distance is defined as

�2.P;Q/ D

KX
iD1

.P Œi � �QŒi�/2

P Œi�CQŒi�
(1)

For each bin, the summation of bin counts in the denominator of Equation (1) implies that �2

distance considers small differences between large bins to be less important than a similar difference
between small bins. Before applying the distance metric, each histogram bin is normalized by the
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Table II. Features used in distance computation.

Jobs considered Feature Computation
for computation

Target job User given req_size.J /
(1–2) request size

User given ert.J /
ERT

All waiting Sum of request sizes
P
i�Q ert.i/

jobs (3–5) Sum of ERTs
P
i�Q ert.i/

Sum of elapsed
P
i�Q.ts.J / � ts.i//

waiting times

Sum of request sizes
P
i�R req_size.i/

All running Sum of ERTs
P
i�R ert.i/

jobs (6–8) Sum of elapsed
running times

P
i�R.ts.J / � .ts.i/C wait_time.i///

Sum of requested
Waiting jobs of the CPU time

P
i�Q 1¹user.i/ D user.J /ºreq_size.i/ � ert.i/

user who submitted Sum of request sizes
P
i�Q 1¹user.i/ D user.J /ºreq_size.i/

the target job (9-12) Sum of ERTs
P
i�Q 1¹user.i/ D user.J /ºert.i/

Number of jobs
P
i�Q 1¹user.i/ D user.J /º

Sum of requested
Running jobs of the CPU time

P
i�R 1¹user.i/ D user.J /ºreq_size.i/ � ert.i/

user who submitted Sum of request sizes
P
i�R 1¹user.i/ D user.J /ºreq_size.i/

the target job (13-16) Sum of ERTs
P
i�R 1¹user.i/ D user.J /ºert.i/

Number of jobs
P
i�R 1¹user.i/ D user.J /º

ERT, estimated run time.

total frequency, which is same as the number of jobs involved in the histogram computation. This
allows us to compare histograms of different queue and processor states, although the number of
jobs in each histogram may be different. Once the �2 distance between a histogram of the target
job and the corresponding histogram of a history job is determined for each of the six distributions
shown in Table I, the maximum of the six distances obtained is calculated. This is used to normalize
the distances, so that each pair of histograms has a distance in the Œ0; 1� range.

To obtain valid results using the �2 metric, the pair of histograms must satisfy two conditions,
namely, the number of bins of both the histograms, and their bin start positions must be the same.
If the training set used for prediction is used to compute maximum and minimum bounds for the
histograms, the range of values of the quantities will lead to a large number of sparse bins in the
histograms. For example, the request sizes can vary from a few nodes to many hundred thousands
and elapsed wait times and ERTs can vary from a few hundreds seconds to hours or days. This will
render the histograms unusable because no clear pattern can be discerned if most of the bins have
only a few or no samples. The bounds will have to be recomputed for each new job submission
whenever the feature values of a job lie beyond the bounds computed using the training set.

We employ an adaptive procedure that uses a fixed number of bins and recomputes the minimum
and maximum bounds for each histogram type for each pair of jobs. For a pair of histograms, the
minimum/maximum bin start/end position is taken as the minimum/maximum value of the quantity
being binned among both the histograms. In this case, when the range of values is small, the bin
width is small, and we can obtain a more fine-grained comparison for the histograms, and when the
range of values is high, we can obtain a coarse-grained comparison of the histograms. We experi-
mented with different number of bins and found that using ten bins gave good bin widths and results
in most cases. Hence, in all our experiments, we used ten bins for each histogram.

Using the distribution distances, the final distance value for each history job is computed by
adding the distances of the job attributes and applying suitable weights. Because request size is
considered as a nominal attribute, 0=1 distance is used to test whether the request sizes of the history
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and target jobs are the same. For ERT, plain difference with suitable normalization is used. This
ensures that the distance value for each feature lies in a Œ0; 1� range. For a target job J and a history
job h, the distribution-based job distance is defined as

d.J; h/ D.W.feature; f1/ � 1¹req.J / ¤ req.j /º

CW.feature; f2/ �
jert.J / � ert.j /j

max_ert � min_ert

C

6X
iD1

W.distr; di / � �
2.DŒJ �Œi �;DŒh�Œi �//=Wsum

(2)

where W is the weighting scheme defined in Section 3.2.3. W.feature; fi / and W.distr; di / are
the weights of the i th feature and distribution, respectively. Wsum denotes the sum of weights
used for the different features. max_ert and min_ert are the maximum and minimum of the ERTs,
respectively, seen among the jobs in the history set and target job. DŒh�Œi � and DŒJ �Œi � are the i th

histograms of jobs J and h, respectively. The overall distance value is in the Œ0; 1� range because the
individual distances used in the WA are in the Œ0; 1� range.

3.2.2. Feature summary-based job distance. For computing the feature summary-based distance
between a target and history job, 0=1 distance of request sizes and normalized plain differences
of other feature values are averaged with suitable weights obtained using the weight function
in Section 3.2.3. For a target job J and a history job h, the feature summary-based distance is
defined as

d.J; h/ D dn.J; h/=Wsum (3)

dn.J; h/ DW.feature; f1/ � 1¹req.J / ¤ req.h/º

C

16X
iD2

W.feature; fi / �
jF ŒJ �Œi � � F Œh�Œi �j

maxfi � minfi

(4)

In the aforementioned equations, F Œk�Œi � denotes the value of the i th feature of job k and maxfi
and minfi are the maximum and minimum values, respectively, of the i th feature seen among jobs
in the history set and target job.

