
Prediction of Queue Waiting Times for
Metascheduling on Parallel Batch Systems

Rajath Kumar and Sathish Vadhiyar

Supercomputer Education and Research Center, Indian Institute of Science,
Bangalore, India

{rajath.kumar@gmail.com,vss@serc.iisc.in}

Abstract. Prediction of queue waiting times of jobs submitted to pro-
duction parallel batch systems is important to provide overall estimates
to users and can also help meta-schedulers make scheduling decisions.
In this work, we have developed a framework for predicting ranges of
queue waiting times for jobs by employing multi-class classification of
similar jobs in history. Our hierarchical prediction strategy first predicts
the point wait time of a job using dynamic k-Nearest Neighbor (kNN)
method. It then performs a multi-class classification using Support Vec-
tor Machines (SVMs) among all the classes of the jobs. The probabilities
given by the SVM for the class predicted using k-NN and its neighbor-
ing classes are used to provide a set of ranges of predicted wait times
with probabilities. We have used these predictions and probabilities in a
meta-scheduling strategy that distributes jobs to different queues/sites in
a multi-queue/grid environment for minimizing wait times of the jobs.
Experiments with different production supercomputer job traces show
that our prediction strategies can give correct predictions for about 77-
87% of the jobs, and also result in about 12% improved accuracy when
compared to the next best existing method. Experiments with our meta-
scheduling strategy using different production and synthetic job traces
for various system sizes, partitioning schemes and different workloads,
show that the meta-scheduling strategy gives much improved perfor-
mance when compared to existing scheduling policies by reducing the
overall average queue waiting times of the jobs by about 47%.

1 Introduction

Production parallel systems in many supercomputing sites are batch systems
that provide space sharing of available processors among multiple parallel appli-
cations or jobs. Well known parallel job scheduling frameworks including IBM
Loadleveler [1] and PBS [2] are used in production supercomputers for manage-
ment of jobs in the batch systems. These frameworks employ batch queues in
which the jobs submitted to the batch systems are queued before allocation by a
batch scheduler to a set of available processors for execution. Thus, in addition
to the time taken for execution, a job submitted to a batch queue incurs time
due to waiting in the queue before allocation to a set of processors for execution.



2 R. Kumar, S. Vadhiyar

Predicting queue waiting times of the jobs on the batch systems will be highly
beneficial for users. The predictions can be used by a user for various purposes
including planning management of his jobs and meeting deadlines, considering
migrating to other queues, systems or sites at his disposal for application ex-
ecution when informed of possible high queue waiting times on a queue, and
investigating alternate job parameters including different requested number of
processors and estimated execution times. Such predictions can also be efficiently
used by a meta-scheduler to make automatic scheduling decisions for selecting
the appropriate number of processors and queues for job execution to optimize
certain cost metrics, and help reduce the complexities associated with job sub-
missions for the users. The decisions by the user and meta-scheduler using the
predictions can in turn result in overall load balancing of jobs across multiple
queues and systems. Such predictions are also highly sought after in production
batch systems. For example, predictions of queue waiting times are available
in production systems of TeraGrid [3]. These show the importance of accurate
queue wait time prediction mechanisms for the users submitting their jobs to
batch systems.

Prediction of queue waiting times is challenging due to various factors in-
cluding diverse scheduling algorithms followed by the job scheduling frameworks,
time-varying policies applied for a single queue, and priorities for the jobs. In
our previous work [4], we have developed a framework called PQStar (Predicting
Quick Starters) for identification and prediction of jobs with short actual queue
waiting times. We refer to these jobs as quick starters. The basis of our method
for identifying a quick starter job is to establish boundaries in the history of
prior job submissions, and to use the similar jobs within the boundaries for pre-
diction. Thus, the most relevant and recent history is used for predicting the
target quick starter job. For our work, we defined quick starters as those jobs
with actual waiting times of less than one hour, since these formed the majority
in many real supercomputing traces. The prediction strategies lead to correct
identification of up to 20 times more quick starters and resulted in up to 64%
higher overall prediction accuracy than existing methods.

In this work, we extend our framework with strategies for predicting ranges
of queue waiting times for all classes of jobs, and use these stochastic predictions
to build a top-level meta-scheduler to reduce the overall average wait times of
the jobs submitted to the queues. We have developed a machine learning based
framework that identifies for a target job, similar jobs in history using job char-
acteristics and system states, and employs multi-class classification method to
provide predictions for the jobs. Our hierarchical prediction strategies first pre-
dict the point wait time of a job using the Dynamic-k Nearest Neighbor (kNN). It
then performs a multi-class classification using Support Vector Machines (SVMs)
among all the classes of the jobs. The probabilities given by the SVM for the
predicted class obtained from the kNN, along with its neighboring classes, are
used to provide a set of ranges of wait times with probabilities. An important
aspect of our prediction model is that it considers the processor occupancy state
and the queue state at the time of the job submission in addition to the job



Identifying Quick Starters 3

characteristics including the requested number of processors and the estimated
runtime. The processor and queue states include the current number of free
nodes, number of jobs with large request sizes currently executing in the system,
and relative difference between the current job and other jobs in the queue in
terms of request size and estimated run time. These states are obtained by using
a simulator that updates the states during job arrivals and departures.

We have also developed a meta-scheduling framework which uses the pre-
dictions of queue waiting times to select a queue for job submission and ex-
ecution. The primary objective of our meta-scheduler is to distribute jobs to
different queues/sites in a multi-queue/grid environment for minimizing average
wait times of the jobs submitted to the queues. For a given target job, we first
identify the queues/sites where the job can be a quick starter to obtain a set of
candidate queues/sites and then compute the expected value of the wait time
in each of the candidate queues/sites using the ranges of queue waiting times
and probabilities. Our meta-scheduler then schedules the job to the queue with
minimum expected value for job execution.

