
Journal of Parallel and Distributed Computing 132 (2019) 8–20

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

HyPar: A divide-and-conquermodel for hybrid CPU–GPU graph
processing
Rintu Panja, Sathish S. Vadhiyar ∗
Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India

h i g h l i g h t s

• HyPar is a novel model for graph processing on hybrid CPU–GPU architectures.
• It is a divide-and-conquer model with API and runtime strategies.
• Can make use of GPUs even for large graphs that cannot be accommodated in the GPUs.
• Demonstrated with important graph applications including community detection.
• Provides better performance than the prevalent BSP models of executions.

a r t i c l e i n f o

Article history:
Received 11 January 2018
Received in revised form 15 May 2019
Accepted 26 May 2019
Available online 4 June 2019

Keywords:
Graph algorithms
Hybrid CPU–GPU
Divide-and-conquer

a b s t r a c t

Efficient processing of graph applications on heterogeneous CPU–GPU systems require effectively
harnessing the combined power of both the CPU and GPU devices. This paper presents HyPar, a
divide-and-conquer model for processing graph applications on hybrid CPU–GPU systems. Our strategy
partitions the given graph across the devices and performs simultaneous independent computations
on both the devices. The model provides a simple and generic API, supported with efficient runtime
strategies for hybrid executions. The divide-and-conquer model is demonstrated with five graph
applications and using experiments with these applications on a heterogeneous system it is shown
that our HyPar strategy provides equivalent performance to the state-of-art, optimized CPU-only
and GPU-only implementations of the corresponding applications. When compared to the prevalent
BSP approach for multi-device executions of graphs, our HyPar method yields 74%–92% average
performance improvements.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Graph processing has been prevalent in recent years since
graph algorithms and abstractions are frequently used to perform
analysis in diverse networks such as social, transportation and
biological networks. Real world networks are often very large in
size resulting in graphs with several hundreds of thousands to
billions of vertices and edges. Processing such large-scale graphs
is challenging, and many frameworks and algorithms for graph
processing have been developed for CPU [11,18,26,29,30,33] and
GPU [3,4,20,25,31,36] architectures. In a heterogeneous system
consisting of a CPU and GPU, these works utilize only one of the
devices for the actual processing. Also, the GPU-only strategies,
while providing high performance for small graphs, are limited
in terms of exploring large graphs due to the limited memory
available on GPU. A hybrid strategy involving computations on

∗ Corresponding author.
E-mail addresses: rintupanja@iisc.ac.in (R. Panja), vss@iisc.ac.in

(S.S. Vadhiyar).

both the CPU and GPU cores can help to explore large graphs and
utilize all the resources.

There are a limited number of such hybrid frameworks for
graph processing that attempt to utilize both the devices
[9,15,35]. These efforts employ a Bulk Synchronous Processing
(BSP) model across the devices. The BSP model causes commu-
nications and synchronizations between the devices at the end of
each high level iteration. This causes large communication times
and under-utilization of the devices.

This paper presents HyPar, a novel programming and runtime
model with an API for hybrid CPU-GPU executions of graph ap-
plications using Divide-and-Conquer (DC) approach. To solve a
problem with the DC approach, the HyPar model employs the
strategy of partitioning the graph into two parts for the CPU
and GPU, and invoking the original graph problem on the two
devices for completely independent processing. The individual
results on the two devices are then merged and post processed.
HyPar is supported with efficient hybrid runtime strategies and
kernel optimizations including automatic determination of the

https://doi.org/10.1016/j.jpdc.2019.05.014
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.05.014
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.05.014&domain=pdf
mailto:rintupanja@iisc.ac.in
mailto:vss@iisc.ac.in
https://doi.org/10.1016/j.jpdc.2019.05.014

R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20 9

ratio for partitioning, termination of the independent compu-
tations on the devices based on diminishing benefits, efficient
modification of graph data structures during merging, and recur-
sive invocation of the steps. Different kernel optimizations are
also employed including hierarchical processing of graphs with
power-law distributions of vertex degrees and minimizing atomic
accesses.

Our divide-and-conquer model is demonstrated with five
graph applications, namely, Boruvka’s Minimum Spanning Tree,
label propagation algorithm for community detection, graph col-
oring, triangle counting and connected components. Our experi-
ments with these four applications on a heterogeneous systems
show that our HyPar strategy provides equivalent performance
to the state-of-art, optimized CPU-only and GPU-only imple-
mentations of the corresponding applications, achieving up to
98% performance improvement. HyPar is also shown to harness
the power of GPUs for large graphs that cannot be entirely
accommodated in the GPUs, and hence cannot be executed by
the GPU-only implementations. When compared to the prevalent
BSP (Bulk Synchronous Processing) approach for multi-device
executions of graphs, the divide-and-conquer model followed
in HyPar yields 74%–92% average performance improvements.
HyPar also provides up to 90% performance improvement over
existing multi-core and many-core graph processing frameworks.

2. Related work

Galois [26] is a system for multi-core environments that incor-
porates the concept of the operator formulation model in which
an algorithm is expressed in terms of its action (or operator)
on data structures. It has been used to provide large-scale per-
formance for many graph based algorithms. Ligra [29] uses an
edge-centric approach which dynamically switches between push
and pull method inspired by hybrid BFS algorithm [2]. The frame-
work performs dynamic switching between the sparse and dense
representations for the graphs, and also abstracts out the internal
traversal details from the user. X-Stream [28] is an edge-centric
graph processing framework for in-core as well as out-of-core
processing on a single shared memory system. Polymer [34] has
shown improved performance over the existing approaches by
using NUMA-aware computation. It groups the available cores of
a single node and partitions to maximize the accesses to the local
memory. Green-Marl [18] provides high-level constructs for users
to describe their algorithm intuitively and automatically explores
data-parallelism. All of these frameworks have only explored
shared memory multi-core CPU systems and do not support GPUs.

Some frameworks including Lonestar-GPU [25], Medusa [36],
Gunrock [32] and Groute [3] support GPU-only executions of
graph applications. Medusa [36] is a graph processing engine
for multi-GPU environment which uses similar BSP (Bulk Syn-
chronous Parallelism) model for communication across GPUs
with high-level user interface. The BSP model organizes the
computations into super-steps, and involves communications and
synchronizations across the devices for every super-step. These
frameworks use CPU primarily for reading the graph inputs,
coordinating with the GPUs and transferring data to/from GPU.
This results in under utilization of the CPU resources. While these
GPU-only solutions can potentially provide high performance,
they are limited by the sizes of the graphs that can be processed
due to limited GPU memory.

To our knowledge, TOTEM [15], Falcon [9] and GGraph [35] are
the only frameworks for hybrid CPU-GPU execution of graph ap-
plications. They have reported equivalent performance for some
of the applications. However, all of these approaches follow BSP
model across both the CPU and GPU devices. The communication
and synchronization overheads in the BSP model are prominent
in heterogeneous systems.

3. HyPar-API

HyPar follows divide-and-conquer approach to solve an ap-
plication in heterogeneous environment. HyPar first divides the
input graph into two parts, for the CPU and GPU devices. Each
device then independently solves the problem without any com-
munication with the other device. Then a merge or combine
step gathers the result from independent computations. Finally,
a post-processing step realizes the remaining computation due
to partitioning. For each of these four steps, an API function is
provided. The API functions are shown in Table 1.

3.1. Partitioning the graph

The partGraph function divides the input graph into two parts
one for the CPU and the other for the GPU based on the propor-
tional performance of the given application for the given graph for
these two devices. A simple 1-D vertex-block partitioning is used
in which the CSR (Compressed Sparse Row) arrays representing
the graph are divided into two contiguous segments of vertices
along with the edges incident on the vertices.

3.2. Independent computations

After partitioning the graph, our strategy sends the respective
parts to the two processing units. The indComp function then ex-
ecutes the application independently on the two devices without
any communication between the devices. One of the CPU threads,
denoted as GPUdriverThread, is assigned to drive the GPU execu-
tion, and the other CPU threads, denoted as processingThreads, for
executing the CPU multi-core version. The outputs of this step are
the results formed on the two devices represented as arrays. For
example, in MST (Minimum Spanning Tree), the component IDs
of the vertices formed on a device are stored in an array for the
device.