3.2.3. Correlation-based feature weights. Assigning real valued weights to each feature allows the
distance function to give more importance to relevant features. For instance, if FCFS policy is used
to schedule jobs, a predictor that estimates the wait time at the arrival time of the job need not
consider the ERT of the target job. When the requested number of nodes becomes available, the
job at the head of the queue will start, irrespective of its requested time, and the order in which
jobs move up in the queue is based only on arrival time. One scheme for deriving weights is to
use the correlations between features and queue waiting times for a training set of history jobs,
and use these weights for subsequent predictions. However, such a static scheme will be incapable
of handling dynamic policy changes by system administrators or varying workload characteristics,
which can potentially alter the relevance of the features. In order to implicitly include such changes
and capture the recent dominant trends in the workload, we recompute the weights when the history
changes with addition of the latest job. The recomputations of the weights will have to be light-
weight because they have to be performed for each prediction. Hence, elaborate explorations, for
example the genetic algorithm scheme in [19, 20] for determining the weights, cannot be performed.
We use correlation computations for calculating weights. In particular, we use the absolute values of
Spearman’s rank correlation coefficient, �, as weights for different features. We chose Spearman’s
correlation over Pearson’s correlation of the unranked variables because the ranking of variables
makes Spearman’s correlation less sensitive to outliers in the data. Spearman’s rank correlation
coefficient, �, of two vectors, X and Y , of lengths N is defined as
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Figure 4. Change of feature weight in HPC2N.

�.X; Y / D

PN
iD1 .xi � Nx/.yi � Ny/qPN
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2
PN
iD1 .yi � Ny/

2

(5)

In the case of feature summaries or job attributes like request size or ERT, the weight is the correla-
tion of the feature value with the wait time of the job. For distribution-based features, we choose the
weight as the correlation of the L2 or vector norm of the histogram with the wait time of the job.

We observed that although the changes in the weights from a particular job to the next may
be minor, such changes accrue over many jobs and over time and result in significant changes in
the set of highly relevant features. For example, Figure 4 shows the change in weights or relative
relevance of four features over time for the workload trace of the Seth machine at High-Performance
Computing Center North (HPC2N), Sweden, obtained from Feitelson’s workload archive [19, 20].
The graph clearly shows that the weights show wide variations over time and hence will have to
be adapted as in our method. Comparing our weight calculation scheme with the earlier genetic
algorithm approach [19, 20], we found that our computations are lightweight and take 30 ms per job,
while the genetic algorithm approach takes about 20 min for evaluating one generation of solutions.
We also experimentally found that the resulting predictions are equivalent to and sometimes even
better than the predictions based on the genetic algorithm approach.

3.3. Prediction models

The steps described in the previous sections compute job similarities between a target job and the
history jobs and give each history job a real valued distance value in the Œ0; 1� range. We developed
three prediction models, namely, standard deviation minimizer (SDM), regression-based, and WA
methods that use the waiting times of the history jobs for predictions. In our experiments, we found
that the relative merits of the prediction models for a particular target job depend on the structure of
the relationships between the waiting times and the distances in the history set. We use a density-
based clustering method to determine the structure of the relationships. In this section, we first
describe the clustering method and then the three prediction models.

3.3.1. Density-based clustering. We observed that the relationships between the waiting times of
the history jobs and the distances to the target job exhibit certain characteristics, which can be
exploited to obtain good predictions. Specifically, we found three common patterns that allow us
to choose the appropriate prediction model for a target job. Figure 5 illustrates these three patterns
of relationships between distances (x-axis) and queue waiting times (y-axis) using a sample trace
from the CTC available in Feitelson’s workload archive [5]. The y-axis of the plots in the figure are
adjusted so that the wait time of the target job corresponds to the line y D 0. Note that although
the y-axis labels are unknown while predicting the wait time for the job, the structure of the graph
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Figure 5. Typical structure of the feature neighborhoods in the Cornell Theory Center. The plots show the
difference of wait time of the history job and the wait time of the target job versus the distance of the history
job. Figure A exhibits the case where the history jobs are not similar to the target job. Figure B shows the
case where the close neighbors form a tight cluster. In contrast, Figure C shows several close outliers. Figure
D illustrates the windows used in standard deviation minimization; the red triangles are sample outliers.

These jobs were handpicked from the Cornell Theory Center trace to illustrate the common patterns.

is independent of the y-axis labeling. Graph A shows the case where most of the jobs in the history
set are far from the target job. Graph B shows the case where there is a dense clustering of jobs with
small variance in wait time very close to the target job. Graph C shows the case where there are
near neighbors but they have dissimilar wait times. In cases A and C, we prefer not to use the near
neighbors directly for prediction because either they are too dissimilar to the target job or their wait
times are dissimilar. For every target job, it is crucial to detect these patterns correctly so that the
correct prediction model can be applied. We can easily distinguish case A from the other two cases
by checking the average distance of the closest k% of the jobs. If the average distance is greater
than a threshold, we infer that the neighbors are too far away. In order to distinguish cases B and C,
we use density-based clustering.

Density-based approaches view clusters as dense collections of points separated by sparse regions
of low density. We use density-based spatial clustering of applications with noise (DBSCAN), a
density-based clustering algorithm that uses a linear number of range queries to grow clusters that
maximize a density connectedness criterion. To define density, DBSCAN uses two parameters: � and
MinPts: If the � neighborhood of a point has at least MinPts points, the neighborhood of the point is
considered dense. Using the definition, each point in the dataset is classified as a core point, border
point, or as an outlier. An important advantage of using DBSCAN over other popular algorithms
including k-means clustering is that the algorithm does not require the number of clusters to be
specified a priori.

Given the wait times of the history jobs, their distance values, and appropriate values of � and
MinPts, the cluster structure of the closest k% of the history jobs is examined. DBSCAN outputs
a set Ck of clusters along with a set Ok of outliers. From Ck , the average size C of a cluster is
determined. If the number of outliers O D jOkj satisfies the following condition, our predictor
assumes that there is a good clustering structure.

