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ABSTRACT
Efficient processing of large-scale graph applications on heteroge-

neous CPU-GPU systems require effectively harnessing the com-

bined power of both the CPU and GPU devices. Finding minimum

spanning tree (MST) is an important graph application and is used

in different domains. When applying MST algorithms for large-

scale graphs across multiple nodes (or machines), the existing ap-

proaches use BSP (bulk synchronous parallel) model involving

large-scale communications. In this paper, we propose a multi-node

multi-device algorithm for MST, MND-MST, that uses a divide-and-
conquer approach by partitioning the input graph across multiple

nodes and devices and performing independent Boruvka’s MST

computations on the devices. The results from the different nodes

are merged using a novel hybrid merging algorithm that ensures

that the combined results on a node never exceeds it memory ca-

pacity. The algorithm also simultaneously harnesses both CPU and

GPU devices. In our experiments, we show that our proposed algo-

rithm shows 24-88% performance improvements over an existing

BSP approach. We also show that the algorithm exhibits almost lin-

ear scalability, and the use of GPUs result in upto 23% improvement

in performance over multi-node CPU-only performance.
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1 INTRODUCTION
Graph processing has been prevalent in recent years since graph

algorithms and abstractions are frequently used to perform analysis

in diverse networks such as social, transportation and biological

networks. Real world networks are often very large in size resulting

in graphs with several hundreds of thousands to billions of vertices

and edges. Processing such large-scale graphs is challenging and

require effectively harnessing the power of multiple nodes and

devices.

Finding minimum spanning tree (MST) is one of the important

graph applications and is used to solve different problems like very

large scale integration design, design of networks and approximat-

ing several problems like travelling salesman problem, maximum

flow problem, weighted perfect matching problem etc. For find-

ing MST on large graphs, multiple nodes with distributed memory

parallelism have to be employed in which the graph is partitioned

across the nodes. Existing distributed memory MST algorithms em-

ploy a bulk synchronous parallel (BSP) model in which the graph

processing is organized into supersteps and the nodes synchronize

and communicate at the end of every superstep [12, 17, 20]. Such

BSP models can involve heavy communications, thus impacting

performance, and can also cause under-utilization of resources.

To avoid such frequent communications, graph applications will

have to be formulated to independently execute the algorithmic

steps in multiple devices. This will enable effectively harnessing

the combined power of CPU and GPU in heterogeneous systems

and reducing the number of messages across different cluster nodes

and devices.

In this paper, we propose a distributed memory multi-node multi-

device MST algorithm that follows a divide-and-conquer paradigm.

The algorithm first partitions the graph across the compute nodes

and further partitions the graph for the CPU and GPU devices in a

single node. We invoke Boruvka’s MST algorithm on each device

for completely independent processing on the devices. The indi-

vidual results formed on the multiple nodes are then merged using

a novel hierarchical merging algorithm. The merging algorithm

ensures that at any point, any intermediate merged result formed

on a node does not exceed the memory capacity of the node, thus

facilitating the exploration of large-scale graphs. Our algorithm

also harnesses the combined power of both the CPU cores and

GPUs on multiple nodes by simultaneous executions on all the

devices. Our algorithm uses our HyPar framework, consisting of

an API and runtime strategies for efficient CPU-GPU executions.

The runtime strategies include termination of the independent com-

putations on the devices based on diminishing benefits, efficient
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modification of graph data structures in heterogeneous(CPU and

GPU) environments and recursive invocation of the steps. We also

employ different kernel optimizations including hierarchical pro-

cessing of graphs with power-law distributions of vertex degrees

and minimizing atomic accesses.

In our experiments, we show that our proposed algorithm shows

24-88% performance improvement over an existing BSP approach,

with 40-92% reduction in communication times. We also show that

the algorithm exhibits almost linear scalability for large size graphs

that can not be accommodated in a single machine. We also show

that the use of GPUs results in upto 23% improvement in perfor-

mance over multi-node CPU-only performance.