The indComp function also has an optional boolean excpCond
argument. Note that the independent computation on a de-
vice involves execution of a graph application/algorithm like
BFS, MST etc. on a part assigned to the device. However, ex-
ecution of the original graph algorithm as such while treating
the part as the complete graph input needed by the algorithm
will lead to incorrect results. The original algorithm has to be
modified such that certain edges or vertices of the part sub-
graph are not processed while performing the steps of the algo-
rithm. This is enabled by the excpCond argument that specifies
an exception condition. For example, an exception condition
of EXCPT_BORDER_VERTEX specifies that the algorithmic steps
should not be performed for the border vertices of the part. Our
API also provides EXCPT_BORDER_EDGE exception condition.

3.3. Merge

This is the step that involves CPU-GPU communication needed
for information flow across the cut-edges. The mergeParts func-
tion merges the results obtained on the two devices due to the
independent computations. This step copies the required infor-
mation from the device to the host and merges to an internal
data structure. After merging, the graph data structure in the
CPU is updated using optimized parallel graph update routines
implemented in our work, explained in the next section. For
example, in MST each component is contracted to a single vertex
and remove all the internal edges of the component using par-
allel thread operations. After updating the data structure in the
merge step, our strategy decides whether to solve the problem
recursively using the previous steps again or to go to the next
step depending on the remaining data size.

10 R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20

Table 1
HyPar-API functions.

Function Remarks

partGraph(appName, graph) Partitions the graph into two parts, one for the CPU and another for the GPU.

indComp(appName, graph, indCompResult1, indCompResult2, excpCond) Performs independent computations of a graph kernel, given by appName, on
the two parts. Returns the result in indCompResult .

mergeParts(appName, graph, indCompResult1, indCompResult2,mergeResult) Merges the results from the independent computations on the two devices
into mergeResult and updates the graph data structure.

postProcess(postProcessKernelName, graph,mergeResult, finalOutput) Performs post-processing by executing the kernel given by
postProcessKernelName with the remaining graph.

3.4. Post processing

After the merge step, the algorithm given by the
postProcessKernelName is run on one of the devices using the
remaining data. Our run-time strategy automatically chooses the
device for the post processing step at runtime depending on
performance on the previous data sets. The final output is made
available in the CPU in the finalOutput argument.

4. HyPar-runtime optimizations

Several optimizations have been employed in HyPar for realiz-
ing the APIs for efficient utilization of heterogeneous processors.
Some of the optimizations are automatically executed as runtime
strategies while some optimizations are made available as rou-
tines to update graph data structures. These routines are for sub-
graph formation, multi-edge removal, and formation of oriented
graphs, and can be utilized for implementing new applications
with HyPar.

4.1. Ratio for graph partitioning

To determine the ratio of CPU-GPU performance, a small num-
ber of different induced subgraphs (for our study, 3 subgraphs are
used) is formed, the original application is executed with each
subgraph on both CPU and GPU, the performance ratio is found,
and an average of the ratios is obtained for these subgraphs. Each
subgraph is generated randomly such that the number of vertices
in the subgraph is 5%–10% of the total number of vertices in
the original graph. In addition to performance, the GPU memory
requirements are also considered to determine the ratio.

4.2. Threshold for independent computations

The CPU-GPU independent computations are performed over
several iterations. In some applications, the size of the problem
used for the independent computations decreases with the itera-
tions. For example, the number of components in the MST appli-
cation, the number of nodes with conflicting colors in the graph
coloring problem, and the number of nodes with the changed
labels in the community detection application, all decrease over
time. After a certain threshold, it is advantageous to stop the
independent computations and proceed with the merging step
since, after this threshold, independent computations may impact
the performance due to the lack of sufficient parallelism on both
the devices.

Our HyPar-runtime automatically detects this threshold by
observing the trend in execution times of the independent com-
putations over multiple iterations. When the execution time does
not show further decrease, the runtime automatically switches to
perform the merging step.

4.3. Parallel self-edge removal and modification of graph data struc-
tures

After independent computations, the original graph data struc-
tures need to be modified for better memory utilization for sub-
sequent computations. For applications like MST and commu-
nity detection, independent computations result in the formation
of components. For subsequent steps, these components form
a reduced graph with the components as vertices and inter-
component edges as edges of the reduced graph. Hence, the sub-
sequent steps need to process only the inter-component edges,
and not the intra-component edges. A library call and an efficient
parallel strategy in the runtime are provided for this phase to
remove the intra-component edges, a.k.a self edges and modify
the graph data structures to represent the reduced graph. This
coarsening is done in-place, replacing the original graph data
structure, to be able to handle large graphs. The algorithm is
explained in Algorithm 1.

Algorithm 1 Parallel Self-edges Removal
1: outGoingArr[] = 0
2: for all v ∈ current_set do ▷ In Parallel
3: parent = parent(v)
4: outEdges = 0
5: for all u ∈ neighbor(v) do
6: if parent(u) ̸= parent(v) then
7: outEdges++
8: end if
9: end for
10: outEdgeArr[v] = outEdges
11: atomicUpdate(outGoingArr[parent],outEdges)
12: end for
13: offsetArr = prefixSum(outGoingArr)
14: ∀c ∈ C , startPos[c] = offsetArr[parent(c)]
15: for all v ∈ current_set do ▷ In Parallel
16: parent = parent(v)
17: outEdges = outEdgeArr[v]
18: if outEdges > 0 then
19: storedLoc = atomicAdd(startPos, outEdges)
20: for all u ∈ adjacent to v do
21: if parent(u) ̸= parent(v) then
22: update(adjArr, wtArr)
23: end if
24: end for
25: end if
26: end for

CSR representation is followed for the graphs, consisting of the
offset, adjacency and weights arrays. For each component, one
of the vertices is chosen as a representative. This representative
vertex is called as parent vertex of the vertices in the component.
For the original graph, each CPU/GPU thread processing a vertex
first counts the number of inter-component edges incident with
the vertex. The thread then atomically adds this number to a
global variable that stores the total number of inter-component
edges from a component (out-edges). To form a reduced graph, an
outGoingArr array, of size (number of vertices + 1), is formed in
which the elements corresponding to the parent vertices store the
total number of out-edges for their components while the other
elements are set to 0. This is performed using an atomic update

R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20 11

Fig. 1. Illustration of self-edge removal.

as shown in line 11. Fig. 1(a) shows an example graph in which
vertices 2 and 6 are the parents of the two components. Fig. 1(b)
shows the outGoingArr array.

For the reduced graph, while smaller-sized adjacency and
weights arrays are explicitly formed, the size of the offset array
is not explicitly reduced. The offset array for the reduced graph is
formed by performing an exclusive prefix sum of the outGoingArr ,
as shown in line 13. Fig. 1(b) also shows the offset array for
the reduced graph for the example. Then the threads processing
the vertices update the adjacency and weights in parallel. This is
shown in lines 14–26 of the algorithm. The threads processing
the vertices use a global startPos variable per component, which
maintains the offset at which a thread updates the adjacency
and weight arrays. The startPos is initialized with the offset of
the parent vertex from the offset array (line 14). A thread with
out-going edge(s) atomically obtains the old value of startPos
and increments this variable with the number of its out-edges.
The thread then uses the old value as its offset for writing the
adjacency and weights values for all its out-edges (line 22). This
way, the update of the adjacency and weights arrays for the re-
duced graph is distributed among all the threads with minimum
synchronization. Fig. 1(b) also shows the adjacency array for the
reduced graph.

4.4. Recursive invocation of partitioning-independent computations-
merging

After merging, the graph data structure is updated and only
the required vertices and their outgoing edges are retained. Using
experiments it was found that if the reduced graph after the
merge step is sufficiently large, it is beneficial to invoke HyPar
again using the reduced graph. Our HyPar-runtime follows this
recursive approach by again partitioning the reduced graph using
already calculated partitioning ratio and performing the indComp
and mergeParts steps. For our current work, the number of edges
in the reduced graph (specifically, a threshold of 100 million
edges) is used to decide to continue with recursion or to move
to the post processing step.

4.5. Parallel subgraph formation

As mentioned, induced subgraphs are formed during the par-
titioning step. In applications like triangle counting, the ghost
edges are also needed for a part. In some cases, the vertices along
with their outgoing edges are removed. For example, in coloring,
all the vertices that are colored correctly in the independent

computations step and their incident edges are removed after the
merge step to reduce the size of the graph for further computa-
tions. Similarly, in community detection, the adjacent edges of the
vertices of the large communities are removed. In all these cases,
the graph needs to be updated in an efficient manner.