O 6 f � C W f 2 Œ0; 1� (6)
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For finding the values of k, f , �, MinPts, and the window size, we used a small training set
for tuning the parameters. Section 4 contains more details on this tuning procedure and the
parameter values.

3.3.2. Standard deviation minimizer. SDM assumes that a close dense cluster of jobs exists in the
neighborhood of the target job. If the cluster of jobs is dense, it implies that the jobs have comparable
distance with the target job and they experienced similar queue wait times. To explain the intuition
behind SDM, we consider case B in Figure 5. In this case, we can see that the cluster of jobs with
distance less than 0.2 has no significant outliers (as compared with case C). We see that along the y-
axis, the cluster is tightly centered around the y D 0 line. This means that the cluster’s average wait
time is a good approximation for the wait time of the target job. To refine this cluster further, we
divide the graph into a set of distance-based windows (along the x-axis) and compute the standard
deviation of wait times for jobs within each window. The vertical lines in the fourth graph in Figure 5
demarcate windows of length 0.05 for a job in CTC. To obtain a very accurate prediction, window of
jobs that has minimum standard deviation and minimum distance to the target job has to be selected.
The windows are formed only for a set of jobs that have distance less than a maximum threshold.
This is because large variations in wait times are expected and observed in the farther regions of the
graph where the jobs are highly dissimilar to the target job.

While computing the standard deviation of jobs in a particular window, we eliminate any outliers
present in that window (triangles in Figure 5). To find the outliers, we reapply DBSCAN on the
part of the graph up to which SDM looks for clusters. Recall that for determining whether we have
a good cluster in the near neighborhood, we used only a small set composed of the closest k% of
the jobs, where k D 5 in our experiments. Now, we expand the set and apply DBSCAN a second
time to obtain the full set of outliers in the region of interest (0 to 0.3 in case of CTC). Among
the windows within the maximum distance threshold, the one with the smallest standard deviation
is selected, and the average wait time of its jobs is reported as the wait time of the target job. For
computing the average of the wait time of the jobs in the cluster, we use a weighted scheme where
the Gaussian kernel (ed

�2
, where d is the distance) is used to assign higher weights for jobs with

smaller distance from the target job. From Graph B in Figure 5, it is clear that selecting the window
size and distance up to which SDM looks for the tight cluster is very important to the accuracy of the
algorithm. If SDM crosses the distance of 0.3 and selects a window with small standard deviation
among the farther jobs, the prediction is not expected to be correct. We pick suitable values for the
various SDM parameters by performing sensitivity studies using a training set.

3.3.3. Regression. When SDM cannot be applied because of poor clustering, the feature summaries
of the jobs are used to construct a linear regression model. A simple least squares regression cannot
be used for our purpose because we found that our dataset has the problem of multicollinearity. The
input features to regression are termed multicollinear if there are strong linear relationships between
the features.

In ordinary least squares regression, for a feature matrix X , matrix inversion of XTX is used to
compute the solution, which minimizes a squared error function. If the matrix X is ill-conditioned,
the regression coefficients can be highly inaccurate, and small changes in the data can cause signifi-
cant variations in the coefficients. For example, in a supercomputer trace, obtained from Feitelson’s
workload archive, corresponding to the Intrepid system of the ANL, we found high correlations
between the job features, with Pearson’s correlation coefficients greater than 0.75 for eights pairs of
features. This indicates that our dataset has multicollinearity. The correlation coefficients also indi-
cate the degree of ill-conditioning introduced by pairwise linear relationships between the features.
In fact, we found the condition numbers of the feature matrices for different traces to be high and
up to 65,000, thus showing that the matrices are ill-conditioned.

We use ridge regression because it employs a quadratic regularization term to shrink the values of
the regression coefficients, making them more stable and robust to collinearity. The feature vectors
are normalized to have mean 0 and variance 1 before the regression is computed. To compute the
wait time for a job, the model is evaluated using target job’s features.
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3.3.4. Weighted average. The third method we used is k-WA-based predictions, if the regression
outputs a negative value for the wait time. To use weighted average, the distances calculated using
feature summaries are used to assign weights to jobs as described in Section 3.3.2. A set of k-NN
is then chosen, and the WA of their wait times is reported as the prediction. Based on experiments
with different values of k, we choose a suitable value for each trace.

3.4. Wait time prediction system

The components described in the previous sections are used to develop a complete wait time predic-
tion system. We present the pseudo code of the prediction system in Algorithm 1. For each trace, a
small set of jobs is used to pick either distributions or summary features for the distance computation
(lines 1–5). use_distribution is True if distributions are chosen, else it is False. The other parameters
required for the algorithm are tuned using a validation set consisting of 4000 jobs (from job num-
ber 16000 to 20000 in each dataset). When the user submits a job to the batch queue, Algorithm 1
is invoked to obtain a wait time prediction. The algorithm uses the appropriate distance function to
evaluate the average distance and outlier criteria (lines 6–12). If these conditions are satisfied (lines
14 and 15), standard deviation minimization is used. If not, the algorithm uses ridge regression to
find the wait time of the target job (line 17). When the regression outputs a negative wait time value,
the prediction from WA is reported to the user (lines 18 and 19).

