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Abstract—K-Nearest Neighbor (k-NN) search is one of the most
commonly used approaches for similarity search. It finds exten-
sive applications in machine learning and data mining. This era
of big data warrants efficiently scaling k-NN search algorithms
for billion-scale datasets with high dimensionality. In this paper,
we propose a solution towards this end where we use vantage
point trees for partitioning the dataset across multiple processes
and exploit an existing graph-based sequential approximate k-
NN search algorithm called HNSW (Hierarchical Navigable Small
World) for searching locally within a process. Our hybrid MPI-
OpenMP solution employs techniques including exploiting MPI
one-sided communication for reducing communication times and
partition replication for better load balancing across processes.
We demonstrate computation of k-NN for 10,000 queries in the
order of seconds using our approach on ~8000 cores on a dataset
with billion points in an 128-dimensional space. We also show
10X speedup over a completely k-d tree-based solution for the
same dataset, thus demonstrating better suitability of our solution
for high dimensional datasets. Our solution shows almost linear
strong scaling.

Index Terms—K-NN Search, Parallel Algorithms, Load Bal-
ancing, Vantage Point Tree, HNSW

1. INTRODUCTION

In this era of big data, the amount of information at hand
now is more than ever. Querying such large-scale informa-
tion requires scalable distributed data structures for similarity
search. One of the most commonly used approaches for
similarity search is the k-Nearest Neighbor (k-NN) search. k-
NN search returns K elements from a dataset that minimize
a distance metric to a given query. More formally, given a
dataset D from a metric space & with metric M and query
g € S, a k-NN search algorithm returns k points from D
which are closest to ¢ with respect to M. K-NN search finds
extensive applications in machine learning and data mining
as a classification and regression method. It is also used in
scientific applications for prediction of protein interactions,
in cosmology and particle and plasma physics [1]. Many
popular implementations of different k-NN search methods
like FLANN [2], FAISS [3], Annoy [4], NGT [5] and HNSW
[6] are available. All of these are shared memory solutions that
support multi-threaded executions using OpenMP. FAISS sup-
ports GPU executions using CUDA. For billion-scale datasets,
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the memory becomes a bottleneck when the entire dataset
cannot be loaded in a single machine, and hence distributed
systems need to be considered for such datasets. PANDA [1]
builds a distributed KD tree to serve as a distributed index for
the k-NN search. This is an exact search method that suffers
considerable performance degradation as the dimension of the
dataset increases.

Our work aims at developing a distributed graph-based
index for k-NN search in order to facilitate effective query-
ing on high-dimensional billion-scale datasets. Our approach
achieves increased throughput in terms of the number of
queries processed per unit time. This can be useful when
queries need not be answered in real time and can be batched
together like in recommender systems and when k-NN is used
as a classifier. Our method involves partitioning the search
space using a tree-based approach until the number of data
points in each individual partition becomes small enough that
indexing those points can be restricted to a single thread or
process. We use vantage point (VP) trees to achieve this space
partitioning as they generally offer better search pruning than
KD trees irrespective of the metric employed [7]. The part
of the data assigned to a process is then indexed for search
using HNSW algorithm, an approximate k-NN search method,
which scales well with dimension and is the current state-
of-art sequential method [6]. When processing a batch of
queries, each query can be localized to a subset of partitions
and increased throughput is achieved by processing multiple
queries on their respective partitions at the same time. Our
solution, implemented as a hybrid MPI-OpenMP framework,
also employs optimisations including load balancing by parti-
tion replication and MPI one-sided communication to reduce
time spent on communication synchronisation.

Our experiments demonstrate computation of 10-NN for
10,000 queries in the order of seconds using our approach
on ~8000 cores on a dataset with billion points in a 128-
dimensional space. We also show 10X speedup over a com-
pletely k-d tree-based solution for the same dataset, thus
demonstrating better suitability of our solution for high di-
mensional datasets. Our solution shows almost linear strong
scaling. Our results also show that load balancing by partition
replication leads to reduced execution times. To our knowl-
edge, ours is the first work showing almost linear scalability
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for such large high-dimensional datasets.