Using the similar method described in Algorithm 1, the ver-
tices that need to be retained in the updated graph are found.
Then, by using the similar method of parallel update to
outGoingArr array in the algorithm, the updated degrees of the
vertices are identified. An exclusive prefix sum is then used to
find out the offset array and correspondingly update the required
edges information from the original graph data structures.

5. Graph kernel optimizations

In addition to the runtime strategies in our hybrid model,
different optimizations were also performed in implementation
of the graph kernel functions, primarily related to GPU kernels.

Hierarchical Strategy for Processing Adjacency List: Our graph
applications involve exploration of the adjacent vertices of a
vertex on the GPUs. A single approach for this exploration may
not be optimal for all graph topologies. For example, assigning
a single thread to a vertex to explore the adjacency will lead to
load imbalance and large bottlenecks for power-law graphs that
have a small number of vertices with very high degrees and a
large number of vertices with small degrees. An optimization,
namely, a hierarchical list based approach [24] is employed for
the exploration of adjacency vertices.

In this strategy, the adjacency of a high-degree vertex with
degree greater than a threshold size (referred to as CTA size)
are explored using a Co-operative Thread Array (CTA), which
is a group of warps as shown in Fig. 2. For the vertices with
degree greater than the warp size but less than the CTA size,
all the threads in a warp is used for exploring adjacency. For
small degree vertices, a small group of threads within a warp
(typically 8) is assigned to explore the adjacency of a vertex. This
hierarchical strategy leads to better load balancing across SMs
and hence improved performance.

Data-driven and Worklist Approach: The GPU computations can
be organized as topology-driven or data-driven computations. In
the topology-driven algorithms [16], GPU threads are spawned
for all nodes in a graph, while in the data-driven algorithms [25],

12 R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20

Fig. 2. Co-operative Thread Array (CTA).

worklists are built dynamically and threads are spawned cor-
responding to only active elements/nodes that have to be pro-
cessed in a time step. The data-driven approach is used in all our
applications.

Reducing Global Atomic Collisions: Many graph operations re-
quire atomic accesses to a global memory unit. It is important
to reduce these atomic accesses, since atomic constructs serialize
the code, are expensive and may cause impact in performance.
For our applications, the number of atomic accesses is minimized
by batching atomic accesses into a single atomic access and
performing hierarchical atomic accesses [13].
Batching of Accesses: In the MST application, each thread that
processes a component vertex can merge the vertex with its
neighboring component vertex to form a larger component. The
thread subsequently has to decrement the number of components
that is maintained in a global variable. This access has to be made
atomic since multiple threads processing different vertices may
decide to decrement the total number of components. We adopt
the strategy of first counting the total number of decrementing
threads within a warp, and subtracting this number from the
global count. This batching of accesses results in the reduced
number of atomic accesses. The primitives available in the CUDA
library, namely, __ballot(), __popc() and __ffs(), are used to count
the number of subtractions within a warp.
Hierarchical Atomics: Atomics are also used in the MST appli-
cation when choosing a component for merging with another
component, C . Each vertex in the component C finds its lightest
edge, El(v), connecting it to a vertex in another component. The
algorithm then chooses the lightest edge, El(C), of a component by
finding the minimum of the weights of El(v)s of all the vertices of
C and merge C with the component incident with the edge El(C).
The minimum weight of the edges of the component are found
using an atomic min operation. Performing atomic min by all the
threads processing vertices of a component can be expensive. A
two-level minimum finding approach is used. In the first level,
threads processing vertices within a warp that belong to the
component C use a warp-level atomicMin to find the warp-level
minimum. In the second level, the minimum of all the warp-level
minimums are found using a second-level atomicMin operation.

6. Graph applications using HyPar

HyPar follows a divide-and-conquer (DC) approach for hybrid
CPU and GPU processing, and hence amenable for applications
that follow a DC approach. Five graph algorithms/applications
have been implemented using our HyPar divide-and-conquer
model. The applications present different levels of complexity.
The section begins with a graph coloring application which is eas-
ily amenable to DC approach. Then the section explores Boruvka’s

Minimum Spanning Tree (MST), which is a greedy algorithm and
hence may seem not amenable for HyPar’s DC approach. How-
ever, by making use of the exception condition for independent
processing, provided by HyPar, it is shown that it is possible to
devise efficient hybrid strategy. Our third application of com-
munity detection belongs to the category of a DC application in
which the results from the independent computations need to
be refined to obtain correct output. To further extend our model,
triangle counting application is implemented, where a simple
modification to the input data can yield complete independent
processing. In this section, four applications are described. Our
fifth application, Connected Components (CC) follows a similar
approach to MST, and hence not described in this section for
brevity.

6.1. Graph coloring

The graph coloring problem is to assign the minimum number
of colors (a.k.a., chromatic number) to the vertices such that no
two adjacent vertices have the same color. Since this is a NP-
hard problem, various heuristics have been proposed. One of the
approximation algorithms suitable for distributed computing is
the one proposed by Gebremedhin and Manne [14].

This algorithm has two iterative phases. In the first phase, each
vertex is assigned the minimum consistent (i.e., non-conflicting)
color. The processors synchronize and communicate the assign-
ments of colors at the end of each iteration. However, the first
phase can result in conflicting colors for the border vertices that
are colored simultaneously at the same iteration. The second
phase resolves these conflicts by identifying the vertices with
conflicting colors and once again invoking the first phase for these
vertices. This algorithm is amenable to the DC approach as each
device can perform independent coloring followed by a single
communication in the end to identify the vertices with conflicting
colors. The HyPar CPU version follows a worklist based approach
in which the vertices that need to be colored and those with
the conflicting colors are added to the worklist. This method has
been recently used to find balanced coloring on shared memory
architectures [22].

The HyPar algorithm is shown in Algorithm 2. The procedure
partGraph partitions the graph into two parts, one for CPU and
another for GPU. Then the vertices of individual parts are ini-
tialized with default colors by initColors routine. The indComp
routine performs the actual computation on the devices to as-
sign colors to the vertices of each part independently without
any need of communication. The HyPar runtime automatically
stops the independent computations when the execution times of
the iterations stops decreasing. The mergeParts routine identifies
the vertices colored with conflicting colors due to independent
processing, and also updates the graph data structure by only
retaining these vertices and their incident edges using the parallel
graph update routines provided by HyPar. The HyPar runtime
then either recursively invokes independent computations fol-
lowed by merging or proceeds to postProcess step depending on
the size of the reduced graph, as mentioned in Section 4.4. The
postProcess step is performed with the reduced graph to assign
colors to the uncolored border vertices.

6.2. Boruvka’s MST

Boruvka’s algorithm forms minimum spanning tree (MST) by
iteratively finding lightest edges from a component and merging
two components (or endpoints) connected by a lightest edge.
Initially, all the vertices form single-vertex components. In each
iteration, for each component, the lightest edge connecting the
component with another component is found. The components

R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20 13

Algorithm 2 Hypar Graph Coloring Algorithm
1: procedure mergeParts(appName, G, indCompRes1, indCompRes2, mergeResult)
2: mergeResult ← indCompRes1 ∪ indCompRes2
3: mergeResult ← Update color of vertices that are colored inconsistently
4: markVer ← mark vertices colored correctly
5: G.removeVerEdges(markVer)
6: end procedure
7:
8: procedure COLOR(G)
9: partRatio ← partGraph(‘‘COLOR’’,G)
10: initColors(G,cpuColor,gpuColor) ▷ Initialize default color
11: indComp(‘‘COLOR’’,G,cpuColor,gpuColor,NULL)
12: mergeParts(‘‘COLOR’’,G,cpuColor,gpuColor,mergeResult)
13: if G.size > threshold then
14: COLOR(G)
15: else
16: postProcess(‘‘COLOR’’,G,mergeResult,finalOutput)
17: end if
18: end procedure

that form the end points of the lightest edge are then merged to
form larger components. This operation is called edge contraction.
In the original algorithm, this process is repeated until a single
component containing all the vertices are formed. The edges that
are contracted across all the iterations constitute the minimum
spanning tree (MST). Clearly, the algorithm follows a greedy
approach and needs some modification for implementation with
the HyPar DC strategy.