Algorithm 1 QESPERA: WAIT-TIME-PREDICTOR .J;H/

Require: use_distribution, dist_threshold, k, f
Ensure: wait_time

1: if use_distribution is True then
2: dist= DISTRIBUTION-BASED-JOB-DISTANCE .J;H/

3: else
4: dist= COMPUTE-FEATURE-DISTANCE .J;H/

5: end if
6: sort.dist/
7: C D closest k% of jobs from H

8: dC = average distance of jobs in C
9: clusters clustC , outliers outC = DBSCAN(C)

10: sC = average size of sets in clustC
11: oC D joutC j
12: wait_time D 0:0
13: if .dC < dist_threshold/ ^ .oC 6 f � sC / then
14: wait_time DSTANDARD-DEVIATION-MINIMIZER .D/

15: else
16: wait_time DRIDGE-REGRESSION-PREDICTOR.J;H/

17: if wait_time < 0 then
18: wait_time DWEIGHTED-AVG-PREDICTOR .J;H/

19: end if
20: end if
21: return wait_time

4. EXPERIMENTS AND RESULTS

4.1. Experimental setup

The experiments were conducted using real workload traces of large-scale production parallel sys-
tems available from the PWA [5]. Each trace, available in the standard workload format (SWF) [24],
contains information about the chronology of job submissions, service times offered by the batch
queue, and other auxiliary characteristics that are useful for workload modeling and simulation.
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Table III. Supercomputer workload traces used in our evaluation.

System Time period Max. CPUs Number of jobs System utilization

SDSC Paragon December 1994–December 1995 400 76872 71.7
CTC SP2 June 1996–May 1997 338 79302 85.2
SDSC SP2 April 1998–April 2000 128 73496 83.7
SDSC BLUE April 2000–January 2003 1152 250440 76.8
HPC2N July 2002–January 2006 240 527371 70.2
DAS2 January 2003–January 2004 144 225711 14.9
ANL Intrepid January 2009–September 2009 163840 68936 59.6
CEA Curie February 2011–October 2012 93312 773138 29.3

Table IV. Scheduling algorithms used in the considered systems.

System Scheduling policy

SDSC Paragon Unknown
CTC SP2 Backfilling with user based limits [23, 25]
SDSC SP2 Unknown
SDSC BLUE Unknown
HPC2N Priority scheduling using fair share, user priorities, and user-based limits [26]
DAS2 Backfilling [27]
ANL Intrepid Priority scheduler with user-based limits [28]
CEA Curie Fair share scheduling [29]

For workload simulation, a discrete-event simulator that reads the SWF trace is used to replay
the job submission, start of job execution, and job termination in a chronological sequence. When
a job arrives, the simulator adds the job to the list of waiting jobs in the appropriate queue. When
the job begins execution on the supercomputer, the simulator moves the job from the list of queued
jobs to the list of running jobs. When a job finishes running, its entry is purged from the list of
running jobs. If a job fails while running, the SWF trace contains the runtime until failure, and for
the purpose of simulation, the event is considered equivalent to normal job termination. However,
if a job is canceled while it waits in the queue, it is simply removed from the list of waiting jobs
at the appropriate time. Using these lists, the simulator can maintain an online set of history job
submissions that can be used for obtaining predictions for arriving jobs. The history set is updated
when a currently waiting job is removed from the waiting list. When a new job entry is added to
the history, the earliest entry is removed. The simulator can also interface with standard resource
managers like PBS [2], platform LSF [3], or IBM Loadleveler [1]. For instance, on PBS-based batch
queues, qstat -f command provides the information necessary for our framework to monitor the
system state.

We have selected a set of eight traces, shown in column 1 in Table III, that contain sufficient infor-
mation to reconstruct the queue and processor state of the system at any given time. The selected
traces correspond to system sizes ranging from 128 nodes in SDSC SP2 to 163840 cores in ANL
Intrepid and very low system utilization of 14:9% in DAS2 to high utilization of 85:2% in CTC SP2.
We also used traces of two Top500 systems – Intrepid, a BlueGene/P system with 163840 cores at
the ANL (number 67 in Nov’13 list) and the CEA Curie supercomputer with 77184 cores (num-
ber 20 in Nov’13 list). In Table IV, we show the scheduling algorithms used by these systems. We
obtained this information through private communications with system administrators and archival
information published by the supercomputing sites. Because our framework does not assume any
knowledge of the scheduling algorithm and relies entirely on the history of job submissions for pre-
dictions, we are able to obtain useful predictions across a wide range of scheduler deployments and
different system and usage profiles. Hence, we claim that our results are representative of actual
production supercomputer workloads.

For trace-based experiments, we pessimistically discard the first 10,000 jobs in each trace to disre-
gard any site-specific start-up effects. Studies indicate that users warm up the system environment in
the early part of the workload and that this workload is not representative of production usage [30].
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In this phase, it is also expected that system administrators experiment with and tune parameters to
prepare the site ecosystem for capability computing.

Our predictor uses a number of parameters, for example history size, to tune the prediction strat-
egy to the site and workload specific characteristics. The validation set used for parameter tuning
consists of 4000 jobs starting at job number 16000 in each trace. For obtaining predictions for the
validation set, 6000 jobs starting from job number 10000 are considered as history submissions. We
identified all the parameters used by our framework, associated each parameter with a set of possi-
ble values, and varied each parameter independent of the others to find an optimal configuration of
parameters on the validation set. We evaluate predictions from each parameter configuration using
average absolute error (AAE) calculated as the average of the absolute differences between actual
and predicted waiting times. For a set of possible values for a parameter, the value that gives the
minimum AAE is selected as the optimal value. We found that this optimal configuration of param-
eters varied for different traces. Table V shows the parameters and the range of parameter values
we experimented in our sensitivity studies. Table VI shows the AAE obtained for predictions in the
validation set in each trace using feature summaries and distributions (Columns 2 and 3). In each
trace, the selected statistic (feature summary or distribution) is highlighted in bold.

Additionally, the distributions used in distance computation for each job were analyzed for
closeness to the uniform distribution. For measuring the closeness to the uniform distribution, the
distribution is normalized by the total number of jobs and �2 distance to the appropriately normal-
ized uniform distribution is computed. We average this distance over all distributions for all jobs
in the validation set to assign a non-uniformity score to a trace. From column 4 in Table VI, we
can see that ANL Intrepid, DAS2, and SDSC Paragon have larger deviations from uniformity com-
pared with the other traces. This confirms the observations from the validation set where we find
that distributions outperform feature summaries for the same three workloads (columns 2 and 3).