Our experiments with different production supercomputer job traces show
that our prediction strategies can give correct predictions for about 77-87% of
the jobs, and also result in about 12% improved accuracy when compared to
the next best existing method. Our experiments with our meta-scheduling strat-
egy using different production and synthetic job traces for various system sizes,
partitioning schemes and different workloads, show that our meta-scheduling
strategy gives much improved performance when compared to existing schedul-
ing policies by reducing the overall average queue waiting times of the jobs by
about 47%.

2 Related Work

In the works by Smith et al. [5] [6], runtime predictions are derived using sim-
ilar runs in the history, and these estimates are further used to simulate the
scheduling algorithms like FCFS, LWF (Least Work First) and Backfilling [7] to
obtain the queue wait times predictions. Some statistical methods use time series
analysis of queue waiting times for jobs in the history to predict waiting times
for submitted jobs. QBETS [8, 9] is a system that predicts the bounds on the
queue wait times with a quantitative confidence level. However, QBETS gives
conservative upper bound predictions, which leads to large prediction errors for
most of the jobs. Also it considers only the job characteristics and not the state
of the system.

The efforts by Li et al. [10,11] consider the system states for the prediction of
queue waiting times. In their method known as Instance Based Learning (IBL),
they use weighted sum of Heterogeneous Euclidean-Overlap Distances between
different attributes of two jobs to find the similarities between the jobs. Their
work gives only point predictions for wait times while we provide ranges of wait
times with probabilities which we show as more useful than the point predictions.



4 R. Kumar, S. Vadhiyar

One common strategy for scheduling jobs in a multi-queue environment is to
use redundant requests, where the users submit several requests simultaneously to
multiple batch schedulers on behalf of a single job submission. Once, one of these
requests is granted access to compute nodes, the others are canceled by the user.
In the work by Casanova et. al. [12], the effect of redundant batch requests on
different aspects has been discussed. While redundant requests have been shown
to improve response times of jobs, it was also shown that batch system middle-
ware may not be able to handle high loads due to the redundant requests, and
may be complex to implement for practical purposes. We use redundant requests
strategy as a baseline for evaluating our methods. In the work by Subramani et.
al. [13], scheduling by the meta-scheduler is done based on the current load in
the system for homogeneous systems. They define load as the ratio of (sum of
the cpu times of the queued jobs + sum of the remaining cpu times of the run-
ning jobs) and the total system size. They first propose a “least loaded” scheme
in which a greedy strategy is followed and the job is submitted to a particular
queue/site with the least load. They also propose a “k-distributed” scheme in
which the job is submitted to k least loaded queues/sites. This is similar to the
redundant batch requests, except that, the job is submitted to some subset of the
total number of queues/sites, based on the load on the system. While considering
the load on the systems, their work does not consider the characteristics of the
job to be scheduled. In our method, we explicitly consider the predictions of the
queue waiting times for the scheduling of the job to the appropriate queue/site.
Hence, the fitness of the current job to the queue/site is evaluated. The efforts
by Sabin et al. [14] and Li et al. [15] discuss meta-scheduling in heterogeneous
grid environments assuming knowledge of execution times on different systems.
Our work focuses on homogeneous systems in which all processors associated
with all the queues have the same speed, and hence response times of jobs are
minimized by minimizing only the queue waiting times.

3 Predictions of Queue Waiting Times

3.1 Identifying Quick Starters

In our previous work [4], we have developed strategies for predictions of quick
starters. For a given target job, our method splits the history for a target job
into near, mid and long term history based on similarity of processor occupancy
states. A processor occupancy state at a given instance denotes the allocation
of the processors to the jobs executing at that instance. The method then finds
similar jobs in the near, mid and long term history in terms of request size
and estimated run time. The basis of identifying quick starters using near-term
history is that by looking at jobs with similar characteristics in the near-term
history with similar processor occupancy states and checking if those jobs have
potentially been backfilled, it can be predicted if the target job can be backfilled
and hence marked as a quick starter. For mid-term history, our method also
considers the availability of free nodes for accommodating the request of the



Identifying Quick Starters 5

target job, and position of the job in the queue in terms of request size and
estimated runtime.

3.2 Predicting Queue Waiting Time Ranges

In this work, we propose a method which predicts either continuous or disjoint
ranges of wait times for a job, with each range associated with the probability of
the actual wait time lying in that range. The wait time prediction problem can
be formulated as a supervised machine learning problem, which uses the history
jobs, their feature vectors and their wait times as training set for future wait
time predictions. Any job submitted to the system is defined by a set of features
associated with the job. This set of features forms the feature vectors. The fea-
tures associated with the job can be broadly classified into three categories. 1.
Job Characteristics: These are the core characteristics associated with the job
and are provided by the user at the time of target job submission. These include
request sizes and estimated run times for the jobs. 2. Queue States: These are
the properties associated with the batch queues and the jobs currently waiting
for execution at the time of the arrival of the target job. 3. Processor States:
These are the properties associated with the processor occupancies by the jobs
currently executing in the system at the time of the arrival of the target job.
In our work, we define a total of 19 features for a job’s feature vector. Table 1
shows the list of 19 features along with the categories of the features.

From the table, we can see that we consider an extensive set of features to
represent a job. We consider features related to the system states in addition
to the job characteristics. We also consider features that rank the target job in
relation to the jobs in the queue and the jobs in execution. These include:
• queue jobrankreq size,
• queue jobrankert,
• queue jobrankcputime,
• procremain cputime lower req size,
• procremain cputime lower ert, and
• procremain cputime lower cputime.
While considering a small feature space would reduce the time taken for training
and predictions, we found that the features we consider are essential in describing
the job and system properties and to adequately capture similarities between two
jobs. We arrived at this feature list by starting with only the features related to
request sizes and estimated run times, and found that the resulting set leads to
false similarities between two jobs. Hence, we included other features including
job ranks and demand cpu times. While considering features to be included in
the feature vector, we exclude features which are derivable from or dual of the
already existing features in the feature set. For example, free nodes is derivable
from the feature, occupied nodes, while the sum of the elapsed times of running
jobs in the system is a dual feature of the sum of the remaining times of running
jobs.