For our hybrid algorithm, the graph is partitioned across the
CPU and GPU. Boruvka’s MST is then performed on each of the
parts on the respective devices. The CPU algorithm is based on
Galois’ implementation [26]. The GPU algorithm uses a work-
list based data-driven approach. While performing independent
Boruvka’s MST algorithm on the CPU and GPU, care must be taken
to ensure that such independent computations do not result in
incorrect results since the lightest edge from a component in a
part can connect to a vertex in the other part, i.e., can be a cut
edge. A divide-and-conquer Boruvka’s MST algorithm is formu-
lated in which an exception condition is added to the underlying
independent Boruvka’s MST computation. Specifically, during the
iterative process of Boruvka’s MST, if the lightest edge from a
component is a cut edge, the component is stopped from further
expanding and proceed with the other components.

At the end of the independent Boruvka’s MST in a part on a
device, multiple components are obtained as output. Fig. 3 illus-
trates the process. Fig. 3(b) shows the components formed after
the independent computations for the graph shown in Fig. 3(a).
Note that one of the components, comp 2, has a single vertex,
vertex 6. The lightest edge from vertex 6 is to the other part.
Hence it does not merge with comp 3 in its part. Fig. 3(c) shows
the final output for the example graph. The main parts of the
algorithm using our API are shown in Algorithm 3.

Algorithm 3 Hypar MST Algorithm
1: procedure mergeParts(appName, G, indCompRes1, indCompRes2, mergeResult)
2: mergeResult ← indCompRes1 ∪ indCompRes2
3: G.removeSelfEdge(mergeResult)
4: end procedure
5:
6: procedure MST(G)
7: partRatio ← partGraph(‘‘MST’’,G)
8: initRep(G,cpuRep,gpuRep) ▷ Initialize with vertex id
9: indComp(‘‘MST’’,G,cpuRep,gpuRep,EXCPT_BORDER_VERTEX)
10: mergeParts(‘‘MST’’,G,cpuRep,gpuRep,mergeResult)
11: postProcess(‘‘MST’’,G,mergeResult,finalOutput)
12: end procedure

6.3. Community detection

Community detection is an important graph analytical prob-
lem and it is widely used in many applications including finding

groups in social networks. Communities of vertices are formed
for a graph such that the number of intra-community edges is
higher when compared to the number of inter-community edges.
One of the methods for community detection is using label prop-
agation [30]. This is an iterative method in which the vertices are
initialized with their own vertex indices as labels, i.e., each vertex
is its own community. In each iteration, a vertex, u, obtains the
label of its adjacent community to which u has maximum inter-
community edges. In case of tie, one of the adjacent communities
with the maximum inter-community edges to u is randomly
chosen.

The above label propagation algorithm can be parallelized by
parallel exploration of the adjacent communities. The parallel
algorithm is shown in Algorithm 4. For our parallel CPU and
GPU versions, a worklist based approach is used in which active
vertices are maintained. Initially, all vertices are designated as
active. If a vertex changes its label in the current iteration, the
vertex and its neighbors are added to the worklist to refine their
communities in the next iteration.

This algorithm is also not amenable to the DC approach, as
making a decision for any vertex to add it to any community need
community information of all its adjacent vertices. In our HyPar
algorithm, the communities formed with the partitioned graphs
in the independent computations step are refined in the merge
step. Refining or modifying the results output by the independent
computations differentiates this application from the previous
two applications. The algorithm is illustrated in Algorithm 5.

Algorithm 4 Parallel Label Propagation Algorithm
1: Initialize activeList ← G.V
2: for all u ∈ activeList do ▷ In Parallel
3: l← argmax(

∑
v∈N(u) L(v))

4: if L(u) ̸= l then
5: L(u) = l
6: activeList ← activeList ∪ N(u)
7: else
8: activeList ← activeList/u
9: end if
10: end for

Our HyPar hybrid CPU-GPU implementation performs inde-
pendent computations of the label propagation algorithm on
both the CPU and GPU, and forms local communities in the two
devices, with the exception of the border vertices, as indicated
by the boolean flag EXCPT_BORDER_VERTEX. During the merging
step, the ratio between the intra-community and total number
of edges of that community is found and the ratios are averaged
across all the communities. Communities with ratios less than
the average are dismantled into single-vertex communities using
the vertices in these communities. Those communities with very
small number of internal edges (1/107 of the total number of
edges) are also dismantled. The other communities are finalized.
The graph is then reduced by removing the finalized communities
and their incident edges from the graph. The HyPar runtime is
then either executed recursively for this reduced graph or post-
processed, as described in Section 4.4. The HyPar version is shown
in Algorithm 5.

6.4. Triangle counting

Triangle counting is an important application in analyzing
the structure of the graph and has many uses including graph
clustering. One of the common algorithms in triangle counting
is by Arifuzzaman et al. [1] and the subsequent GPU imple-
mentation by Adam Polak [27]. The algorithm transforms an
undirected graph into an oriented graph. Oriented graph contains
only directed edges, where an edge (u, v) is added in the oriented

14 R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20

Fig. 3. Illustration of Hybrid MST. (b) shows the three components and the MST edges (thick lines) formed after the independent computations on the two parts
for the graph shown in (a). comp 2 consists of a single vertex, vertex 6.

Algorithm 5 Hypar Community Detection Algorithm
1: procedure mergeParts(appName, G, indCompRes1, indCompRes2, mergeResult)
2: mergeResult ← indCompRes1 ∪ indCompRes2
3: commRatio ← ratio of intra-community and total edges for each community
4: avgRatio ← Find the average ratio
5: for v ∈ G.V do ▷ In Parallel
6: c ← mergeResult[v]
7: if (commRatio[c] < avgRatio) || (compEdes[c] < minReqEdges) then
8: mergeResult[v] ← v
9: else
10: markVer for removal
11: end if
12: end for
13: G.removeVerEdges(markVer)
14: end procedure
15:
16: procedure commDEC(G)
17: partRatio ← partGraph(‘‘COMMDEC’’,G)
18: initComm(cpuComm,gpuComm) ▷ Initialize with vertex id
19: indComp(‘‘COMMDEC’’,G,cpuComm,gpuComm,EXCPT_BORDER_VER)
20: mergeParts(‘‘COMMDEC’’,G,cpuComm,gpuComm, mergeResult)
21: postProcess(‘‘COMMDEC’’,G,mergeResult,finalOutput)
22: end procedure

graph iff deg(u) < deg(v) in the original graph. The algorithm
traverses the edges and for each edge (a, b), it finds the triangles
containing the edge by finding the intersection of vertices in the

adjacency lists of a and b. An undirected graph is transformed
to an oriented graph in parallel by using a similar approach to
subgraph formation, described in Section 4.5.

The partitioning scheme in our HyPar hybrid version for the
triangle counting application is different from the partitioning
schemes followed for the other applications. Unlike the other
applications, after partitioning, the ghost edges for a part should
also be included along with the partition for triangle counting on
a device. Then, the triangle counting can proceed independently
on both the devices. Unlike the earlier applications, this applica-
tion contains primarily the independent computations step. The
merge/post-processing step is trivial and adds the sums from
both the devices.

6.5. Discussion

HyPar is intended for applications amenable for divide-and-
conquer executions, approximate applications that do not target
high accuracy or those can be formulated as divide-and-conquer
applications. There are a significant number of such applications.
This paper demonstrates with five such applications. While trian-
gle counting and coloring are amenable for divide-and-conquer
style of programming. Label-propagation based community de-
tection is an approximate algorithm that does not necessarily

R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20 15

Table 2
Graph specifications. In the table, M stands for million and B stands for billion.
Graph |V | |E| Approx. Diam. Avg. Deg. Max. Deg.

road_usa 23.9 M 57.7 M 6262 2.41 9
livejournal_gmembers(lg) 7.48 M 224 M 6 29.99 1,053,749
edit-enwiki(enwiki) 21.5 M 244 M 7 11.35 1,916,963
dbpedia 18.2 M 344 M 9 18.84 632,558
uk-2002 18.5 M 523 M 29 28.27 194,955
R-MAT24 16.8 M 536 M 9 31.9 3,582
eu-2015 11.2 M 759 M 8 67.42 398,609
gsh 30.8 M 1.16 B 9 37.73 2,176,721
arabic 22.7 M 1.26 B 29 55.50 575,662
uk-2005 39.4 M 1.84 B 20 46.69 1,776,858
it-2004 41.2 M 2.27 B 27 55.01 1,326,756