The optimal parameter configuration is used to obtain predictions on the test set, which con-
sists of job numbers 20001 to 60000 in each trace. We compare the performance of our approach
with two previously proposed predictors, QBETS [6] and IBL [19], which were described in
Section 2. The predictions are evaluated using different metrics that highlight various aspects of the
prediction quality.

Table V. Parameters and ranges of values.

Parameter name Range of values

Size of history set [2000–6000]
Number of bins used in the distribution [5–50]
Density-based clustering – k%, f , �, minPts [1–5], [0.10–0.90],[0.05–0.1], [2–5]
SDM – window size, distance threshold [0.01–0.1], [0.3–0.6]
Ridge regression – maximum distance of history jobs [0.4–1.0]
Weighted average – number of neighbors [1–20]

Table VI. Average absolute error (seconds) for different statistics on
the validation set.

Trace name Feature summary Distribution Non-uniformity

CTC SP2 22648.11 31003.46 0.54
SDSC SP2 12013.29 13069.94 0.62
HPC2N 19275.88 20594.39 0.55
SDSC Blue 12063.72 16038.08 0.67
CEA Curie 3575.11 4080.33 0.69
ANL Intrepid 13530.11 11413.95 0.74
DAS2 41.45 31.23 0.79
SDSC Paragon 3685.58 2688.75 0.82

The fourth column is the non-uniformity score for each workload.
For each trace, the selected statistic type is marked in bold.
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4.2. Results

We evaluate our predictions on the test set using AAE. The AAE of a job is independent of the
response time of the job. However, from a user’s perspective, an error of 20 min may be more
acceptable for a job with response time of 10 h than a job with response time of 100 min, the latter
case representing a more serious prediction error. To include this bias in the error computation, we
also compute the percentage difference in predicted and actual response times for each job, where
response time is the sum of queue waiting time and execution time. For the execution time, we
consider the predicted execution time to be equal to the actual execution time. Hence the percentage

predicted error in response time is calculated as
jpredicted_wait_time � actual_wait_timej

actual_response_time
[22].

Table VII shows the average percentage prediction error in response time, PPErt , and AAE values
for different supercomputing job traces for three methods, namely, QBETS, IBL, and the proposed
method Qespera. We find that the AAE of our Qespera method is up to 22% and 95% smaller than
IBL and QBETS, respectively. We can also observe that the AAE of Qespera is at least 1 h less
than IBL for SDSC SP2, HPC2N and ANL Intrepid. Analyzing the cumulative distribution of the
absolute errors, we found that across traces, 57–98% of the jobs have an absolute error less than 1 h.

The average percentage prediction error of our Qespera method is up to 375 times smaller than
QBETS. In all except two cases, it is between 41% and 4.36 times smaller than IBL. In SDSC-Blue,
the average PPErt is the same in both the IBL and our method. In CEA Curie, we find that while
the AAE of our method is 14% smaller than with IBL, the average PPErt is 12% higher.

We found that the value of average percentage prediction error in response time is dominated by
large PPErt values for jobs with small actual response times. For CTC, Figure 6 shows that jobs
with small response times have PPE values (for Qespera) as high as 500. To reduce this artificial bias
in the metric, we adopt the approach used in the definition of the bounded slowdown metric [31]
to control the range of PPErt . We lower bound the actual response time in the denominator of the
PPErt equation by a constant value to define the bounded percentage prediction error in response

time as PPErt .�/ D
jpredicted_wait_time � actual_wait_timej

max¹actual_response_time; �º
. Because the behavior of the metric

depends on � , we investigate the values of the metric for � D 600 and 1200 s.
In Tables VII and VIII, we can see that PPErt

.600/ and PPErt
.1200/ reduce the percentage pre-

diction error by up to 22 and 31 times, respectively, for our Qespera method. For example, for
SDSC-Paragon, while the PPErt shown in Table VII is 2.87, the PPErt .1200/ shown in Table VIII is
only 0.19. This large difference in the average percentages indicates the degree of skewness induced
by large PPErt for small response time jobs. We once again find that the bounded PPErt values of
our Qespera method are generally lower than with QBETS and IBL, except in SDSC Blue where
PPErt .600/ of our method is only 3% higher than with IBL. Overall, we see that PPErt .1200/ of
Qespera is up to 2.5 times lesser than IBL and up to 93 times lesser than QBETS. The varying
performance differences of our method over IBL and QBETS arise from the different workload

Table VII. Prediction accuracy.

QBETS IBL Qespera

Avg. AAE Avg. AAE Avg. AAE
Log name PPErt (hours) PPErt (hours) PPErt (hours)

SDSC SP2 391.61 44.37 51.48 9.42 11.81 7.84
CTC SP2 148.28 22.98 8.67 4.69 2.69 4.05
HPC2N 3020.44 30.99 40.82 7.65 23.29 5.97
ANL Intrepid 35.15 25.87 0.93 5.68 0.55 4.52
CEA Curie 2444.03 19.19 18.21 3.10 20.35 2.65
SDSC Blue 319.93 29.44 3.56 5.30 3.56 4.83
DAS2 32.03 0.13 3.13 0.04 1.07 0.03
SDSC Paragon 1078.39 14.99 6.63 0.88 2.87 0.69

QBETS, Queue Bounds Estimation from Time Series; IBL, instance-based learn-
ing; AAE, average absolute error.
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Figure 6. PPErt in the Cornell Theory Center.

Table VIII. Bounded percentage prediction error of response time.

QBETS IBL Qespera

Avg. Avg. Avg. Avg. Avg. Avg.