6 R. Kumar, S. Vadhiyar

Table 1. Job Features

Feature Type Description

request size Job No of processors requested by the user for the
target job

ert (estimated run time) Job The approximate estimation of runtime pro-
vided by the user for the target job

queue jobrankreq size Queue The position of the target job in the list of
waiting jobs in the queue at the time of its en-
try sorted in increasing order of request sizes

queue jobrankert Queue The position of the target job in the list of
waiting jobs in the queue at the time of its
entry sorted in increasing order of ert’s

queue jobrankcputime Queue The position of the target job in the list of
waiting jobs in the queue at the time of its
entry sorted in increasing order of cpu times
(ert*requestsize)

queuedemand cputime Queue The sum of the demand cpu times
(ert*requestsize) of the waiting jobs in
the queue

nqueue Queue The number of jobs waiting in the queue
queuedemand cputime lower req size Queue The sum of the demand cpu times

(ert*requestsize) of the waiting jobs in
the queue with lower requestsize than the
target job

queuedemand cputime lower ert Queue The sum of the demand cpu times
(ert*requestsize) of the waiting jobs in
the queue with lower ert than the target job

queuedemand cputime lower cputime Queue The sum of the demand cpu times
(ert*requestsize) of the waiting jobs in the
queue with lower cpu times (ert*requestsize)
than the target job

proc jobrankreq size Processor The position of the target job in the list of run-
ning jobs in the system at the time of its entry
sorted in increasing order of request sizes

proc jobrankert Processor The position of the target job in the list of
running jobs in the system at the time of its
entry sorted in increasing order of ert’s

proc jobrankcputime Processor The position of the target job in the list of
running jobs in the system at the time of its
entry sorted in increasing order of cpu times
(ert*requestsize)

procremain cputime Processor The sum of the remaining cpu times
(ert*requestsize - elapsedtime*requestsize)
of the running jobs in the system

nproc Processor The number of jobs running in the system
procremain cputime lower req size Processor The sum of the remaining cpu times

(ert*requestsize - elapsedtime*requestsize)
of the running jobs in the system with lower
requestsize than the target job

procremain cputime lower ert Processor The sum of the remaining cpu times
(ert*requestsize - elapsedtime*requestsize)
of the running jobs in the system with lower
ert than the target job

procremain cputime lower cputime Processor The sum of the remaining cpu times
(ert*requestsize - elapsedtime*requestsize)
of the running jobs in the system with lower
cpu times (ert*requestsize) than the target
job

occupied nodes Processor The total number of nodes in the system that
has been occupied by the running jobs



Identifying Quick Starters 7

Defining Job Similarity In order to define similarity between a target job and
the history job, we use their respective feature vectors and a distance metric
called Heterogeneous Euclid Overlap Metric (HEOM) [16] for computing the
distance between the target and the history job. Given two feature vectors, X
and Y , each of size n, the HEOM distance between the two vectors is computed

as HEOMdistance =

n∑
i=1

||Xi − Yi||

n∑
i=1

(Xi + Yi)

. Instead of normalizing every element of the

feature vector by its maximum value, the HEOMdistance uses the original feature
vectors and obtains a distance between 0 and 1. Hence, the HEOMdistance metric
can be efficiently used to find the difference between two feature vectors where
each element in a vector can have different ranges.

Dynamic k-Nearest Neighbors The k-Nearest Neighbors is a popular learn-
ing algorithm in which the nearest k history jobs, in terms of their distance from
the target job, are chosen as similar jobs. The wait times of the similar jobs
are used for predictions for the target job. An important aspect of this learning
algorithm is choosing of the value of k. In our method, we choose the value of k
dynamically for every target job.

For a given target job, we compute the HEOMdistance between the target job
and each job in the history. We define the value of k as the number of history jobs
within 5% of the distance from the target job. Thus, k is equal to the number
of jobs in the history with a HEOMdistance of less than or equal to the value
of 0.05. If we do not find any jobs in the history within 0.05, we look for job
within 0.1, 0.15 and so on until we find at least one similar job within any one of
these thresholds. The higher the threshold value, the lower will be the similarity
between the target and the history jobs.

Wait times of these k nearest neighbors are used to obtain a point wait
time prediction for the target job. We explored three primary techniques for
computing the point wait time of the target job.

1. AvgWt: Weighted Average using the inverse of the HEOM distance as a
function of weight. This is computed using Equation 1.

AvgWt =

k∑
i=1

Weighti ∗Waiti

k∑
i=1

Weighti

(1)

where, Weighti = inverse of HEOM distance between the target job and the
ith history job, and Waiti = actual wait time of the ith history job.

2. Reglin : Linear Regression of the feature vectors and the wait times.



8 R. Kumar, S. Vadhiyar

3. Regnon lin : Non Linear Regression of the feature vectors and the wait times
using a non-linear kernel function of degree equal to the number of features
(which is 19 in our case). We have explored three different kernel functions
in our work, namely, polynomial, sigmoid and the radial basis functions.

For performing the linear and non-linear regressions we use the python libraries
provided for regression methods in [17]. The weighted average and regression
techniques assign weights, explicitly and implicitly, respectively, for each job in
the history depending on the similarity of the job to the target job.

Multi-class Probabilities The point predictions obtained using kNN method
can generally be highly inaccurate for queue waiting times due to several factors
including small number of similar jobs in the history, large distance between
the target job and the most similar job or the fact that even the most similar
jobs in the history can have high variations in wait times. Hence we attempt to
provide predictions of ranges of queue waiting times. For providing a range of
wait times, we divide the wait times of a job into multiple classes. In our work,
we use the classes shown in Table 2 since these classes are commonly observed
in many supercomputing traces [18]. For a given target job, we first compute
the predicted class based on the predicted point wait time obtained from using
k-NN. For example, if the predicted point wait time is 1 hour and 15 minutes,
the predicted class is class 2 since its range is 1 to 3 hours.