The paper is organized as follows. Section II describes
works in the literature relating to the parallel k-NN search.
In section III, we provide background on HNSW graphs and
VP trees, the two major data structures used in our approach.
In section IV, we describe our approach in detail. Section V
presents our experiments and results.

II. RELATED WORK

Classic methods to solve k-NN search include constructing
tree-based indexes [7] (KD-trees, VP-trees, ball trees, etc)
and spatial approximation [8]. Exact solutions to the k-NN
search do not scale well with the dimension of the dataset.
To overcome this, approximate methods have been proposed.
These methods include locality-sensitive hashing [9], product
quantization [10] and proximity graph techniques [11]. Prox-
imity graph techniques scale well with dimension and hence
recent research efforts have been focused on them. One such
proximity graph technique is Hierarchical Navigable Small
World (HNSW) graph indexing [6].

There have been many efforts on the k-NN search for multi-
core and GPU architectures. FLANN provides multi-threaded
searching on hierarchical k-means trees and randomized KD
trees [2]. FAISS provides GPU support for building and
searching inverted file (IVF) index with and without product
quantization [3]. HNSW supports multi-threaded index con-
struction and searching [12]. NGT constructs k-NN graphs
as indices for the k-NN search and provides multi-threaded
graph search heuristics for answering k-NN queries [S]. These
single-node implementations cannot handle BigData that arise
in practical problems. Annoy provides for building compact
indices that can be easily moved around as static files and
shared across processes [4].

Endeavors towards building compressed search indices for
billion-scale datasets that fit into single-node memory are also
described in the literature. Reference [13] employs an inverted
file index (IVF) with a large codebook of centroids and an
HNSW index of those centroids to limit query assignment to
a subset of centroids. Reference [14] introduces polysemous
codes that are used together with an inverted multi-index (IMI)
to index and query a billion-scale dataset in sub-millisecond
time per core. Compressed indices suffer from poor search
recall and recall usually plateaus after a while when increasing
the quality of the compressed index.

Reference [15] proposes GRIP, a multi-store approximate
k-NN search algorithm that builds a two-layer index spanning
both the memory and the disk. The first layer uses HNSW and
product quantization to build an index that can be fit into mem-
ory. This is used to fetch  nearest neighbors. The second layer
consists of the actual dataset with full-precision vectors which
is used to validate the » (> k) nearest neighbors fetched from
the first layer using their true distances from the query. Thus,
k nearest neighbors are picked from the r nearest neighbors
returned from the first layer. GRIP achieves competitive search
latencies with very low memory consumption and high recall
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but suffers from resource limitations presented by single-node
systems.

Multiple approaches have been proposed for distributed
k-NN search. The paper by Patwary et al. [1] implements
PANDA which uses a distributed KD tree for efficient k-NN
search on billion-scale datasets. Four levels of parallelism are
exploited in this work. At the coarse level, a global KD tree
is constructed by moving points across processors. Once a
KD sub-tree can be fit into a processor, data parallelism is
used within a processor to construct subsequent levels of the
tree. Once there are enough tree-nodes in a level, thread-level
parallelism is used wherein each thread has its own local KD
sub-tree. The last level of parallelism is achieved by using
SIMD optimised buckets to speed-up distance computations.
Their implementation constructed a KD tree of 189 billion
particles in 48 seconds by utilizing around 50,000 cores. They
were also able to demonstrate the computation of k-NN for 19
billion queries in 12 seconds. This approach does not scale for
high dimensional datasets. In higher dimensions, the number
of tree-nodes and hence processors visited by the k-NN search
routine explodes. The highest dimension experimented in the
work was ten.

Reference [16] proposes a two-layer indexing scheme for
building a distributed index based on neighborhood graphs
for large scale k-NN search. A flat randomized partitioning
scheme is used to partition the search space into subspaces by
selecting pivots from the dataset which causes significant load
imbalance across processes. Every data point is assigned to
the subspace with its closest pivot. Neighborhood graphs are
built locally within every subspace to answer to k-NN queries
within that subspace. A neighborhood graph is also constructed
for pivots. To answer a query globally, the pivot neighborhood
graph is used to obtain the most promising subspaces on which
local search is performed. On a dataset with billion points,
their implementation takes ~240 milliseconds per query using
64 cores. Our work has demonstrated 8X improvement over
this method.