Table 3
1-D block partitioning in HyPar vs state-of-art partitioners in terms of time for partitioning, cut edges and total number of border vertices. M =
Million.
Graph METIS ParMETIS HyPar

Time (s) Cut edges Border nodes Time (s) Cut edges Border nodes Time (s) Cut edges Border nodes

road_usa 24.21 488 488 27 508 506 0.19 0.24 M 1.55 M
lg 118.51 55.34 M 2.78 M 132 53.43 M 2.75 M 0.31 88.59 M 3.62 M
enwiki 251.38 47.32 M 9.92 M 267 43.68 M 9.72 M 0.15 178.55 M 20.53 M
dbpedia 126.64 27.67 M 2.81 M 152 27.46 M 2.80 M 0.23 150.76 M 11.25 M
uk-2002 30.97 1.59 M 0.54 M 73 1.67 M 0.54 M 0.12 13.31 M 2.55 M
eu-2015 71.57 6.04 M 1.16 M 123 6.23 M 1.17 M 0.18 116.71 M 3.41 M
gsh 531.70 77.56 M 10.83 M 989 79.93 M 10.99 M 0.20 148.81 M 18.59 M
arabic 53.10 2.60 M 0.91 M 144 2.12 M 0.82 M 0.14 15.55 M 2.90 M

aim for very strong communities. Boruvka’s MST algorithm was
formulated into a divide-and-conquer model by using a cer-
tain exception condition. The work here encourages application
developers to attempt to develop divide-and-conquer models
for well-known applications or algorithms. For example, work
is in progress to apply divide-and-conquer model for Louvain’s
community detection by forming communities in independent
computations and resolving inconsistencies during the merge
step. Such divide-and-conquer models are highly necessary in
modern-day multi-device environments. Moreover, the advan-
tage of HyPar is that evolving state-of-art algorithms for CPU and
GPU can be plugged in with the hybrid framework.

However, HyPar may not be applicable for inherently incre-
mental and sequential algorithms like BFS, SSSP or PageRank.
For these kinds of algorithms, existing BSP models will continue
to be the de-facto models for executions. Many of the existing
graph frameworks that involve BSP model also apply BSP model
of executions to applications amenable for divide-and-conquer
models. This paper shows that it is important to develop divide-
and-conquer strategies like HyPar for such applications to obtain
higher performance than the existing BSP models in multi-device
environments. For applications like BFS and SSSP, while existing
algorithms may not be able to directly use our model, a fun-
damental rethink of some of these algorithms may yield a DC
formulation. The motivation is that such algorithmic efforts can
yield large-scale benefits over the prevalent BSP approaches, as
shown in the results

7. Experiments and results

All our experiments were performed on a GPU server con-
sisting of a dual octo-core Intel Xeon E5-2670 2.6 GHz server
with CentOS 6.4, 128 GB RAM, and 1 TB hard disk. The CPU is
connected to a NVIDIA Tesla K20m GPU card. The K20m GPU
has 4.68 GB DDR5 memory, with 2496 core and peak memory
bandwidth of 208 GB/s. The CPU portions of our HyPar code were
executed with 15 OpenMP threads running on the 15 CPU cores,
and one thread maintaining execution of GPU part (GPUdriver-
Thread).

The graphs used in our experiments are shown in Table 2.
The graphs were obtained from the University of Florida Sparse
Matrix Collection [10], the Laboratory for Web Algorithmics [5,6]
and the Koblenz Network Collection [21]. As shown in the table,
several real world graphs from different categories and having
different characteristics including varying degrees were used for
our experiments. These graphs were converted to undirected
graphs. GTgraph [23] was used to generate the R-MAT24 graph
with parameters a = 0.5, b = c = 0.1, d = 0.3 [8]. For the MST
application, random weights were assigned for the edges. All the
results shown are obtained using averages of five runs.

7.1. Partitioning

As mentioned earlier, 1-D vertex-block partitioning method is
used in HyPar. While existing state-of-art partitioners including
METIS, ParMETIS [19] and PaTOH [7] aim to achieve high quality
partitioning with minimal number of cut edges, the time taken for
partitioning can be large in these tools. The 1-D block partitioning
method, on the other hand, can result in a large number of cut
edges, but achieve the partitioning in less than a second in most
cases due to the simple strategy of partitioning. Table 3 shows the
times taken for partitioning and the number of cut edges and total
number of border vertices across the two parts by the different
partitioners.

For the graphs shown in the table, PaTOH was able to partition
only the road_usa graph and not able to partition the other larger
sized graphs. For road_usa graph, PaToH takes 24.97 s to form
two partitions and yielded 605 cut edges. It is found that the time
taken by METIS and ParMETIS are in the range 24 s to 16 min with
an average of 3.24 min for some large-scale graphs, while the
algorithms that are considered in our work complete execution
within a few seconds, as shown in the subsequent sections. Thus,
using heavy-weight high quality partitioners like METIS is not
applicable to our work. As shown in Table 3, the partitioning
time for the 1-D block partitioning in HyPar is less than 0.35 s.
It is also found that the number of cut edges by the 1-D block
partitioner is very large and can be even 20 times greater than
those by METIS. However, the large number of cut edges does not
significantly impact the performance of our hybrid algorithms,

16 R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20

Table 4
Workload balance achieved by ratio-based 1D block partitioning. Ratio of
execution times of CPU and GPU independent computations for Coloring, MST
and Community Detection applications. Ratio=(CPU time)/(GPU time)

Graph Coloring MST CD

Ratio-based 50:50 Ratio-based 50:50 Ratio-based 50:50

road_usa 0.60 0.46 0.68 0.52 0.22 0.19
lg 1.01 0.54 0.91 1.62 0.79 0.77
enwiki 0.68 0.60 3.40 3.80 0.82 0.75
dbpedia 0.69 0.50 1.49 0.87 0.98 0.58
uk-2002 0.76 0.52 0.78 1.2 0.64
R-MAT24 0.81 0.75 0.62 0.58 1.50
eu-2015 0.98 0.75 1.33 1.93
gsh 0.77 1.99 1.81
arabic 0.63 2.09 0.91

since communications needed for the cut edges happen in only
the merging phase and in one batch in our divide-and conquer
strategy.

As described, the HyPar runtime performs proportional par-
titioning of the graph for CPU and GPU based on the ratio of
execution times of the application for a few sample graphs on
the two devices. This strategy is evaluated in terms of the actual
workload balance achieved on the two devices. Table 4 shows
the ratio of execution times for the independent computations
on the CPU and GPU for coloring, MST and community detection
applications for the different graphs, where ratio is obtained as
(CPU time)/(GPU time). An ideal partitioning would achieve ratios
of 1.0. As shown in the table, HyPar proportional partitioning
achieves an average ratio of 1.1 across all graphs and applications.
The ratios are the range 0.21–3.39. The wide variation is because
the HyPar ratio-based strategy is a best effort quick heuristic
based on execution of a limited number of subgraphs on the CPU
and GPU. However, compared to a simple 50:50 partitioning, it
is found that the ratio-based partitioning achieves a better load
balance. It is also found that some graphs could not be executed
with the 50:50 partitioning for some applications since the 50% of
the graph could not be accommodated on the GPU in those cases.

7.2. Performance improvements for each application

Our HyPar algorithms are compared with state-of-art CPU-
only and GPU-only algorithms. In all our experiments, it was ver-
ified that the results of HyPar are consistent with the state-of-art
algorithms and frameworks for all evaluated algorithms.

7.2.1. Graph coloring
HyPar’s hybrid graph coloring implementation is compared

with the state-of-art CPU version by Lu et al. [22]. Though their
work targets balanced coloring, our comparison is with the first
phase of their work that uses first fit coloring algorithm by
Gebremedhin and Manne. Comparison is also made with our
GPU implementation of the algorithm. In general, GPU version
of coloring is slower since the larger number of threads on the
GPU yields more conflicting adjacent nodes. It is found that for
large graphs, HyPar gives 18%–56%, with an average of 35% per-
formance improvement over the state-of-art CPU version. HyPar
also provides 8%–80%, with an average of 42% performance im-
provement over the GPU version for all the graphs. The large
range in benefits due to HyPar is due to the CPU-GPU data transfer
overheads that are significant for small graphs, and occupy small
percentages in large graphs. It is also verified that the number of
colors produced by HyPar for each graph is similar to the state-
of-the-art CPU implementation. Table 5 compares the number of
colors produced by the different versions.