Following are the primary contributions of our work.

(1) We propose a novel divide-and-conquer approach for large-

scale graph explorations using multiple nodes in which BSP

has almost become a de-facto approach.

(2) Our algorithm involves a novel hierarchical merging that

avoids the single-node space complexity bottlenecks of the

usual merging strategies.

(3) The divide-and-conquer strategy, implemented using our

HyPar framework involving simple API and efficient runtime

strategies, can simultaneously harness multiple devices on

multiple nodes.

(4) With thesementioned capabilities of our approach, ourmulti-

node multi-device MST algorithm gives large-scale improve-

ments over an existing BSP approach, exhibits good scalabil-

ity, and demonstrates the performance benefits in utilizing

both the CPU and GPU devices.

Section 2 gives related work in the area of parallel MST on differ-

ent architectures. Section 3 describes our multi-node multi-device

MST algorithm including the different steps of partitioning, inde-

pendent computations and merging, and single node optimizations.

Section 4 gives implementation details including our HyPar API and

runtime strategies. Section 5 explains our experiments and results,

including comparisons with an existing BSP approach, scalability

analysis, and performance of our multi-node CPU-GPU executions.

Section 6 gives conclusions and our future plans.

2 RELATEDWORK
Parallel Boruvka’s Minimum Spanning Tree in shared memory

multi-core architecture was presented in [3, 6]. Galois[16] is a sys-

tem for multi-core environments that incorporates the concept of

operator formulation model in which an algorithm is expressed in

terms of its action (or operator) on data structures.

One of the earliest works of Boruvka’s MST on GPUs was by

Vineet et al.[18]. An improved version was presented in Lonestar-

GPU framework[14] using data-driven approach in which the GPU

threads only explore the active vertices. The work by Sousa et al. [7]

has shown performance improvements over Lonestar-GPU using

effective graph contraction technique. The work by Pai et al.[15]

presented optimized GPU kernels with different execution policies

on GPU. Gunrock[19] is a single node multi-GPU framework which

supports effective switching between vertex and edge frontiers.

Pregel[12] is an open source framework that follows BSP method

to communicate among processors in a distributedmemory environ-

ment. It organizes the computation into supersteps and communi-

cation is done after each superstep. GPS[17] is a popular framework

which has explored MST application using a modified version of

BSP approach. It uses a strategy called LALP (Large Adjacency

List Partitioning) in which the high degree vertices are partitioned

across machines. It also uses dynamic re-partitioning as the super-

step progresses to balance the workloads. Pregel+[20] is another

distributed framework which has explored minimum spanning for-

est application and has shown to outperform GPS. This framework

also uses a modified version of BSP approach including strategies

such as vertex mirroring and message combining with request re-

sponse API to facilitate message pulling from remote vertices. It

has also shown to outperform other existing popular distributed

frameworks including Giraph[1] and PowerGraph[10] which have

also tried to improve upon BSP approach. These approaches involve

large communication and synchronization overheads.

3 MULTI-DEVICE MST ALGORITHM
The minimum spanning tree (MST) of a connected graph is the

subset of edges that connects all the vertices such that the total sum

of the weights of the edges of the subset is minimum among all such

possible subsets. If the graph is disconnected then it finds minimum

spanning tree within each connected parts and the collection of

trees form minimum spanning forest (MSF). Given a graph G with

V number of vertices and E number of weighted edges, the MST

algorithm finds a subset V ′ which contains V − 1 edges (if the

graph is connected) or V − k edges (if the graph has k connected

components).

Our multi-device algorithm is based on Boruvka’s MST algo-

rithm. Boruvka’s algorithm forms minimum spanning tree (MST)

by iteratively finding lightest edges from a component and merg-

ing two components (or endpoints) connected by a lightest edge.