III. BACKGROUND
A. Hierarchical Navigable Small World (HNSW) Graphs

Reference [6] proposed the Hierarchical Navigable Small
World (HNSW) algorithm for approximate k-NN search. This
is a graph-based approach to construct an index for the k-NN
search wherein points of the dataset I) are taken to be nodes of
a multi-layered graph G and these nodes are connected in such
a way that a k-NN search on [D becomes a greedy search on G.
A greedy search on a graph is one that is localized and where
the next vertex to jump to is decided only by the neighbors
of the current vertex.

HNSW builds on Navigable Small World (NSW) graphs
[12]. HNSW graph consists of layers of NSW graphs. The
bottom layer consists of all the points in D. Each point is
“promoted” to the layer above independently with a fixed
probability, very similar to how keys are promoted in the skip-
list data structure [17]. An NSW graph is constructed on the
promoted points on the above layer. This is repeated until no
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points are promoted from the current layer. The current layer
then forms the top layer of HNSW.

Search in an HNSW graph starts from the top layer. A
greedy search is performed on the current layer and the
results of this search are used to begin the search in the
layer below. Results of the greedy search in the bottom layer
are returned finally as the k nearest neighbors. Introducing
this hierarchy in HNSW allows for a time complexity of
O(log|D|) time for the search whereas searching in NSW
graphs takes O(log?|D|) time. HNSW is the current state-of-
art for sequential k-NN search. In this project, we try to exploit
its speed for local computation within a data partition after
partitioning the dataset and distributing it efficiently to reduce
the query time for large datasets. The theoretical foundations
of the ability of the HNSW to give a good approximation of
the exact search lies in the fact that the HSNW graph that is
constructed provides an approximation of the graph that has
both navigable (Delaunay graph) [18] and small-world [19]
properties.

B. Vantage Point (VP) Trees

The work by Yianilos [7] introduces the Vantage Point (VP)
tree data structure for nearest neighbor search in metric spaces
and outlines its construction and search routines. VP trees are
space partitioning tree data structures used to build indices for
similarity search in metric spaces.

A VP tree shares similarities with the popular data structure
KD tree. Similar to a KD tree, each node in a VP tree partitions
the space. While KD trees use coordinate values, VP trees use
distance from an arbitrary point called the “vantage point” to
partition a space. A distance d is selected such that half the
points in the dataset are within distance d from the vantage
point and half the points are outside that distance. Then, the
sphere of radius d around the vantage point is chosen as the
left subspace forming the left child of the current node, and
the complementary subspace is chosen as the right subspace
forming the right child. This proceeds recursively forming a
binary tree.

K-NN search in a VP tree starts at the root and proceeds
recursively to the child nodes. If at a node N, the current
nearest neighbor is at a distance d from query ¢, only the
subspace in the sphere of radius d around ¢ is searched. If
the sphere lies entirely within the left or the right subspace
corresponding to node NN, the other subspace can be pruned out
from searching. If the sphere intersects both the subspaces, the
search has to proceed in both the child nodes and no pruning
is done. Hence searching can reach more than one leaf of a
VP tree.

Yianilos [7] proves that the average search complexity is
logarithmic in the size of the dataset. Their experiments show
that VP trees scale better with dimension than KD trees in
terms of search pruning and that VP trees are metric-agnostic,
whereas KD trees perform poorly for metrics other than Lo
and L... We use VP trees to recursively partition the search
space until data points within a partition can be accommodated
in a single processor. The leaves of the VP tree we construct
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will be a set of data points rather than a single point as in a
conventional VP tree.

IV. METHODOLOGY

Let P = {p1,p2,...,pp} be the P processing cores avail-
able. The dataset D) is initially equi-partitioned into P equal
partitions D1, Do, ..., Dp, so that the compute node with
processor p; gets the partition D;. Let L(D;, ¢) represent the
result of local k-NN search for the query ¢ in the partition
D;. Let F : S + 2P be a function that gives the subset
of partitions for a given query such that local results from
these partitions are sufficient to reconstruct the global nearest
neighbors for that query.