Log name PPE.600/rt PPE.1200/rt PPE.600/rt PPE.1200/rt PPE.600/rt PPE.1200/rt

SDSC SP2 87.55 50.96 8.55 4.96 3.44 2.10
CTC SP2 45.62 27.30 2.75 1.77 1.13 0.81
HPC2N 52.92 31.83 1.72 1.21 1.05 0.75
ANL Intrepid 27.69 11.37 0.80 0.56 0.46 0.31
CEA Curie 65.93 36.49 1.01 0.64 0.99 0.60
SDSC Blue 69.07 40.55 1.47 1.10 1.52 1.08
DAS2 0.51 0.27 0.08 0.05 0.03 0.02
SDSC Paragon 31.91 17.70 0.65 0.38 0.3 0.19

QBETS, queue bounds estimation from time series; IBL, instance-based learning; AAE, average
absolute error.

characteristics and scheduling algorithms of the systems. In general, the adaptive nature of our algo-
rithm will allow us to exhibit superior performance compared with IBL in workloads with frequent
variations in workload characteristics and scheduling policies.

In addition to showing aggregate results over all the jobs in the test set, we study the errors
incurred in different job classes based on the wait time. We divide the jobs into five classes: [0-100 s],
[100–1000 s],. . . , [>100,000 s] and analyze the AAE per class. Figure 7 shows the improvement
in AAE obtained over IBL and QBETS for different wait time categories for ANL Intrepid and
CTC supercomputing traces. Because the graphs show error in log scale, small differences among
the methods as seen in the graphs are significant. For example, in the [>100,000 s] class in Figure
7(a), the AAE of our Qespera method is about four times lesser than QBETS and two times lesser
than IBL.

To further analyze the improvements, we use a heat map, which is a graphical representation of a
two-dimensional histogram with a color mapping for bin frequency. In Figure 8(a) and (b), the heat
maps for predictions by IBL and our Qespera method are shown using a log color scale where the
darkest bin has 50 times more jobs than the lightest bin. In these plots, good predictions are close
to the diagonal where the true and predicted wait times are the same. We see that the predictions
for jobs with waiting time in the range Œ103–105s� are closer to the diagonal in case of our Qespera
method than for IBL. IBL has a significant number of underpredictions and more outliers compared
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Figure 7. Prediction errors in different wait time categories. (a) ANL Intrepid (b) CTC SP2.

with our Qespera method. Thus, our method gives not only improved prediction accuracy for the
overall aggregated results but also improvements for different classes of jobs.

4.3. Adaptivity

To illustrate adaptive prediction model selection, we determined the number of predictions made in
each trace by each prediction model on the test set. In Table IX, we see that a majority of the jobs
use SDM, followed by ridge regression and WA.

As explained earlier, we adaptively select either feature summaries or distributions for a trace
based on the relative performance of these two statistics on the validation or training set for the
trace. We verified if the inferences made based on the validation set also hold for the test set for
two traces, namely, ANL Intrepid and CTC traces. As shown in Table VI, using distributions gave
smaller errors for ANL, and feature summaries gave smaller errors for CTC trace on the validation
sets. We obtained predictions on the test sets for both the traces using both the statistics, namely,
distributions and feature summaries. Similar to the observations in the validation sets, we found that
in the test sets, distributions gave 47% reduction in PPErt .1200/ and 5% reduction in AAE over
feature summaries for ANL Intrepid and that feature summaries gave 54% reduction in PPErt .1200/

and 20% reduction in AAE over distributions for CTC trace.
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Figure 8. Heat maps for predictions in ANL Intrepid. (a) IBL. (b) Qespera.

4.4. Analyzing large prediction errors: Argonne National Laboratory case study

We tried to analyze the reasons for large prediction errors, that is, bad predictions, obtained for some
jobs. We used the ANL Intrepid system as a case study, because in addition to the job workload
traces, failure logs were also maintained for this system. Moreover, we were able to clarify the
possible reasons for some anomalies we noticed in the workload traces through communications
with the system administrators of this system.

We define a goodness metric for our predictions in this workload. To define good predictions, we
divide the queue waiting times into different clusters or bins. To obtain these bins, we select all jobs
in the training set and identify clusters of wait times using k-means clustering. The gap statistic,
which compares the intra-cluster dispersion of points to a null reference [32], was used to compute
the optimal number of clusters in the training set. The cluster boundaries were rounded off to the
nearest hour to obtain a set of continuous intervals. Figure 9 shows the cluster or bins obtained for
the ANL Intrepid system.

To define the goodness metric, we first find the bin in which the predicted wait time falls. We
then define a prediction range centered around the predicted wait time with the width of the range
equal to the bin width. A prediction is termed good if the actual wait time falls within this prediction
range. For example, we found that the clustering method identified a cluster of jobs with wait times
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Table IX. Adaptive predictor selection of Qespera.

Trace name SDM (%) Ridge regression (%) k-weighted average (%)

SDSC SP2 87 13 0
CTC SP2 81 18 1
HPC2N 89 10 1
CEA Curie 95 4 1
ANL Intrepid 93 6 1
SDSC Blue 85 13 2
DAS2 100 0 0
SDSC Paragon 100 0 0

Figure 9. Clusters of queue waiting times observed in ANL Intrepid. The duration spanned by a cluster is
marked by a line segment of a particular color.

between 1 and 6 h. For some job in Intrepid, if the predicted wait time is 4 h, then the prediction
range is 1.5–6.5 h. We consider the prediction for the job as good if the actual waiting time is within
this range.

Using the aforementioned metric, 70% of the predictions made by Qespera were found to be good
predictions for the ANL Intrepid system. For these good predictions, Qespera obtained an AAE of
only 15 min and percentage prediction error of 14%. For the remaining 30% of the jobs, we examine
a series of system-specific conditions as possible reasons for the bad predictions.

Condition 1: Intrepid uses a priority scheduler that computes priority of the jobs using the request
size, ERT, and already queued time. Tang et al. [28] show that the priority computations used for
Intrepid make the scheduler similar to a shortest-job-first algorithm. Hence, the wait time of a job is
influenced by future jobs that request lesser wall clock time.