Table 5
Comparison of number of colors.
Graph CPU version GPU version HyPar

road_usa 4 4 4
lg 43 52 42
enwiki 88 110 88
dbpedia 62 77 60
uk-2002 943 933 943
R-MAT24 1042 1087 1031
eu-2015 9866 9870 9866
gsh 9915 9916
arabic 3247 3247
uk-2005 588 589
it-2004 3221 3221

Table 6
Coloring: Comparison with Deveci et al.’s multi-core CPU version.
Graph Deveci et al.’s Exec. Time (s) HyPar’s Exec. Time (s)

road_usa 0.37 0.67
lg 1.59 0.72
enwiki 3.60 1.18
dbpedia 3.78 1.45
uk-2002 0.37 1.49
eu-2015 73.67 1.16
gsh 51.49 2.29
arabic 2.91 1.81

HyPar is also compared with the work by Deveci et al. [11].
Comparison was made with their code available in the Kokkos
kernel [12]. Table 6 shows the comparison results with their
multi-core CPU version. It is found that except for road_usa and
uk-2002 graphs, HyPar gives 37%–98% performance improvement
over their version. Their multi-core GPU version was able to ac-
commodate and execute only our smallest graph of road_usa. For
this graph, the execution times of their code and the HyPar code
were 0.37 and 0.67 s, respectively, and thus were comparable.

7.2.2. Boruvka’s MST
HyPar’s Boruvka’s MST is compared with state-of-art CPU (Ga-

lois [17]) and GPU (Lonestar-GPU [25]) versions. The results are
shown in Fig. 4. With efficient runtime strategies, our HyPar strat-
egy yielded 55%–84% performance improvement over Lonestar-
GPU version for MST. Compared to Galois CPU implementation
except for the first graph, our HyPar method gives either equiv-
alent or up to 36% improved performance. Also, the first four
graphs correspond to the small graphs that can be entirely ac-
commodated on the GPU, while the next seven graphs are large
graphs that cannot be entirely accommodated on the GPU. This
also demonstrates one of the primary uses of our HyPar al-
gorithm: for graphs that cannot be entirely accommodated on
the GPU, our HyPar hybrid strategy attempts to use the power
of both the CPU and GPU by appropriate partitioning. HyPar’s
better performance than the Galois CPU version in some cases
is due to the utilization of GPU capacities in HyPar. In some
cases, more benefits were found with the HyPar version because
for these cases, the independent computations make some large
components and thus decrease the remaining graph sizes by large
factors.

7.2.3. Community detection
Our HyPar community detection is compared with the state-

of-art CPU Label Propagation version by Staudt and
Meyerhenke [30] called PLP. Our HyPar algorithm is also based
on this CPU version. For uniform comparisons with the work by
Staudt and Meyerhenke, a uniform stopping criteria was used
in which the executions were performed till the number of
active vertices in an iteration is less than (1/105) of the total

R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20 17

Fig. 4. MST: Comparison of HyPar with state-of-art CPU (Galois) and GPU (Lonestar-GPU) versions.

number of vertices or when the number of iterations reaches 100.
Comparisons are also made with the state-of-art PLP algorithm
on GPUs by Kozawa et al. [20]. For uniform comparison, same
criteria was used for active vertices (1/105 of the total number of
vertices) while the maximum number of iterations was fixed as
10.

Fig. 5 shows the comparison results. The code by Kozawa
et al. could not be executed for some of the graphs due to
memory limitations on the GPU. When compared to the CPU
version by Staudt and Meyerhenke, it is found that for seven of
the graphs, our HyPar method provides performance improve-
ment of 15%–60%, with an average of 34%. This is due to the
harnessing of the GPU’s capabilities. For road_usa, edit-enwiki,
uk-2005 and eu-2015, slight slowdowns were obtained. For these
graphs, the HyPar algorithm breaks many small communities
into single nodes during the merge step (see the algorithm in
Section 6). Thus, the complexities of the reduced graphs for the
subsequent steps are relatively high. When compared with the
GPU version by Kozawa et al. it is found that except for the
road_usa graph, their work gives 13%–88% better performance
than HyPar. The advantage of HyPar is its generic mechanisms
that can be applied to multiple applications. Also, any state-of-
art work for a particular device like the algorithm for GPUs by
Kozawa et al. can be integrated into HyPar to obtain even better
performance by making use of additional device, which in this
case is CPU.

Our HyPar’s label propagation algorithm makes approxima-
tions to the PLP algorithm by Staudt and Meyerhenke [30] due to
the independent formation of communities in the CPU and GPU.
Hence, the results produced will not be the same as in the CPU-
based algorithm. Modularity is one of the metrics that attempts to
capture the goodness of the communities formed by a community
detection algorithm and is defined as:

Q =
∑
c∈C

[

∑c
in

2m
− (

∑c
tot

2m
)2] (1)

where m is the total number of edges of the graph,
∑c

in is the
total number of intra-edges for a community c and

∑c
tot is the

total number of edges of the community c . Table 7 compares the
modularity values of the communities formed in the HyPar, the
CPU version by Staudt and Meyerhenke and the GPU version by
Kozawa et al. It is found that with our modified algorithm of
merging step to dismantle small communities, HyPar’s approxi-
mation version is giving equivalent modularity values to the other
two algorithms.

7.2.4. Triangle counting
HyPar’s triangle counting implementation was compared with

our parallel CPU and the state-of-art GPU [27] versions. HyPar

provides 4%–48%, with an average of 22% performance improve-
ment over the CPU version, and 11%–54%, with an average of 30%
performance improvement over the state-of-art GPU version.

HyPar’s triangle counting was also compared with the triangle
counting algorithm for GPUs by Bisson and Fatica [4]. For this
comparison, a system of Intel Haswell CPU processors and NVIDIA
K40 GPU was used, HyPar was executed for some of the graphs
used in their work, and times are compared with the times
reported in their paper on a K40 GPU. Table 8 shows the results.
It is found that the algorithm by Bisson and Fatica gives 1.47X–
3.11X better performance than HyPar. HyPar is a general tool for
hybrid CPU-GPU executions, applicable to multiple applications.
The advantage of HyPar is that evolving state-of-art implemen-
tations like the triangle counting algorithm by Bisson and Fatica
can be used for its GPU executions.

7.3. Comparison with state-of-art graph processing frameworks and
BSP models

7.3.1. Comparison with hybrid CPU–GPU framework and BSP models
HyPar’s divide-and-conquer hybrid strategy is also compared

with the popular BSP (Bulk Synchronous Parallel) model used
for multi-device and hybrid executions. In the BSP model, the
computations are organized into super-steps corresponding to
the outer loop of the original algorithms. At the end of each
super-step, necessary communications and synchronizations are
performed between multiple devices holding the different parts.
Totem [15] is a representative Hybrid CPU-GPU framework for
graph applications and uses BSP model for communication across
devices.1

HyPar and Totem were compared with two applications,
namely, connected components (CC) and graph coloring. The
graph coloring application was implemented within the Totem
framework. Note that triangle counting does not need a BSP
model of bulk synchronism due to the completely indepen-
dent nature of computations in the multiple devices with the
final result only needing counts of the triangles produced in
the different devices. MST and community detection algorithms
could not be implemented with Totem since the two applications
required both pull and push methods of inter-device communi-
cation in each super-step, which Totem does not provide. Hence,
our own BSP implementations of MST and community detection
applications were implemented.

Table 9 shows the comparison results in terms of execution
times. For both the strategies, the time includes initialization,

1 The other hybrid CPU-GPU frameworks for graph applications that we are
aware of, Falcon [9] and GGraph [35], are shown to produce equivalent results
to Totem and also use BSP model.

18 R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20

Fig. 5. Community detection: Comparison of HyPar with state-of-art CPU version by Staudt and Meyerhenke and GPU version by Kozawa et al.