We implement a master-worker strategy in which a master
process computes F(q) for every query ¢ and identifies the
processor cores containing the partitions in F(g) and on
which a query should be executed. The master then sends
the query to the compute nodes with those processor cores.
Any of the available processes in a compute node then work
independently to find L(D;,q) for its queries simultaneously,
thus achieving increased throughput. Here, D; refers to the
partition in the compute node. Any process in a compute node
can be used for finding L(D;,q) because the partitions in a
compute node reside in shared memory. We do not strongly
couple a process core p; with data partition 1J; in its compute
node. This way load balance is achieved between the processor
cores in a node. Once a processor completes a query, it sends
the results back to the master process.

Our hybrid MPI-OpenMP implementation uses the VP
tree data-structure to calculate F(g) at the master process
and HNSW algorithm in the individual processors to com-
pute L(D;,q) locally. Figure 1 provides an architectural
overview of the proposed solution. All communications are
non-blocking and hence asynchronous to achieve maximum
overlap with computations.

We also implemented a multiple-owner strategy where the
VP tree built is shared by all the processes to compute F(g).
The owner of a query is determined by a hash function. We
saw a small improvement in search time over an optimized
master-worker strategy but this improvement deteriorated as
core count increased. This is because a multiple-owner strategy
does not lend itself to be optimized for load balancing across
data partitions that arises from VP tree partitioning. We present
an optimization to counter load imbalance in the master-
worker strategy in section IV-C2

A. Parallel VP Tree Construction

To construct the vantage point (VP) tree sequentially at
the master process, we need to load the entire dataset which
is not possible for billion-scale datasets. We have come up
with a distributed implementation of VP-tree construction to
overcome this.

In our distributed construction, all of the processes are
involved in constructing the root of the VP tree. After the
root is constructed, the left child is built by one-half of the
processes, and the right child is built by the other half. This is
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Fig. 1. Architectural overview of the proposed solution for increasing
throughput. Every leaf node of the VP tree in master process corresponds
to one partition D; of the dataset. The data partition is sent to the compute
node with processor core p;. Hence, compute node 1 with processor cores
{p1,p2,...,Pn | gets the data partitions { D1, Do, ..., Dy }.

repeated recursively for the child nodes. Construction of every
tree node in a level is equally split among the processes. One
of the processes involved in the construction of a root node of a
subtree is designated as the master process during construction.

The algorithm for the sequential VP tree construction is
defined in [7]. At every level, the algorithm selects a vantage
point by a heuristic that maximizes the quality of pruning
during the search. The heuristic works by randomly sam-
pling a small subset of points D’ from the dataset D as
the candidate set and selecting that point v € D’ which
maximises a function H (v, D). This function computes the
second moment of the distances of the points in ) to v about
the median of these distances. We will denote this heuristic as
SelectVantagePointSerial (D/, D).

For selecting the vantage point, each process runs
SelectVantagePointSerial () routine on its subset
of data after sampling the candidate set from the subset
itself and sends its representative to the master. The master
process runs the same routine again on its subset of data
with the received representatives to select the vantage point.
The assumption we make here is that each subset local to a
process is representative of the global data distribution. The
vantage point is then broadcast to all the processes. Now,
all the processes involved in tree node construction agree on
the vantage point. This distributed vantage point selection is
presented in Algorithm 1.

The next step involves finding the radius g of the sphere
around the vantage point which equipartitions the dataset.
Towards this end, processes compute the distance of each of
the points in their subset of data with the vantage point. The
median of these distances will give p. This is found using a
distributed version of the median of median algorithm. This
is followed by the shuffling of data between processors using
MPI_AlltoAllv routine. Half the number of processors
handle the left sub-tree and the other half the right sub-tree.
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Algorithm 1 Distributed Vantage Point Selection
1. procedure SELECTVANTAGEPOINT(D, M, P,...Py)

2 > D is the dataset, M is the master, P;... Py are
worker processes

3: > D is randomly partitioned across Pi... Py

4 for p € P;... Py in parallel do

5: d + Subset of dataset D with p

6: s < Randomly sample 100 elements from d

T Candidate « SELECTVANTAGEPOINTSEARIAL(S,
d)

8: Send Candidate to master

9: end for

10: if master then

11: Receive candidate set C from workers

12: d < Subset of dataset DD with master

13: Vantage point —
SELECTVANTAGEPOINTSEARIAL(C, d)

14: end if

15: end procedure

This process continues recursively until every processor is
assigned its partition. This process is presented in Algorithm 2.