Table 2. Class Ranges

Class Wait Time Ranges

1 less than or equal to 1 hour

2 1 hour to 3 hours

3 3 hours to 6 hours

4 6 hours to 12 hours

5 12 hours to 24 hours

6 greater than 24 hours (or 1 day)

As a next step, we use another machine learning technique, Support Vector
Machine (SVM), for multi-class classification of a target job. SVM is one of
the most popular classification based learning algorithms. SVMs can efficiently
perform non-linear classification using the “kernel trick”, implicitly mapping
their inputs into high-dimensional feature spaces. SVMs are also computationally
less expensive, and handles over-fitting better than the other methods. It is a
supervised learning algorithm which takes as input the training set consisting of
history jobs, their feature vectors and the classes of the jobs based on their actual
waiting times. It also takes as input the target jobs and their feature vectors.
For a target job, based on the training model, it outputs the probabilities of
the target job’s waiting time belonging to the different classes. In order to get



Identifying Quick Starters 9

the class probabilities, we feed the entire set of jobs in the history to the SVM
Multi-Class Classification library [17] for the training set. Since SVM training
can be time consuming (order of few tens of seconds for each target job), we
use SVM training only at regular intervals and not for every target job. For our
experiments, SVM training was done after every 5000 jobs.

Our next goal is to convert the point wait time obtained from the kNN
method into more reliable ranges. This is done in two steps. In the first step, we
consider the predicted class, X, corresponding to the point wait time predicted
by kNN. This class gives a single range of wait times. As reported in our ex-
periments in Section 5, this single class prediction results in prediction errors in
large number of cases. Hence we attempt to provide two class ranges by consid-
ering the two immediate neighboring classes of X. We obtain the probabilities
of these three classes using the SVM classifier. Two of these three classes with
the two highest probabilities are given as the ranges of wait times for the target
job, along with their normalized probabilities. The normalized probability of a
class is obtained by the ratio of its probability given by SVM and the sum of the
probabilities of the two classes. It has to be noted that our method only gives
the ranges of wait times as the output for the user. The probabilities are used
internally by the meta-scheduler described in the next section. If the class X is
either the first or last class (i.e. less than or equal to one hour or greater than 1
day), then our method provides only two class ranges.

Two primary reasons guide our methodology of using the predicted class ob-
tained by the dynamic k-NN method and its neighboring classes for the selection
of the output predicted classes (or ranges). Using the SVM probabilities directly
can at times lead to a situation in which the top two or three classes with highest
probabilities may be separated by more than one class, i.e., widely separated,
and hence may not be intuitive to the user. Hence, we obtain a predicted class
using the dynamic k-NN and only try to make some minor corrections in the
predictions using the SVM class probabilities. Another reason is that in some
cases the SVM class probabilities may not give a unanimous choice of a class
as a clear leader. In such scenarios, choosing two or three classes with highest
probabilities may not prove to be effective as the absolute probabilities for each
of them may be quite low. Hence, we reduce the candidate classes for prediction
to three using k-NN, and use only the probabilities among the three.

The entire algorithm followed in our Multi-Class Wait time ranges method
is illustrated in the flowchart shown in Figure 1.

4 Metascheduling

A single supercomputing system typically consists of multiple batch queues that
differ in terms of the processor and execution time requirements of the jobs to
cater to the needs of different jobs. A user chooses a batch queue among the
many available batch queues when submitting a high performance computing
job for problem solving. This choice is typically made by the user based on
his limited experience with the application on some of the systems available.



10 R. Kumar, S. Vadhiyar

Fig. 1. Multi-Class Methodology for providing predicted wait time ranges with prob-
ability

The user mostly chooses the system on which he has had the experience of
best performance or minimum queue waiting time. Most of the supercomputing
systems have static scheduling policy of distributing the jobs among the queues.
This is primarily done based on the request size and the estimated run time of
the job provided by the user.

Meta-scheduler is a top-level scheduler that distributes jobs among multi-
ple systems to optimize costs including execution time or system utilization.
We have developed a meta-scheduler that uses the quick starter identification
and stochastic predictions of the queue wait times for selecting an appropriate
queue/site among a given set of queues for the job. The primary objective of
our meta-scheduler is to reduce the average wait times of the jobs submitted to
the queues. The system model considered in this work is that all the processors
corresponding to the queues are homogeneous, i.e., the execution times of a job
when submitted to different queues are the same.

We have developed an algorithm called Least Predictedqw which, for a given
target job, identifies the queue/site with the least predicted queue waiting time
and schedules the job to that particular queue/site for the job execution. Let us
consider, for a given target job, n different queues/sites for scheduling the job.
As a first step, we use our first prediction method, PQStar, to find the number
of queues, m, (m < n), for which the target job is predicted as a quick starter.
A three-way decision is then made:

1. if m = 1, the particular queue/site in which the target job is predicted as a
quick starter is chosen for scheduling the job for its execution.



Identifying Quick Starters 11

2. if m = 0 or m = n, then the n queues are added to a candidate queues/site
list, since any of the n queues can be chosen for job scheduling.

3. if 1<m<n, then the target job is predicted as a quick starter in the subset (of
size m) of total queues/sites in the system. In this case, then the m queues
are added to the candidate queues/site list.

As a next step, we consider the queues/sites in the candidate queues/sites list
and obtain the queue waiting time ranges and their corresponding probabilities
by using our machine learning based methods described in Section 3. Then, for
each of the queue/site on the candidate list, we compute their corresponding

expected wait times as Exp V al =

n∑
i=1

Probi ∗Mean Waiti, where, Probi =

probability of the ith range & Mean Waiti = mean waiting time of all the
similar jobs in the history in the ith range. We then choose the queue that has
the least expected queue waiting time.