Table 7
Community detection: Comparison of modularities of the CPU, GPU and HyPar versions.
Graph Modularity (Staudt and

Meyerhenke)
Modularity (Kozawa et al.) Modularity (HyPar)

road_usa 0.841 0.748 0.844
lg 0.005 0.12 0.004
enwiki 0.012 0.038 0.012
dbpedia 0.259 0.396 0.139
uk-2002 0.960 0.348 0.964
R-MAT24 0.004 0.001 0.032
eu-2015 0.811 0.808 0.799
gsh 0.573 0.498 0.597
arabic 0.953 0.924 0.957
uk-2005 0.954 0.963
it-2004 0.944 0.957

Table 8
Triangle counting: Comparison with Bisson and Fatica GPU algorithm.
Graph Execution time by

Bisson and Fatica (s)
Execution time by HyPar
(s)

mouse_gene 0.55 1.71
soc-livejournal 0.35 0.86
hollywood-2009 1.38 2.33
kron_g500-logn18 0.61 1.25
kron_g500-logn211 1.98 17.58

partitioning and execution time of the applications. For road_usa,
Totem was not able to complete its execution. It is found that
overall, our HyPar hybrid execution gives the following perfor-
mance improvements over Totem: 83%–97%, with an average of
92% for coloring and 54%–87%, with an average of 74% for CC.
It gives the following performance improvements over our BSP
models: 19%–61%, with an average of 48% for MST, and 4%–
63%, with an average of 40% for community detection. The large
scale improvements due to HyPar shown in these results point
to the significant performance impact that our HyPar model can
make in hybrid CPU-GPU and multi-device executions of graph
applications for which the BSP models are commonly used.

7.3.2. Comparison with multi-core and many-core frameworks
Ligra [29] is one of the state-of-the-art shared memory frame-

work for graph processing which uses edge based parallelism.
It also changes between push and pull method for exploration
depending on the sum of the degree of the vertices in the frontier
set. Comparisons are made with two applications that are present
both in Ligra and our work.

Table 10 shows the comparison results in terms of execution
times. As shown in the table, for Triangle Counting (TC) appli-
cation, performance improvement of upto 90%, with an average
of 59%, is obtained over Ligra. For Connected Components(CC),
up to 67% is obtained, with an average of 24% performance

improvement. Results are not shown for the last two graphs since
Ligra was not able to complete execution within 1000 s for these
graphs.

HyPar’s connected component algorithm was also compared
with the Gunrock GPU framework [31]. Table 11 shows the com-
parisons for small graphs. Gunrock gave out-of-memory errors for
graphs larger than dbpedia. It is found that except for road_usa,
HyPar gives equivalent results to Gunrock. The advantage of
HyPar is that it can make use of Gunrock in its independent
computations on GPU to obtain even better performance.

7.4. Analysis of phases

Fig. 6 shows the execution times of the different phases of
HyPar for three graphs that represent small, medium and large
graphs.

The independent computations phase is the primary phase
that performs the actual algorithmic tasks. The other three phases
correspond to the extra tasks performed by our method to real-
ize the hybrid executions using the partitioning approach. It is
found that while these extra tasks occupy significant percent-
ages, about 56%–86%, of the overall time for the small graph,
the percentages decrease to 18%–40% for larger problem sizes.
Correspondingly, the percentage of the execution time occupied
by the actual tasks performed by the independent computations
increase with increasing graphs sizes and attain up to 81%. As
HyPar performs this step without any communication between
the devices, a significant performance improvement is obtained
over BSP approach. Among the extra tasks, our quick and efficient
1D-block partitioning approach occupies less than 7% in most
cases. The merging and post processing phases occupy significant
percentages due to the CPU-GPU data transfers and consolidating
the results of the independent computations. Our future work will
involve optimizations of these phases.

R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20 19

Fig. 6. Execution times of different phases.

Table 9
Performance comparison with Totem and BSP model in terms of execution times.
Graph Coloring MST Community detection CC

Totem (s) HyPar (s) Our BSP (s) HyPar (s) Our BSP (s) HyPar (s) Totem (s) HyPar (s)

road_usa 7.92 0.66 8.13 5.80 11.63 8.66 – 26.74
lg 10.31 0.72 9.01 3.86 22.66 9.08 7.97 1.76
enwiki 16.87 1.44 18.78 7.30 53.13 22.06 14.53 2.73
dbpedia 14.90 1.18 19.94 7.82 39.96 14.56 14.72 2.70
uk-2002 19.67 1.48 11.23 5.10 24.86 15.18 5.84 2.38
R-MAT24 11.25 1.81 17.95 10.36 20.59 14.55 8.66 3.98
eu-2015 18.48 1.16 10.88 5.88 37.06 19.86 15.46 1.86
gsh 25.87 2.28 40.90 33.12 56.86 37.27 22.43 5.56
arabic 63.70 1.81 23.66 10.98 37.39 23.66 13.12 3.72
uk-2005 51.00 2.37 38.38 16.21 29.60 14.04 25.94 5.42
it-2004 57.53 2.60 40.94 19.63 38.12 36.72 24.77 5.56

Table 10
Performance comparison with Ligra in terms of execution times.
Graph TC CC

Ligra (s) HyPar (s) Ligra (s) HyPar (s)

road_usa 6.12 1.58 82.4 26.74
lg 14.8 3.74 1.73 1.75
enwiki 18.4 5.40 4.07 2.73
dbpedia 10.6 7.33 3.29 2.69
uk-2002 29.5 3.17 4.44 2.37
R-MAT24 6.17 6.05 3.89 3.98
eu-2015 469 196.43 2.08 1.86
gsh 424 242.31 6.85 5.56
arabic 211 20.64 5.46 3.64
uk-2005 – 14.04 9.34 5.39
it-2004 – 35.55 7.64 5.56

Table 11
Connected components: Comparison with Gunrock.

Graph Gunrock (s) HyPar (s)

road_usa 4,61 26.74
lg 2.17 1.75
enwiki 2.48 2.73
dbpedia 2.68 2.7

8. Conclusions and future work

This paper presented HyPar, a novel divide-and-conquer
model for hybrid CPU-GPU executions of graph applications.
Our experiments showed that our HyPar model provides equiv-
alent performance to the state-of-art, optimized CPU-only and
GPU-only implementations of the corresponding applications,
achieving up to 98% performance improvement. HyPar is also
shown to harness the power of GPUs for large graphs that cannot
be entirely accommodated in the GPUs, and hence cannot be
executed by the GPU-only implementations. HyPar also provides

up to 90% performance improvement over existing multi-core
and many-core graph processing frameworks. The advantage of
HyPar is that it is a generic tool into which evolving state-of-
art algorithms for specific devices can be integrated. In future,
we plan to extend our model for multi-node and multi-partition
executions.

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2019.05.014.

References

[1] S. Arifuzzaman, M. Khan, M. Marathe, PATRIC: A parallel algorithm
for counting triangles in massive networks, in: 22nd ACM Interna-
tional Conference on Information & Knowledge Management, 2013,
pp. 529–538.

https://doi.org/10.1016/j.jpdc.2019.05.014

20 R. Panja and S.S. Vadhiyar / Journal of Parallel and Distributed Computing 132 (2019) 8–20

[2] S. Beamer, K. Asanović, D. Patterson, Direction-optimizing breadth-
first search, in: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’12, 2012.

[3] T. Ben-Nun, M. Sutton, S. Pai, K. Pingali, Groute: An asynchronous multi-
GPU programming model for irregular computations, in: Proceedings of
the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2017, pp. 235–248.

[4] M. Bisson, M. Fatica, High performance exact triangle counting on GPUs,
IEEE Trans. Parallel Distrib. Syst. 28 (12) (2017) 3501–3510.

[5] P. Boldi, M. Rosa, M. Santini, S. Vigna, Layered label propagation: A
multiresolution coordinate-free ordering for compressing social networks,
in: S. Srinivasan, K. Ramamritham, A. Kumar, M.P. Ravindra, E. Bertino, R.
Kumar (Eds.), Proceedings of the 20th International Conference on World
Wide Web, 2011, pp. 587–596.

[6] P. Boldi, S. Vigna, The webgraph framework I: Compression techniques, in:
Proc. of the Thirteenth International World Wide Web Conference, WWW
2004, 2004, pp. 595–601.

[7] Ü. Çatalyürek, C. Aykanat, Patoh (partitioning tool for hypergraphs), in:
Encyclopedia of Parallel Computing, Springer, 2011, pp. 1479–1487.

[8] D. Chakrabarti, Y. Zhan, C. Faloutsos, R-MAT: A recursive model for graph
mining, in: Proceedings of the Fourth SIAM International Conference on
Data Mining, Lake Buena Vista, Florida, USA, April 22-24, 2004, 2004,
pp. 442–446.