Algorithm 2 Distributed VP Tree Construction
1. procedure CONSTRUCTNODE(D, P;...Py)
2: > D is the dataset, M is the master, P;...Py are
worker processes

3: > D is randomly partitioned across Pj... Py
4: Initialize node N > NN is the node to be returned
5 N.vp < SELECTVANTAGEPOINT(D, P;...Pyn)

6: N.pp+ Median,c p M(N.vp, p)

7: > Use median of medians algorithm
8: Dy, < Points in D within radius N.p of N.up

9: Dr+ D —-Dy,

10: Move Dy, to Py...Pyjp

11: Move Dy to Pyys...Py

12: > Using MPI_Alltoallv ()
13: N.left « CONSTRUCTNODE(Dy,, Py...Pyy2)

14: N.right < CONSTRUCTNODE(D R, Py/2...Pn)

15: return N

16: end procedure

B. Searching

While searching, one worker process is spawned per com-
pute node. A worker process spawns multiple OpenMP threads
to handle local queries. The master process sends a query
to the worker processes that contain the VP tree partitions
where the search has to be performed for the query. Once it
has dispatched every query as required, it sends a End of
Queries command to every worker process and waits for
the responses from the worker processes. When the master
receives a local k-NN result from a worker for a query, it
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updates the global k-NN result for the query. The search
routine in the master process is shown in Algorithm 3.

Algorithm 3 Search Routine (Master)
1. procedure SEARCH(())

> @ is the query set

2 for ¢ in () do

3: D, < Partitions to be searched for ¢

4 > From VP tree
5: for d in D, do

6: Send (q,d) to d’s process

T > Using MPI_Isend ()
8: Start listening for response from d’s process
9: > Using MPI_Irecv ()
10: end for

11: end for

12: for every worker processor p do

13: Send End of Queries command to p

14: end for

15: while Listening for response do

16: Get Results of query ¢ in partition d

17: Update ¢’s final results

18: end while

19: end procedure

Algorithm 4 Search Routine (Worker)

1: procedure SEARCH

2 Spawn a set 1" threads

3 Done < false

4 for every thread t € T in parallel do

5 while True do

6: Receive message M from master

7 > Using MPI_TIrecv ()
8: while Message M not received do

9: > Using MPI_Test ()
10: if Done is true then

11: Terminate execution

12: end if

13: end while

14: if M is End of Queries command then

15: Done < true

16: Terminate execution

17: end if

18: Get query ¢ and partition d from M

19: Search partition for ¢
20: Send results to master
21: > Using MPI_Send ()
22: end while
23: end for

24: end procedure

The worker processes spawn a fixed number of threads at
the start. Each thread waits for a message from the master.
If it receives a message with a query, it proceeds to perform
the HNSW search on the partition specified in the message.
If it receives a End of Queries command, it signals other
threads to terminate by setting a shared flag and terminates.
While waiting for messages, threads check to see if they should
terminate by accessing the shared flag. If they find it to be
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Fig. 2. MPI One-Sided Communication between the master and a worker.

set, they cancel the message receive operations, and terminate.
Algorithm 4 present the search routine in worker processes.
Load imbalance in the number of queries run on a data
partition arises across data partitions depending on the query
set. The proposed search method achieves dynamic work
assignment to threads in a compute node for answering queries
and thus helps alleviate load imbalance within a compute node.

C. Optimisations

1) MPI One-Sided Communication: Preliminary results
from baseline implementation showed that there was a scala-
bility bottleneck when worker processes send their results back
to the master. This is because the master spends considerable
time receiving responses from the workers. Moreover, the
communication pattern is highly irregular. MPI one-sided
communication can be used to overcome these bottlenecks on
systems supporting remote memory access over a specialised
network interconnect.