Initially, all the vertices form single-vertex components. In each

iteration, for each component, the lightest edge connecting the

component with another component is found. The components

that form the end points of the lightest edge are then merged to

form larger components. This operation is called edge contraction.
This process is repeated until a single component containing all

the vertices are formed. The edges that are contracted across all the

iterations constitute the minimum spanning tree (MST).

Our multi-device algorithm consists of several steps including

partitioning, independent computations, and hierarchical merging.

The following sections describe these steps.

3.1 Partitioning
We have used the method explored by Gemini framework [21] for

reading the graph in parallel by MPI processes. At first, each MPI

process calculates the read offset using the rank of the process and

reads from the input file. Then, the processes calculate the degrees

of all the vertices globally using allreduce operation. Based on the

degrees, a 1D partitioning scheme is used to balance the number of

edges across computing units. As shown in [21], many large-scale

real world networks posses natural locality where adjacent vertices
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are likely to be stored close to each other. Hence contiguous 1D

partitioning effectively preserves the locality of these networks.

Within a node, we divide the graph into two partitions for the

CPU and GPU based on the proportional performance of the given

application for the given graph for the two devices. We once again

employ 1D block partitioning in which we divide the CSR (Com-

pressed Sparse Row) arrays representing the graph into two con-

tiguous segments based on the ratio of CPU and GPU performance

for the application.

After partitioning, each processor maintains information on the

ghost edges. A ghost edge connects a boundary vertex of a parti-

tion to a vertex of another partition, called the ghost vertex. Each

processor maintains the information on the ghost edges in a hash

table indexed on the processor id of the ghost vertex. This hash

table is called ghostList. For a processor to build its hash table, it has

to receive the ghost vertices from the other processors. Since the

number of boundary vertices can be large, the processors commu-

nicate these boundary vertices in multiple phases. After receiving

the ghost vertices from the other processors, a processor parallely

updates the ghostList using multiple threads that simultaneously

process different boundary vertices.

3.2 Independent Computations on Multiple
Devices

After partitioning the graph, we perform independent computa-

tions on the multiple devices of different nodes by invoking the

Boruvka’s MST algorithm independently on each device with the

partition assigned to the device as the input graph. While perform-

ing independent Boruvka’s MST algorithm onmultiple devices, care

must be taken to ensure that such independent computations do

not result in incorrect results. For example, considering a partition

of the graph as a subgraph and passing this subgraph as graph input

to a Boruvka’s MST implementation will result in incorrect results

since the lightest edge from a component in a partition can connect

to a vertex in another partition, i.e., can be a cut edge. We formulate

a novel multi-device Boruvka’s MST algorithm in which we add an

exception condition to the underlying independent Boruvka’s MST

computation. Specifically, during the iterative process of Boruvka’s

MST, if the lightest edge from a component is a cut edge, we stop

the component from further expanding and proceed with the other

components. Hence, at the end of the independent Boruvka’s MST

in a partition on a device, multiple components are obtained as

output.

An example input graph is shown in Figure 1. Figure 2 shows

the partitions formed on four devices, and components formed in

each partition due to independent computations. We find that for

partition 2, the the lightest edge for vertex 7 is to a component in

partition 1. Hence, its component is not expanded further.

3.3 Merging
After the independent computations, the results formed on the

different devices will have to be merged. This consists of two parts:

1. reducing the data structures to represent the smaller number of

components, and 2. merging of the components of the different

devices.
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Figure 1: An Example Graph