[9] U. Cheramangalath, R. Nasre, Y.N. Srikant, Falcon: A graph manipulation
language for heterogeneous systems, ACM Trans. Archit. Code Optim. 12
(4) (2015) 54:1–54:27.

[10] T.A. Davis, Y. Hu, The university of florida sparse matrix collection, ACM
Trans. Math. Software 38 (1) (2011) 1.

[11] M. Deveci, E.G. Boman, K.D. Devine, S. Rajamanickam, Parallel graph
coloring for manycore architectures, in: Parallel and Distributed Processing
Symposium, 2016 IEEE International, 2016, pp. 892–901.

[12] C. Edwards, C. Trott, D. Sunderland, Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns, J. Parallel
Distrib. Comput. 74 (12) (2014) 3202–3216.

[13] I.J. Egielski, J. Huang, E.Z. Zhang, Massive atomics for massive parallelism
on GPUs, in: Proceedings of the 2014 International Symposium on Memory
Management, ISMM ’14, 2014, pp. 93–103.

[14] A. Gebremedhin, F. Manne, Scalable parallel praph coloring algorithms,
Concurrency, Pract. Exp. 12 (12) (2000) 1131–1146.

[15] A. Gharaibeh, L.B. Costa, E. Santos-Neto, M. Ripeanu, A Yoke of Oxen
and a thousand chickens for heavy lifting graph processing, in: Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
PACT ’12, Minneapolis, MN, USA - September 19–23, 2012, 2012,
pp. 345–354.

[16] P. Harish, P. Narayanan, Accelerating large graph algorithms on the GPU
using CUDA, in: International Conference on High-Performance Computing,
2007, pp. 197–208.

[17] M.A. Hassaan, M. Burtscher, K. Pingali, Ordered vs. unordered: A com-
parison of parallelism and work-efficiency in irregular algorithms, in:
Proceedings of the 16th ACM Symposium on Principles and Practice of
Parallel Programming, PPoPP ’11, 2011, pp. 3–12.

[18] S. Hong, H. Chafi, E. Sedlar, K. Olukotun, Green-marl: a DSL for easy and
efficient graph analysis, ACM SIGARCH Comput. Archit. News 40 (1) (2012)
349–362.

[19] G. Karypis, V. Kumar, A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of
Sparse Matrices, University of Minnesota, Department of Computer Science
and Engineering, Army HPC Research Center, Minneapolis, MN, 1998.

[20] Y. Kozawa, T. Amagasa, H. Kitagawa, GPU-Accelerated graph clustering via
parallel label propagation, in: Proceedings of the 2017 ACM on Conference
on Information and Knowledge Management, CIKM, 2017, pp. 567–576.

[21] J. Kunegis, Konect: the Koblenz network collection, in: Proceedings
of the 22nd International Conference on World Wide Web, 2013,
pp. 1343–1350.

[22] H. Lu, M. Halappanavar, D. Chavarría-Miranda, A. Gebremedhin, A. Kalya-
naraman, Balanced coloring for parallel computing applications, in: Parallel
and Distributed Processing Symposium, IPDPS, 2015 IEEE International,
2015, pp. 7–16.

[23] K. Madduri, D. Bader, GTgraph: A suite of synthetic random graph
generators, http://www.cse.psu.edu/~madduri/software/GTgraph.

[24] D. Merrill, M. Garland, A. Grimshaw, Scalable GPU graph traversal, in:
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’12, 2012, pp. 117–128.

[25] R. Nasre, M. Burtscher, K. Pingali, Data-driven versus topology-driven
irregular computations on GPUs, in: Parallel & Distributed Pro-
cessing, IPDPS, 2013 IEEE 27th International Symposium on, 2013,
pp. 463–474.

[26] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M.A. Hassaan, R. Kaleem,
T. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo, D. Prountzos, X. Sui, The
tao of parallelism in algorithms, in: Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2011, San Jose, CA, USA, June 4–8, 2011, 2011, pp. 12–25.

[27] A. Polak, Counting triangles in large graphs on GPU, in: Parallel and
Distributed Processing Symposium Workshops, 2016 IEEE International,
IEEE, 2016, pp. 740–746.

[28] A. Roy, I. Mihailovic, W. Zwaenepoel, X-stream: Edge-centric graph pro-
cessing using streaming partitions, in: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, 2013, pp. 472–488.

[29] J. Shun, G.E. Blelloch, Ligra: A lightweight graph processing framework for
shared memory, in: Proceedings of the 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’13, 2013,
pp. 135–146.

[30] C.L. Staudt, H. Meyerhenke, Engineering high-performance community
detection heuristics for massive graphs, in: Parallel Processing, ICPP, 2013
42nd International Conference on, 2013, pp. 180–189.

[31] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, J. Owens, Gunrock: A
high-performance graph processing library on the GPU, in: Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2016, Barcelona, Spain, March 12-16, 2016, 2016,
pp. 11:1–11:12.

[32] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, J.D. Owens, Gunrock: A
high-performance graph processing library on the GPU, in: Proceedings of
the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2016, pp. 11.

[33] M.M. Wolf, M. Deveci, J. Berry, S. Hammond, S. Rajamanickam, Fast linear
algebra-based triangle counting with kokkoskernels, in: 2017 IEEE High
Performance Extreme Computing Conference, HPEC, 2017, pp. 1–7.

[34] K. Zhang, R. Chen, H. Chen, NUMA-aware graph-structured analytics, in:
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, 2015, pp. 183–193.

[35] T. Zhang, J. Zhang, W. Shu, M.-Y. Wu, X. Liang, Efficient graph computation
on hybrid CPU and GPU systems, J. Supercomput. 71 (4) (2015) 1563–1586.

[36] J. Zhong, B. He, Medusa: Simplified graph processing on GPUs, IEEE Trans.
Parallel Distrib. Syst. 25 (6) (2014) 1543–1552.

Rintu Panja received his B.Tech degree from Institute
of Engineering and Management in 2012 and is now
doing his masters in Department of Computational
and Data Sciences, Indian Institute of Science. His
research interests include GPU computing, distributed
computing and parallel graph processing.

Sathish S. Vadhiyar is an Associate Professor in the
Department of Computational and Data Sciences, Indian
Institute of Science. He obtained his B.E. degree from
the Department of Computer Science and Engineering
at Thiagarajar College of Engineering, India in 1997 and
received his Master’s degree in Computer Science at
Clemson University, USA in 1999. He graduated with a
Ph.D. from the Computer Science Department at Uni-
versity of Tennessee, USA in 2003. His research areas
are building application frameworks including runtime
frameworks for irregular applications, hybrid execution

strategies, and programming models for accelerator-based systems, processor
allocation, mapping and remapping strategies for networks for different applica-
tion classes including irregular, multi-physics, climate and weather applications,
middleware for production supercomputer systems and fault tolerance for
large-scale systems.

http://refhub.elsevier.com/S0743-7315(19)30414-9/sb4
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb4
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb4
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb7
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb7
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb7
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb9
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb9
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb9
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb9
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb9
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb10
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb10
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb10
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb12
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb12
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb12
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb12
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb12
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb14
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb14
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb14
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb18
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb18
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb18
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb18
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb18
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb19
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb19
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb19
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb19
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb19
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb19
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb19
http://www.cse.psu.edu/~madduri/software/GTgraph
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb27
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb27
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb27
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb27
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb27
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb35
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb35
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb35
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb36
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb36
http://refhub.elsevier.com/S0743-7315(19)30414-9/sb36

	HyPar: A divide-and-conquer model for hybrid CPU–GPU graph processing
	Introduction
	Related work
	HyPar-API
	Partitioning the graph
	Independent computations
	Merge
	Post processing

	HyPar-runtime optimizations
	Ratio for graph partitioning
	Threshold for independent computations
	Parallel self-edge removal and modification of graph data structures
	Recursive invocation of partitioning-independent computations-merging
	Parallel subgraph formation

	Graph kernel optimizations
	Graph applications using HyPar
	Graph coloring
	Boruvka's MST
	Community detection
	Triangle counting
	Discussion

	Experiments and results
	Partitioning
	Performance improvements for each application
	Graph coloring
	Boruvka's MST
	Community detection
	Triangle counting

	Comparison with state-of-art graph processing frameworks and BSP models
	Comparison with hybrid CPU–GPU framework and BSP models
	Comparison with multi-core and many-core frameworks

	Analysis of phases

	Conclusions and future work
	Declaration of competing interest
	References