5 Experiments and Results

5.1 Evaluation of Predictions

In this section, we show the evaluation results of our prediction methodology
and its effectiveness in successfully providing ranges of queue waiting times as
predictions.

Experimental Setup For evaluations of our predictions, we have developed a
discreet event simulator. The simulator creates a simulated environment of the
jobs waiting in the queue and running on the system at different points of time.
It keeps track of the jobs submitted to the system, and maintains their attributes
including arrival times, wait times, actual runtimes and request sizes. It does not
simulate the actual scheduling algorithm used, thus avoiding assumptions about
the underlying scheduling algorithm. The user can invoke the simulator with
a supercomputing job trace/log in the Standard Workload Format (SWF) [19]
as input, and obtain predicted queue waiting time of a new job. The simula-
tor creates the simulated environment of jobs in the system using the statistics
available in the log. The simulator is triggered by three primary events corre-
sponding to job arrival, job beginning to execute and job termination. Whenever
a job arrives, it is added to a waiting queue maintained by the simulator. As
soon as a job’s wait time is over and it starts executing, it is removed from
the waiting queue and added to a running list in the simulator. Also at this
time, the free nodes available in the system is decremented by the value equal
to the job’s request size. Once a job which is running completes its execution,
it is removed from the running list and the free nodes available in the system is
incremented by the value equal to the job’s request size. This process is repeated
for each job and thus a simulated system state is created using which we extract



12 R. Kumar, S. Vadhiyar

the processor state and the queue properties that are needed for our prediction
model.

We performed experiments for six supercomputing traces obtained from the
Parallel Workload Archive [18]. For each supercomputing trace in our experi-
ments, we performed predictions for all the jobs starting from the 10001th job
up to a maximum of 50000 jobs or the end of the log. Each of the jobs in this
set constitutes the evaluation data for which predictions were made. For a given
target job for which waiting time is predicted, all the jobs submitted prior to it
constitute the history. For our experiments, we limited the history size to 5000
jobs for maintaining the time taken for a prediction to within few microseconds.
Once the target jobs start their execution and their wait times are known, they
are added to the set of history jobs.

Point Predictions with k-NN We first show the prediction accuracies for
point predictions of queue wait times with different techniques using similar
jobs obtained from k-NN. We compute the percentage difference in predicted
and actual response times for each job, where response time is the sum of queue
waiting time and execution time. For the execution time, we consider the esti-
mated run time (ERT) supplied by the user to be equal to the actual execu-
tion time. Hence the percentage predicted error in response time is calculated

as PPErt = |predictedwaitingtime−actualwaitingtime|
actualresponsetime . This metric determines the

amount of impact of the prediction errors on jobs of different lengths or execu-
tion times. Table 3 shows the average percentage prediction error in response
time for different supercomputing traces [18] with the five techniques, namely,
weighted average, linear regression, and non-linear regression with polynomial,
radial basis functions (RBF) and sigmoid functions. As can be seen from the
results, evaluations with the different techniques show very little variations in
predictions. Thus our overall method of obtaining point predictions using k-NN
gives similar results irrespective of the technique used to obtain the predictions.
Based on these results, we use weighted average in our further experiments due
to its relatively lesser computational complexity compared to the linear/non-
linear regressions. The high percentage prediction errors shown in the table also
indicate the challenges in predictions in batch systems due to non-deterministic
job arrivals and terminations, and hence the less usefulness of point predictions
when compared to range predictions for queue waiting times.

Single Class Accuracy We first show the results of the single class accuracy
predictions for our method and the IBL method. Success is defined as the per-
centage of jobs for which the predicted class (obtained from the dynamic k-NN
method or the point wait time prediction provided by IBL) is the true class of the
job. Table 4 shows the percentage of jobs with successful prediction of the true
class with a single class accuracy, for all jobs and for non-quick starters. We find
that both our method using weighted average and IBL technique consistently
give better predictions than QBETS. This is because these methods consider
both the queue and processor states in addition to the job characteristics while



Identifying Quick Starters 13

Table 3. Percentage Prediction Error in Response Time

Logs Avgwt Reglin Regpoly Regrbf Regsig

CTC 54 51 52 53 51

ANL 50 49 51 50 51

LANL 71 71 68 69 70

HPC2N 65 62 61 61 61

SDSC Blue 72 73 72 71 73

SDSC SP2 111 108 108 108 108

QBETS using its trace-based predictions considers only the job characteristics.
We can also see that our methods can correctly give the single class predictions
for up to 16% more number of jobs than IBL for all the jobs (Table 4(b)). But
the performance improvement for the non-quick starters when compared to IBL
is relatively lesser and our method can give correct predictions only for up to
4% more number of jobs for the non quick starters (Table 4(a)). This shows
that with single class predictions, the accuracy that can be obtained can be low.
Hence, it will be more useful to give the user with multiple classes (or ranges)
of queue waiting times as predictions.

Table 4. Percentage of Jobs predicted with Single class accuracy

(a) Non Quick Starters

Logs QBETS IBL Avgwt

CTC 19 28 30

ANL 19 29 30

LANL 10 26 28

HPC2N 13 22 23

SDSC Blue 15 24 28

SDSC SP2 30 33 35

(b) Overall

Logs QBETS IBL Avgwt

CTC 4 47 59

ANL 18 59 73

LANL 58 61 76

HPC2N 16 48 64

SDSC Blue 37 57 74

SDSC SP2 8 48 64

Multi Class Accuracy We next show the results for predictions of two classes,
that are determined using the methodology described in Section 3, for our



14 R. Kumar, S. Vadhiyar

method and compare with the QBETS and IBL methods. Since IBL method
gives only a point wait time as prediction, for the purpose of multi class ac-
curacy comparisons, we used an extended version of IBL. In this version, the
point wait time predictions of IBL are used with our SVM multi-class classi-
fier to obtain ranges of wait time predictions. This extension of point wait-time
predictions to multi-class predictions is reasonable since the multiple classes are
obtained in the neighborhood of the class to which the predicted point wait time
belongs, both in our method using k-NN and the IBL method. Success is defined
as percentage of jobs for which at least one of the two predicted classes (class
with top two probabilities) is the true class of the job.