Reducing the data structures consists of removal of self-edges

and multiple edges. For subsequent stages, only inter-component

edges are needed. The intra-component edges, called self edges, are
removed in parallel by the multiple devices. Similarly, for a pair of

components, only the lightest edge between the component needs

to be retained. The other edges between the vertices of the two

components can be removed. We denote this as multi-edge removal.
For multi-edge removal, each component chooses a representative

vertex as a parent vertex. For identifying multi-edges between two

components residing in two different processors, the information

related to the components of the ghost vertices of the processors

must be communicated to each other. This information is com-

municated in the form of the parent ids. Thus, each of the two

processors first obtains the corresponding ghost edges by indexing

on the processor id of the other processor in its ghostList hash

table, updates the parent information or component index of its

boundary vertices in the ghost edges, and sends this information to

the other processor. The receiving processor then uses the parent

ids of the ghost vertices, retains only the lightest edge between

the two components and removes the other edges. The commu-

nication of the ghost vertices happen in multiple phases due to

the potentially large number of boundary vertices. We make use

of another hash table to maintain minimum weight edge between

a pair of components. We explore the vertices in parallel, obtain

their adjacency list and update the hash-table with the minimum

weighted edges to the other components.

3.4 Hierarchical Merging of Components in
Different Processors

The components formed in the different devices will have to be

merged to form larger components. One way is to make all the

devices communicate their components to a single node and per-

form independent computations by invoking Borouvka’s MST on

all the components in the single node. However, this strategy has

two drawbacks: 1. in many cases, a single node will not be able to

accommodate all the components formed in all the devices, and 2.

merging in a single node results in under-utilization of the other

devices.

We propose a novel hierarchical strategy in which we first form

groups of active processors. Initially, all the processors are denoted
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Figure 2: Partitions and independent computations for four Devices. The shaded regions denote the components. Ghost ver-
tices for a partition are represented as unshaded double-line vertices.

as active. We experimented with different group sizes of 2, 4, 8 and

16, and chose a group size of 4 based on average performance. In

each group, the processors exchange some of their components and

perform collaborative merging of the components by performing in-

dependent computations. The method is inspired by Rabenseifner’s

algorithm for reduce and allreduce [2]. The fundamental concept in

Rabenseifner’s algorithm is to divide the input array in each proces-

sor into segments, exchange the segments between the processors,

and perform simultaneous reduction operations with respect to dif-

ferent segments on different processors. For example, considering

two processors, P0 and P1, with input arrays A and B, respectively,
processor P0 divides its array into two equal segments, A1 and A2,
and P2 similarly forms two segments B1 and B2. P0 then sends A2
to P1, and P1 sends B1 to P0. The processors then parallely perform

reduction operations with respect to the two segments: P0 performs

reductions with A1 and B1, and P1 performs reduction operations

with A2 and B2.
For MST, the processors in a group divides its components into

segments and exchange the segments. The segments are formed

such that a processor will be able to accommodate at least one seg-

ment it receives from another processor in addition to the segments

that it contains. Unlike the reduction operations, the segments in

one processor can have dependencies with multiple segments of

another processor, since a component can have connections to mul-

tiple components. Hence, we follow multiple rounds of exchanges

between the processors.

We follow a ring-based communication, in which a processor,

Pi , receives a segment of components from its right neighbor,

P(i+1)modP , and sends one of its segments to its left neighbor,

P(i−1)modP . The processors then simultaneously perform indepen-

dent computations by invoking Boruvka’s MST with its new set

of components consisting of its own and the received set of com-

ponents. We continue this ring-based communication and collab-

orative merging until all the components in a group can be ac-

commodated in a single node, designated as the group leader, and

based on a threshold, as described in Section 4.3.4. At this stage, the

processors communicate their components to their group leader,

which then performs independent computations using Boruvka’s

MST on all the components.

In the next stage, the leaders are designated as active processors,

and groups are formed out of the leader processors. We then con-

tinue the above procedure of group based collaborative merging

using these newly formed groups. This process continues until

only one active processor remains at which stage the remaining

components are moved to this processor. The single processor then

performs independent computations using Boruvka’s MST algo-

rithm with the remaining components to form the final result.