The master process exposes a part of its memory for storing
the global k-NN results for every query. The workers update
the part of this memory corresponding to the query they have
processed with their local results. The workers use a series
of atomic remote memory read-update operations to achieve
this. We exploit passive target synchronisation by using
MPI_Win_lock () in shared mode on the worker processes.
The worker processes use MPI_Get_accumulate () to
write their results to the remote memory window of the master.
This optimisation works better for small k values.

Figure 2 illustrates how the master process and worker
processes exploit MPI one-sided communication primitives to
aggregate results of local k-NN searches. All the processes call
the MPI collective primitive MPI_Win_create (), but only
the master specifies a buffer allocated in its memory. Then
all the worker processes invoke MPI_Win_lock () to begin
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an RMA (Remote Memory Access) access epoch at the target
process in the shared mode which informs the MPI library that
multiple processes are accessing the master process’s memory
simultaneously.

The worker processes then begin writing results of their
local search to the master process’s buffer as and when
they have completed local searches for a query using
MPI_ Get accumulate () calls, which are atomic. The
memory location at which a worker process has to write a
result is determined by the ID of the corresponding query. It
should be noted that synchronization primitives need not be
used at the master.

Algorithm 5 Search Routine (Master) with Load Balancing
1. procedure SEARCH(()) > @ is the query set

2 for i in {1,2,..., P} do

8 Wi &= { i D1 jmod By 55 Prr—Lymod ® }

4 Wi.next « p;

5 end for

6: for ¢ in () do

% D, + Partitions to be searched for ¢

8: > From VP tree
9: for d; in D, do

10: p <+ Winext

11: W;.next < Next element in W;

12: Send (q,d;) to p’s process

13: > Using MPI_Isend ()
14: Start listening for response from p’s process
15: > Using MPI_Irecv ()
16: end for

17: end for

18: for every worker process p do

19: Send End of Queries command to p

20 end for

21: while Listening for response do

22; Get Results of query ¢ in partition d

23} Update ¢’s final results

24: end while

25: end procedure

2) Load Balancing: Though the baseline described so far
offers load balancing within a compute node, load imbalance
across compute nodes allows room for more improvement.
To this end, the P processing cores are logically grouped
into P workgroups. The number of processing cores in
each workgroup is defined as the replication factor. For a
replication factor r, the workgroup W, has the processing
COTeS {Pi, P(i11)modP» -+ Pi+r—1)modp }- Each data partition
is replicated on every processing core in its corresponding
workgroup. A compute node loads all data partitions corre-
sponding to workgroups its processing cores belong to.

The master process maintains a circular list for each work-
group, containing the processing cores of that workgroup along
with a next pointer. Instead of dispatching a query to its
processing core, the master process now dispatches a query to
its workgroup in a round-robin fashion, i.e, it dispatches the
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TABLE I
DATASETS USED IN OUR EXPERIMENTS
Dataset No. of | Dimension | No. of | Ground
points queries truth
used available
ANN_SIFT1B 1 billion 128 10000 Yes
DEEP1B 1 billion 96 10000 Yes
ANN_GISTIM | 1 million 960 1000 Yes
SYN_IM 1 million 512 10000 No
SYN_10M 10 million 256 10000 No

query to the processing core pointed by the next pointer in the
workgroup’s circular list and updates the next pointer to point
to the next processing core in the circular list. This modified
search routine at the master process is depicted in Algorithm 5.
This approach distributes the workload more evenly across
processing cores at the cost of incurring more memory in each
compute-node to store additional data partitions.

V. EXPERIMENTS AND RESULTS

A Cray XC40 system in our Institute was used to run
our experiments. The system has 1376 compute nodes and
each compute-node has two CPU sockets with 12 Intel Xeon
Haswell (@2.5 GHz) cores each and 128 GB of memory. The
compute nodes are connected using Cray Aries interconnect.
Cray Clang compiler (version 9.0.2) was used to compile our
code with Cray MPICH (version 7.7.10) library.