Figure 2 shows the percentage of jobs with successful prediction of the true
class with a two class accuracy, for all jobs and for non-quick starters. We can
see that our methods can correctly give two class predictions for up to 17% more
number of jobs overall for all the jobs, and up to 12% more number of jobs for
the non quick starters, when compared to IBL. Also, overall for all the jobs,
our method can correctly predict for about 77-87% of the jobs with a two class
accuracy.

Fig. 2. Percentage of Jobs predicted with a Two class accuracy

Finally we also show the results for three class accuracy for all jobs and for
non-quick starters. Success is defined as percentage of jobs for which at least
one of the three predicted classes (predicted class obtained from the dynamic
k-NN method and its neighboring classes) is the true class of the job. We found
that our methods can correctly give three class predictions for up to 11% more
number of jobs overall for all the jobs, and up to 8% more number of jobs for
the non quick starters, when compared to IBL. Also, overall for all the jobs, our
method can correctly predict for about 82-91% of the jobs with a three class
accuracy. This confirms that even though our predictions for single class/range
of wait times have low accuracy and are comparable to IBL, we achieve better
success rate for predictions of multiple classes. This is primarily because of the



Identifying Quick Starters 15

fact that, for a subset of the jobs where both our method and IBL method
fail to provide good single class accuracy, our method gives the class that is
closer (neighbor) to the true class to which the job belongs as the predicted
class, when compared to the IBL methodology. This improvement is primarily
due to the use of better similar jobs in history in our method obtained by the
use of dynamic k-NN and the extended feature set. The multi-class predictions
with probabilities are primarily intended for our metascheduler described in the
next section. However, these class predictions by themselves can be useful for
a user to obtain broad-level estimates and help in broad-level decisions for job
submissions.

5.2 Evaluation of Metascheduling

In this section, we show the evaluation results of the meta-scheduling strategies
and its effectiveness in reducing the queue waiting times incurred by the jobs.

Experimental Setup For experiments related to meta-scheduler, we use Grid-
Sim [20] for simulating the scheduling algorithm using the workload logs. Grid-
Sim allows modeling and simulation of entities in parallel and distributed com-
puting systems-users, applications, resources, and schedulers for design and eval-
uation of scheduling algorithms. It allows the management and also provides a
way to analyze algorithms on large-scale distributed systems. In order to sim-
ulate the various workloads on different queues/sites, we employ EASY-back
filling [7] scheduling algorithm using the scheduling simulation provided by the
GridSim. We provide the supercomputer logs in the SWF [19] format to the
GridSim and also specify the scheduling algorithm to be simulated. Given these
inputs, the GridSim simulates the scheduling algorithm for the given logs. Using
the simulation results, we can obtain the actual wait times of the different jobs
in the logs.

In order to simulate the meta-scheduling scenarios, we divide the system into
different partitions, with each partition associated with certain maximum num-
ber of processors. After the meta-scheduler chooses a queue for a job execution,
the job is submitted to the particular queue for its execution in the GridSim
simulation, and the actual wait time incurred by the job is obtained. For per-
forming the redundant batch request experiments, which we use as a comparison
method, we use the simulator [21] built by Casanova for his work on redundant
requests [12]. As an input we provide the supercomputer logs in the SWF [19]
format. It is required to set the configuration file for the simulations such that all
the jobs submitted to the queues resort to redundant requests and the requests
are submitted to all the queues available in the system. We show results for
both the real workload traces obtained from the Parallel Workload Archive [18]
and certain synthetic traces which we have generated using the Parallel Work-
load Models [22]. We perform two kinds of experiments: super experiments and
experiments with synthetic traces.

In the super experiments, we create a grid like environment in which we
consider six different sites which are geographically distributed. For the six sites,



16 R. Kumar, S. Vadhiyar

we used the real workload traces obtained from the Parallel Workload Archive
[18] for logs of the six sites, namely, CTC, ANL, SDSC Blue, SDSC SP2, LANL
and HPC2N. We simulate a meta-scheduler capable of submitting the jobs to any
of these sites. Note that while the job arrivals and job parameters in the super
experiments correspond to the actual traces, we submit the job traces of the
different logs to GridSim’s EASY-backfilling scheduler to obtain queue waiting
times. This is due to the difficulty in simulating the exact scheduling algorithms
with fine-level policies in GridSim including priorities to short jobs, priorities to
certain queues on specific days, effect of draining the jobs due to reservations,
system failures etc. Moreover, the fine-level details are not available for all the
systems in the workload archive.

For experiments with synthetic traces, we generated 32 synthetic scenarios
with synthetic job traces. We consider four queues in all the scenarios. The
different scenarios are as follows. We used a total of four system sizes, namely,
1K, 16K, 128K and 256K. For each of the system sizes, we used two processor
partitioning schemes, namely equal and unequal partitioning schemes The equal
partitioning scheme has four processor partitions of size X/4 each, where X
is the total number of processors. The unequal partitioning scheme also has
four processor partitions of sizes X/8, X/8, X/4 and X/2. Finally, for each of
the four system sizes and each of the two processor partitioning schemes, we
simulate four different kinds of loads on the system. These loads are modeled by
different inter-arrival times, based on the real inter-arrival times of real workloads
obtained from Feitelson’s workload archive [18]. With this, we generate synthetic
workloads which have almost similar job arrival patterns as the real workloads.
Table 5 shows the various average inter-arrival times for each of the queues that
we have used. The configurations of the four queues referred in Table 5 are shown
in Table 6.