Condition 2: System failures result in certain partitions becoming unavailable for scheduling.
Intrepid is a BlueGene/P system that uses a partitioned torus network for communication. The node
partitioning scheme allows only partitions of uniform length in each dimension and jobs can only
use a set of adjacent racks. During interactions with the system administrators, we learned that even
single node failures in such a partitioning scheme can lead to long delays in resource allocation for
queued jobs even though the resources are available.

Condition 3: Intrepid also follows a scheduled maintenance period on every other Monday
between 9:00 AM and 5:00 PM Central Time, during which jobs are not run on the system. Queued
jobs during the maintenance period can suffer large delays, which are difficult to predict. Because
the queue is not expected to be in steady state just after a maintenance period is over, jobs arriving
just after the scheduled period can also suffer from bad predictions.
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Condition 4: On every Monday, all jobs waiting in the prod � capability queue are promoted to
the highest priority queue. This artificial tweaking of job priority is hard to factor in the prediction
algorithm and can lead to wrong predictions.

Condition 5: Jobs in the prod � long queue are constrained to run on a fixed set of 16 racks,
unlike other queues where jobs can run on any of the available 40 racks (including the 16 racks
of prod � long). These jobs tend to have small request size of (512–4096 nodes/ and large ERTs
(>6–12 h). When the scheduler cannot run the job at the head of the production queue, it drains a
partition that can accommodate the job at the earliest. In this context, the large ERT of prod � long
jobs makes it harder for the scheduler to consider them for backfilling on draining partitions. The
partitioning constraints of the BlueGene architecture aggravate this problem if the draining partition
corresponds to the racks allocated to prod � long.

To study the effect of these conditions on the bad predictions, we count the number of jobs
corresponding to each condition. Condition 1 can be easily checked by counting the number of
future shorter job arrivals for each target job. To analyze the effect of system failures on predictions
for condition 2, we use the reliability, availability, and serviceability log available from the USENIX
Computer Failure Data Repository [33] and extract the set of fatal hardware events according to the
criteria specified in [34]. If a failure occurs during the waiting period of a job or up to 10 min before
the arrival of a job, we claim that the wait time of the job is affected by the failure. We choose
10 min because the maximum boot time for a partition in ANL Intrepid is 11 min. So a failure that
requires only a node restart can take up to 11 min. To study conditions 3 and 4, we check whether
the job is queued on a maintenance day or if its waiting period includes a maintenance period. For
condition 5, we simply check whether the job belongs to prod � long queue.

In Table X, we show the percentage of good/bad predictions affected by each condition. For each
job, we also counted the number of shorter jobs that arrived during the waiting period of the job and
started executing before the job. The last row of the table shows that for jobs with good predictions,
the number of future short job arrivals is almost 10 times less than the jobs with bad predictions. We

Table X. Analysis of prediction errors in ANL Intrepid.

Reason Good predictions Bad predictions

Monday cases 7.1% 17.2%
Jobs in prod-long queue 3.6% 21.0%
Failure cases 3.0% 29.1%
Jobs affected by future arrivals 24.4% 88.2%

Average number of future small jobs 15 149

Figure 10. Relationship between prediction error and distance of the nearest neighbors of jobs in ANL
Intrepid.
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also find that the other conditions also contributed significantly to the bad predictions. Using all the
conditions, we were able to account for 91% of the bad predictions.

For Intrepid, we also studied the relationship between the distance of the NN of a job and the
prediction error. Recall that the distance of the NN is used to decide the prediction model used by
our algorithm. To study the relationship, we divided the distance range Œ0; 1� into multiple bins and
averaged the error observed and the distance of the closest 1% of the neighbors for jobs in each
bin. In Figure 10, we see that the average error depends linearly on the average distance of the NN
till a distance value of 0.5. The bins that have distances of more than 0.5 have very few jobs, and
these points exhibit high variability in error. The Pearson correlation of the error versus the average
distance is 0.79. This signifies a strong linear relationship and indicates that whenever the history
contained enough similar jobs for a target job, our predictor obtained small error. The high errors
for jobs that have far NN indicates that an insufficient history of similar jobs is the primary cause of
prediction error.

5. DEPLOYMENT IN OUR DEPARTMENTAL FACILITY

We have implemented our Qespera framework on Tyrone, an 800-core cluster in our department.
This cluster consists of 17 rack mounted nodes with 32 or 64 cores each, interconnected using
Infiniband. Tyrone has six queues as shown in Table XI. The batch queue is an intermediate queue
that accepts job submissions from the users and routes them to the appropriate scheduling queue
based on their parameters. Job submissions to these queues are handled by the Torque Resource
Manager, which is based on OpenPBS [35]. The scheduling policy is FCFS with limits on the
number of queued and running jobs per user.

To deploy our framework, we implemented a history collection routine that parses the log files
generated by Torque to gather information about previous job submissions. Torque produces two
kinds of logs that are of interest to us: server_logs and sched_logs. Torque generates one server and
sched log per day. For each previous job submission, the server_log corresponding to the day when
the job finished execution contains the queued time, submitting user’s name, executable name, queue
name, and finish time of the job. For each previous job submission, the sched_log corresponding
to the day when the job started running has the start time of the job. By co-analyzing these daily
logs, we can reconstruct an accurate history of job submission, start, and termination events on the
system. For each node, Torque maintains a status field that sets to free if the node is available for
scheduling, job-exclusive if all cores in the node are processing jobs, and down if the node does
not respond to Torque for a pre-determined time. When a node is marked as down by Torque, a
corresponding message is logged in the day’s server_log.