1

Table I lists the datasets we have used in our experiments.
ANN_SIFT1B [20] and ANN_GIST1M [10] were generated
by extracting SIFT and GIST image descriptors, respectively,
from image datasets. These datasets also provide a query
set and k-NN ground truth for that set that can be used
for estimating the accuracy of approximate search methods.
DEEP1B [21] is a similar dataset of image descriptors, but
produced by a convolutional neural network (CNN). SYN_ 1M
and SYN_10M were generated using MDCGen [22]. For both
the SYN 1M and SYN_ 10M datasets, we use Gaussian and
uniform distributions to generate points in 10 clusters. The
number of outliers were set to 5000 and 50000 in SYN_1M
and SYN_10M, respectively. The rest of the parameters were
set to default values. Query sets for these datasets were
generated using uniform distribution in a single cluster with a
compactness factor of 0.01.

In the following subsections, we present the strong scaling
characteristics of our method for querying times on different
datasets, time taken for distributed index construction on
ANN_SIFT1B dataset, the effect of replication factor for load
balancing and comparison of our approach with a KD tree-
based approach. In all of the experiments, the value of k used
for the k-NN querying is 10 and the distance metric used is
Lo norm. Most of the results were collected by obtaining an
average over five runs.

10ur code is available at https://github.com/renshyam/fast_ann
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Fig. 3. Strong Scaling Results with different Datasets. Speedups are normal-
ized to time taken on 32 cores for SYN_IM and SYN_10M datasets and to
that on 256 cores for ANN_SIFT1B and DEEP1B datasets.

A. Strong Scaling

Figure 3 shows the strong scaling results for the total
query time for the different number of cores. The graphs give
speedups of the querying times when compared to the times
taken on 32 cores for the 1 million and 10 million datasets,
and when compared to the times taken on 256 cores for the 1
bilion dataset. The executions correspond to our hybrid MPI-
OpenMP code with one-sided communications and without
load balancing.

From Figure 3(a), we find that the speedups obtained for
1024 cores are about 13 and 18 for the SYN_1IM (1 million)
and SYN_10M (10 million) datasets, respectively when com-
pared to the executions on 32 cores. From Figure 3(b), we find
that we obtain a speedup of about 25 for both the 1-billion
datasets of ANN_SIFT1B and DEEP1B on 8192 cores when
compared to the execution on 256 cores. The results for the
1-billion datasets almost exhibits linear scalability. Thus our
parallel algorithms are suitable for large and multi-dimensional
datasets. Note that in Figure 3(b), speedup curves obtained for
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both the billion-scale datasets are similar.

B. Construction

Table II shows the times taken for our parallel algorithm for
VP tree and local HSNW graph constructions for the different
number of cores for the 1 billion SIFT dataset. We find that
the total construction times show good scalability with the
increasing number of cores. The table also shows that there
is a large reduction in the time for HSNW construction, the
primary core of the construction, for large parallelism.

TABLE I
CONSTRUCTION TIMES FOR ANN_SIFT1B

No. of cores | Total Time (minutes) | HNSW Construction (minutes)
256 21.5 17.6
512 20.1 14.8
1024 18.3 12.4
2048 16.5 9.8
4096 15.2 7.8
8192 14.7 4.3

C. Effect of Replication Factor on Load Balancing

Our load balancing optimized algorithm replicates the par-
titions to different processors and assigns the queries for
a partition in a round-robin manner across the processors
on which the data is replicated. The algorithm employs a
replication factor to determine the number of processors on
which a partition is replicated.

Figure 4 shows the effect of the replication factor on the
load balancing and the execution times for the SIFT 1 billion
datasets when executed on 8192 cores. The replication factor
of 1 corresponds to the base algorithm without replication.
Figure 4(a) shows the total query times while Figure 4(b)
shows the distribution of the number of queries sent to the
processors for the different replication factors.

We find from Figure 4(a) that our replication-based load
balancing gives a definite performance improvement over
the baseline algorithm without replication. The performance
improvement also increases with increasing replication factor
achieving up to performance improvement of 11% for the
replication factor of 5. The performance improvement is due
to the balanced processing of the queries as shown by Figure
4(b). We find that as the replication factor increases, the range
of the number of queries processed by the different processors
becomes more compact.