Table 5. Inter-arrival times for jobs in the queues

Load Queue 1 Queue 2 Queue 3 Queue 4

I 15 min 1 hr 2 hrs 2 hrs

II 15 min 1 hr 1 hr 1 hr

III 15 min 1 hr 2 hrs 5 hrs

IV 30 min 2 hrs 2 hrs 2 hrs

Hence we generate a total of 4(systemsizes) ∗ 2(partitions) ∗ 4(loads) = 32
scenarios. These scenarios were carefully constructed after adequate survey of
the various real systems in Feitelson’s workload archive [18]. While a grid may
not have a system ranging from 1K to 256K processors, these system sizes were
chosen on the basis of the systems for which job traces were available in the
workload archive. For each of the scenarios, we use the Parallel Workload Models
[22, 23] for obtaining the synthetic traces. Using a workload model enables us
to vary workload characteristics of the batch queues and study the variations of



Identifying Quick Starters 17

response times. The workload model generates a job trace consisting of arrival
times, processor requirements and user estimated execution times of the jobs.
Jobs corresponding to each queue are generated in the system based on the
processor request size and the estimated run time characteristics of the job,
following the protocols of the queue configuration. Each queue has a specific
configuration in terms of maximum request size and maximum runtime allowed
for a job. The maximum request size in terms of the number of processors and
the max running time of a job for each of the queue in a system of X processors
is shown in Table 6.

Table 6. Queue Configurations

Queue ID Max Request Size Max ERT

I X/32 12 hrs

II X/16 18 hrs

III X/8 1 day

IV X/4 2 days

We compare our meta-scheduling strategy, least predictedqw, with three strate-
gies, namely, static scheduling, least loaded, and redundant batch requests. For our
strategy least predictedqw that uses predictions, we use our two-class predictions,
explained in Section 3, since it gives better accuracy than single-class predictions
and about the same accuracy as three-class predictions. We chose two-class pre-
dictions over three-class predictions since smaller number of classes imply tighter
ranges of predictions. In our strategy, the metascheduler obtains the expected
queue waiting time of a job for a given queue using multi-class predictions with
probabilities. The estimated wait time is obtained as the weighted sum of the
averages of the queue waiting times of the similar jobs in the classes, weighted
by the probabilities for the classes. Our least predictedqw then chooses the queue
with the least expected waiting time for job submission. In the static scheduling
strategy, the job will be scheduled for execution at the particular queue/site,
where the job was originally submitted. In the least loaded technique proposed
by Subramani et. al [13], scheduling by the meta-scheduler is done based on the
current load in the system. They define load as the ratio of (sum of the cpu
times of the queued jobs + sum of the remaining cpu times of the running jobs)
to the total system size. A greedy strategy is then followed in which the job is
submitted to the particular queue/site with the least load using the above load
definition. In redundant batch requests, the job is submitted to all the queues
and once the job starts its execution in any one of the queues, then the rest of
the submissions are canceled. While a middleware may not be able to handle
high loads due to redundant submissions, we use this technique as a baseline for
evaluating the goodness of our method.



18 R. Kumar, S. Vadhiyar

Results with Super Experiments We first show the effectiveness of our
least predictedqw method over other methods in terms of the average wait time
incurred by all the jobs submitted to the system. Figure 3 shows the average
wait times of jobs for the different meta-scheduling methods. The figure shows
that our methods gives up to 54% and 33% reduction in the average wait time
compared to the static and least loaded methods, respectively. It can also be seen
that our method is closest to the baseline method of redundant batch requests.

Fig. 3. Super Experiments Evaluation: Average Wait Time

We also show the distribution of jobs across the various sites. An efficient
distribution should be able to distribute in such a way that the number of jobs
scheduled to a site is directly proportional to the system size associated with the
site. Table 7 shows the distribution of the jobs across the sites for the various
methods. The table also gives information regarding the system size. We can
see that the proportionality is more evident in case of our Least Predictedqw
method, when compared to the other methods. For example, CTC has compara-
tively lesser system size compared to LANL, but the number of jobs scheduled in
CTC is more by the Least Loaded method than in LANL, while in our method
the LANL has more jobs scheduled than CTC.

Results with Synthetic Traces We now show some of the overall statistics
over all the 32 synthetic scenarios. Table 8 shows the absolute statistics for each
of the methods. In general, our method resulted in 35-94% decrease in average
wait time when compared to the static method, and 14-78% decrease in average
wait time when compared to least loaded method. Our method also resulted in
8-80% increase in the number of jobs with wait times less than one hour, and
6-99% decrease in the number of jobs with wait times more than a day, when
compared to the other methods.



Identifying Quick Starters 19

Table 7. Super Experiments Evaluation: Job Distribution - percentage of the total
jobs scheduled in each of site

Sites System Size Static (%) Least Loaded
(%)

Least Predictedqw
(%)

CTC 430 22.9 13.7 10.4

ANL 163840 20.7 53.4 52.1

LANL 1024 21.7 11.2 18.3

HPC2N 240 5.7 7.6 2.0

SDSC Blue 1024 21.0 11.1 18.4

SDSC SP2 128 7.9 2.7 1.4

Table 8. Synthetic Experiments Evaluation: Overall Statistics (Absolute)

Attributes Static Least Loaded Least Predictedqw

Avg wait time (in minutes) 196 105 52

% jobs with wait time ≤ 1
hr

68 76 89

% jobs with wait time ≥ 1
day

3.2 1.4 0.5

6 Conclusions and Future Work

We have developed a machine learning based hierarchical prediction strategy
for prediction of ranges of queue waiting times and probabilities. We used these
predictions and probabilities in a meta-scheduling strategy that distributes jobs
to different queues/sites in a multi-queue/grid environment for minimizing wait
times of the jobs. Our experiments with different production supercomputer
job traces show that our prediction strategies can give correct predictions for
about 77-87% of the jobs, and also result in about 12% improved accuracy when
compared to the next best existing method. Our experiments with our meta-
scheduling strategy using different production and synthetic job traces for var-
ious system sizes, partitioning schemes and different workloads, show that our
meta-scheduling strategy gives much improved performance when compared to
existing scheduling policies by reducing the overall average queue waiting times
of the jobs by about 47%.