Our framework predicts the queue waiting time for each job that is currently queued. To obtain
the list of currently queued jobs, we use the PBS command qstat -f. This command provides the
necessary attributes like job request size, ERT provided by the user, user name, and queue name.
For each job, this information is used as input to our prediction algorithm to obtain the predicted
queue waiting time. From our experience with the workload of ANL Intrepid, we know that pre-
dictions delivered during machine failure events can be error-prone. Hence, we use the node status
maintained by Torque to turn off our predictor when one or more nodes have failed. While pars-
ing a server log, if our log collection routine detects that a node is currently down, it turns off the

Table XI. Batch queues in Tyrone cluster.

Queue CPU Maximum Maximum running Maximum queued
cores wall time jobs per user jobs per user

batch — — — 11
idqueue 0 to 32 2 h 1 1
qp32 32 1 day 2 1
qp64 64 1 day 1 1
qp128 128 1 day 1 1
qp256 256 1 day 2 5
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Figure 11. Prediction of queue waiting times in our department cluster.

queue waiting time predictor. Using the command pbsnodes -a, it periodically monitors the state
of the failed node to turn on the predictor when the node’s state is changed from down to free or
job-exclusive. The overall framework for prediction of queue waiting times on Tyrone is shown in
Figure 11.

Using this prediction mechanism, we have obtained queue waiting time predictions for a set
of 23,000 jobs during a period of 2 years from December 1, 2012 to Dec 19, 2014. Overall, our
predictions have an AAE of 7338.1 s or 2.03 h. We also observed that the average percentage
prediction error is 30.1%. The average queue waiting time on this cluster is 13.5 h. In comparison,
our prediction error of 2 h is much lesser and allows users to plan their experiments at the moment of
job submission. These predictions are available to users through a web interface that lists the queue
waiting time of all currently waiting jobs. The interface also allows users to query the waiting time
of potential job submissions. Using this mechanism, users can tune job parameters like request size
or ERT to yield faster turnaround time.

6. DISCUSSION

With the aim of maximizing the usability of our predictor, we have chosen job and user features
that are applicable across different HPC systems and workload characteristics. In particular, all our
features require only information available in the SWF. The accuracy of the features used in our
prediction model depends upon the accuracy of the data available in the SWF logs used in our
experiments. In general, it is true that log data can have various errors including incomplete or
inconsistent data fields, errors in the recorded information, spurious job submission patterns, and
missing data regarding system downtime. In the PWA, SWF logs are obtained by parsing historical
logs maintained by scheduling systems like PBS and LSF. A subsequent clean-up procedure is used
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to alleviate some of the aforementioned issues [36]. To the best our knowledge, the information
available in these cleaned logs is an accurate record of the jobs processed in the systems used in
our study. For a specific system, it is possible to improve the prediction accuracy further using
system-specific information. For example, in systems where machine reservations are allowed, we
can obtain better predictions by carefully considering the attributes associated with the reservation.

The traces include ERT and the actual run time of the job. While ERTs supplied by the user are
generally known to be gross overapproximations, the overall average errors in ERTs do not vary
drastically across job submissions over time. When our system makes prediction for a target job
under a given queue and processor execution states containing ERTs of jobs with high errors, the
predictions are based on history jobs whose states have similar errors for ERTs. At any instant, the
job and system state used by our predictor is exactly the state used by the batch scheduler to make a
scheduling decision. Hence, when we obtain a prediction for a job submitted at the current system
state using a similar historical job submission instant, we assume that the scheduler will make a
similar decision at both instants of time. Hence, we do not explicitly consider ERT errors to correct
our predictions.

While the concept of clustering history jobs based on similarity and history-based predictions
used in the system can be extended to predicting run times, in a separate framework, we are building
for predicting run times, we are using different set of features including user and job IDs along with
a function that captures the variation of run times with the system loads.

7. CONCLUSIONS AND FUTURE WORK

Prediction of queue waiting times is a beneficial service for users of batch parallel systems.
Queue waiting time predictions can be used for planning experiments, choosing job parameters,
which can reduce job turnaround times, and for resource selection among multiple supercomput-
ers. Queue waiting time is hard to predict because of its dependence on job parameters, system
state, scheduling algorithm and policies, and external factors like system maintenance periods and
node failures.

In this paper, we have developed an integrated adaptive framework to predict queue waiting times
of jobs submissions for jobs submitted to batch queues in parallel systems. We have proposed a dis-
tance metric that allows us to assign a real valued distance to each history job based on its similarity
to the target job. Our distance metric is based on distributions or feature summaries, which include
job characteristics, current queue and processor characteristics, and the characteristics related to the
submitting user. Based on the distance values and a spatial clustering algorithm, we have devel-
oped a strategy to pick a suitable prediction model for each incoming job, based on the prevalent
job and system characteristics. When we find that a job has very similar history submissions, we
use an SDM scheme that computes the prediction as the weighted mean of a close dense cluster
of jobs. To improve the quality of prediction, we remove outliers using a density-based clustering
algorithm. For jobs that do not have sufficient similar history, we use ridge regression or k-WA to
obtain the prediction. It is noteworthy that our prediction methods are independent of the scheduling
algorithm used in the supercomputer and do not assume any knowledge of the policies used by the
system administrators.

Our experiments conducted using trace-based simulation with workload traces demonstrate the
effectiveness of our approach. We exhibit significant improvement over previous efforts, and in one
workload trace, we obtain an empirical characterization of the reasons for large prediction errors.
Integration of our framework with OpenPBS followed by its deployment in a cluster in our home
department also shows that we can obtain useful queue waiting time predictions in production
HPC environments.

As part of future work, we plan to integrate our framework with predictions of execution time
of a job. This integration will allow us to devise automatic strategies for selecting job parameters
that can minimize response time. We are also keen on using our predictions for automatic work-
flow scheduling in large-scale systems. We also plan to integrate our predictor with many popular
scheduling frameworks for easy deployment in other supercomputing sites.
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