D. Comparison with existing methods

TABLE IIT
ToTAL SEARCH TIMES

Total Query Time (seconds)
Dataset Our meth(l)‘z KD-Tree [1]
ANN_SIFT1B (8192 cores) | 6.3 (13.6X faster) 85.6
DEEPIB (8192 cores) 7.1 (11.4X faster) 80.9
ANN_GISTIM (24 cores) 0.54 (8.5X faster) 4.6

Table III presents search times for our method and the
method described in Patwary et al. [1] for different datasets.
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Fig. 4. Load Balancing For Replication Factors for ANN_SIFT 1B dataset.
The red dotted line in 4(b) indicates the number of queries per process for
optimal load balance.

We implemented the method described in [1] and compared
its performance with our approach on ANN_SIFT1B and
DEEP1B for 8192 cores. To our knowledge, this is the only
other work that builds an uncompressed index for billion-scale
datasets. It should be noted here that distributed KD trees give
exact results for k-NN queries. Hence we measured the accu-
racy of our method using the recall metric. Recall is defined
as the ratio of the number of true k-nearest neighbors in the
result of the approximate search to k. Our approach was 13.6
times faster in answering 10* queries with an average recall
of 0.88 for ANN_SIFT1B and 11.4 time faster in answering
the same number of queries with an average recall of 0.85
for DEEP1B. On ANN_GIST1M, our approach was 8.5 times
faster in answering 103 queries with an average recall of 0.91
on 24 cores. These results clearly demonstrate the superiority
of HNSW with VP tree partitioning over a complete KD
tree approach for searching in a high-dimensional distributed
index.

E. Search Time Breakdown

Figure 5 shows the breakdown of the total time for searching
10* queries on ANN_SIFT1B for the different number of
cores. It can be seen that MPI-based communications oc-
cupy only a small percentage of the overall time and the
computation-communication times are greater than 90% in
many cases. The small communication times is due to the
use of non-blocking communications by the master and the
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Fig. 6. Search Recall plotted against Total Query Time for ANN_SIFT1B
on 1024 cores.

asynchronous MPI one-sided communications for accumula-
tion of the results by the workers to the memory of the master
process.

E Search Recall

During the construction of the HNSW index, the parameter
M is used to specify the number of neighbors of a newly
inserted vertex in a layer. The trade-off between search time
and recall in HNSW is controlled by the M parameter.
Figure 6 presents search recall plotted against the total time
taken for querying for ANN_SIFT1B on 1024 cores for the
following values of M: {8,16,32,64} (the default value of
M is 16). It should also be noted that higher value of M
leads to more memory consumption. When M is 64, we
achieve near perfect recall while answering 10* queries in 167
seconds. Compression methods [13] [14], even though capable
of building an index for billion-scale datasets that can be fit
into the memory of a single node and perform search faster,
cannot achieve near perfect recalls.
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VI. CONCLUSION AND FUTURE WORK

We have presented a scalable distributed solution for per-
forming an approximate k-NN search that is well-suited for
high-dimensional data in general metric spaces. We have pro-
posed two optimizations for better query performance, namely
the use of MPI one-sided communications and load balancing
using replication. Our experiments show that our approach
scales almost linearly with the number of cores on two stan-
dard billion-scale high-dimensional datasets, ANN_SIFT1B
and DEEP1B. We show around 10X speed-up over a com-
pletely KD tree-based approach on the same datasets. Our
parallel index construction shows scalability and competi-
tive build times. Optimizing for load imbalance by partition
replication gives 11% performance improvement. We also
demonstrate that it is possible to achieve near perfect recalls
on billion-scale datasets.

Our approach is extensible in that any algorithm can be
used for local indexing and searching instead of HNSW.
We can utilise the parallelism offered by GPUs to perform
local searching. Building a GPU kernel for a graph-based
search method like HNSW is an interesting avenue that is
yet to be explored. We can also exploit CPU and GPU cores
simultaneously to answer local queries.
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