While we have used SVM for predictions, incremental machine learning ap-
proaches can also be explored since they help in reducing the times for training
and predictions. While the focus of this work is predictions of queue waiting
times and metascheduling to reduce average wait times, we plan to develop
techniques for predictions of execution times in order to predict total response
times. We also plan to extend the meta-scheduling strategies to heterogeneous
systems. The primary challenge in metascheduling for heterogeneous systems is
to predict the runtime of a user job on different systems with different config-
urations, in addition to predicting the queue waiting times. While prediction



20 R. Kumar, S. Vadhiyar

of the run time for a job within a site can be made by considering similar job
submissions by the same user in the history, the prediction can be extended to
the other platforms by cross-platform performance modeling. We would also like
to extend the meta-scheduling strategies that use stochastic predictions of both
the wait times and the run times to select the appropriate number of resources
for job executions in addition to the selection of the queue/site.

7 Acknowledgments

This work is supported by Department of Science and Technology (DST), India
via the grant SR/S3/EECE/0095/2012.

References

1. “IBM Load Leveler,” http://www.redbooks.ibm.com/abstracts/sg246038.html.
2. “PBS Works,” http://www.pbsworks.com.
3. “Tera Grid Karnak Prediction Service,” http://karnak.teragrid.org/karnak/index.

html.
4. R. Kumar and S. Vadhiyar, “Identifying Quick Starters: Towards an Integrated

Framework for Efficient Predictions of Queue Waiting Times of Batch Parallel
Jobs,” in In the Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP), Shanghai, China, May 2012.

5. W. Smith, I. T. Foster, and V. E. Taylor, “Predicting Application Run Times Using
Historical Information,” in IPPS/SPDP ’98 Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing, 1998, pp. 122–142.

6. W. Smith, V. E. Taylor, and I. T. Foster, “Using Run-Time Predictions to Es-
timate Queue Wait Times and Improve Scheduler Performance,” in IPPS/SPDP
’99/JSSPP ’99: Proceedings of the Job Scheduling Strategies for Parallel Process-
ing, 1999, pp. 202–219.

7. D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel Job Scheduling - A
Status Report,” in JSSPP’07 Proceedings of the 13th international conference on
Job scheduling strategies for parallel processing, 2004, pp. 1–16.

8. D. Nurmi, J. Brevik, and R. Wolski, “QBETS: Queue Bounds Estimation from
Time Series,” in JSSPP’07 Proceedings of the 13th international conference on Job
scheduling strategies for parallel processing, 2007, pp. 76–101.

9. J. Brevik, D. Nurmi, and R. Wolski, “Predicting Bounds on Queuing Delay for
Batch-Scheduled Parallel Machines,” in PPoPP ’06: Proceedings of the eleventh
ACM SIGPLAN symposium on Principles and practice of parallel programming,
2006, pp. 110–118.

10. H. Li, D. L. Groep, and L. Wolters, “Efficient Response Time Predictions by Ex-
ploiting Application and Resource State Similarities,” in GRID ’05 Proceedings of
the 6th IEEE/ACM International Workshop on Grid Computing, 2005, pp. 234–
241.

11. H. Li, J. Chen, Y. Tao, D. L. Groep, and L. Wolters, “Improving a Local Learning
Technique for Queue Wait Time Predictions,” in CCGRID ’06 Proceedings of the
Sixth IEEE International Symposium on Cluster Computing and the Grid, 2006,
pp. 335–342.



Identifying Quick Starters 21

12. H. Casanova, “Benefits and Drawbacks of Redundant Batch Requests,” Journal of
Grid Computing, vol. 5, 2007.

13. V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan, “Distributed
Job scheduling on Computational Grids Using Multiple Simultaneous Requests,”
in Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing, 2002, pp. 359–366.

14. G. Sabin and M. Lang, “Moldable Parallel Job Scheduling using Job Efficiency:
An Iterative Approach,” in Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), in conjunction with ACM SIGMETRICS, 2006.

15. H. Li, D. Groep, and L. Wolters, “Mining Performance Data for Metascheduling
Decision Support in the Grid,” Journal for Future Generation Computer Systems
- Special section: Data mining in grid computing environments, vol. 23, no. 1, pp.
92–99, 2007.

16. D. Wilson and T. Martinez, “Improved Heterogeneous Distance Functions,” Jour-
nal of Artificial Intelligence Research, vol. 6, p. 134, 1997.

17. “Machine Learning in Python,” http://scikit-learn.org/stable.
18. “Parallel Workload Archive,” http://www.cs.huji.ac.il/labs/parallel/workload/

logs.htm.
19. “Standard Workload Format,” http://www.cs.huji.ac.il/labs/parallel/workload/

swf.htm.
20. R. Buyya and M. Murshed, “Gridsim: A Toolkit for the Modeling and Simulation

of Distributed Resource Management and Scheduling for Grid Computing,” CON-
CURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE (CCPE,
vol. 14, no. 13, pp. 1175–1220, 2002.

21. “Redundant Batch Requests Simulator,” http://sourceforge.net/projects/redsim.
22. “Parallel Workload Models,” http://www.cs.huji.ac.il/labs/parallel/workload/

models.htm.
23. U. Lublin and D. G. Feitelson, “The Workload on Parallel Supercomputers: Mod-

eling the Characteristics of Rigid Jobs,” Journal of Parallel and Distributed Com-
puting, vol. 63, no. 11, pp. 1105–1122, 2003.