The working of the hierarchical merging is illustrated in Figure

3. Level 1 in the figure shows the reduced graph after independent

computations followed by self edge and multi edge removal of the

partitioned graphs shown in Figure 2. We explain the ring-based

collaborative merging with a group size of 2 in Figure 3. For parti-

tion 2, components 5 and 7 are divided into segments and one of

the segments corresponding to component 5 is exchanged with par-

tition 1. Similarly, partition 3 exchanges its segment corresponding

to component 11 with partition 4 and receives component 13 from

partition 4. Level 2 shows the updated graph after the exchange.

Then each of the partition performs independent computations, self

edge and multi edge removal. After these steps, the components in

a group are merged to the leader of the group. Level 3 shows the

updated data after merging. We again perform independent com-

putation steps on the leader nodes and follow the same strategy for

exchanging segments and collaborative merging but in a different

group with only the leader nodes. Level 4 shows the updated data

after the exchange in leader nodes. We follow the same strategy up

to the level of hierarchy until the data is merged to a single node.

Level 5 shows the final level of the hierarchy containing the final

merged data in a single partition. Boruvka’s MST kernel is invoked

on this partition to compute the final set of lightest edges among

the remaining components.

3.5 Single Node CPU-GPU Executions
For executions within a single node, the above steps are carried

within the node where the partition assigned to the node is further

divided into CPU and GPU partitions. Both the devices then per-

form independent computations using Boruvka’s MST algorithm

and self-edge removal. They also communicate ghost edges and

perform multi-edge removal. The components are then merged in

one of the devices and post processing is performed as described in

section 4.1. The CPU algorithm is based on Galois’ implementation

[16]. The GPU algorithm uses the worklist based approach with

generic optimizations. We performed different optimizations in

implementation of the graph kernel functions, primarily related to

GPU kernels.
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Figure 3: Illustration of hierarchical merging. Ghost vertices for a partition are represented as unshaded double-line vertices.

Hierarchical Strategy for ProcessingAdjacency List: For large
real-world graphs which often has varying degree distribution,

exploring adjacency of every vertex by a single thread can result

in under-utilization of GPU resources. We employ a hierarchical

strategy to assign different number of threads to explore adjacency

of a vertex depending on its degree [13].

Data-driven and Worklist Approach: The GPU computations

can be organized as topology-driven or data-driven computations. In

the topology-driven algorithms [11], GPU threads are spawned for

all nodes in a graph, while in the data-driven algorithms[14], work-

lists are built dynamically and threads are spawned corresponding

to only active elements/nodes that have to be processed in a time

step. We use the data-driven approach in all our applications.

Reducing Global Atomic Collisions: Many graph operations

require atomic accesses to a global memory unit. It is important

to reduce these atomic accesses, since atomic constructs serialize

the code, are expensive and may cause impact in performance. For

our applications, we minimized the number of atomic accesses by

batching atomic accesses into a single atomic access and performing

hierarchical atomic accesses [9].

We also minimized the time CPU-GPU data transfers by identi-

fying different parts of the independent computations in the GPU

and the different data needed by the computations, and overlapping

parts of the computations with the transfers of data that are not

needed by the computations using cudaStream.

CPU Optimizations: Galois [16] is a programming approach that

uses amorphous data-parallelism that involves defining active ele-

ments, and applying operators on the active elements. It uses the

data-driven approach of maintaining a worklist of active nodes. For

our CPU based implementation of all our graph kernels, we have

used the Galois data-driven and unordered worklist based approach

using OpenMP threads.

4 IMPLEMENTATION
Our distributed multi-device MST algorithm has been implemented

on our framework, calledHyPar, a programming and runtime frame-

work for hybrid CPU-GPU executions of graph applications. The

framework provides a simple and generic API containing a small

number of functions. The framework is supported with efficient

hybrid runtime strategies including termination of the indepen-

dent computations on the devices based on diminishing benefits,
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efficient modification of graph data structures during merging and

recursive invocation of the steps.

4.1 HyPar API
HyPar provides four functions corresponding to the steps of multi-

device graph processing. The API functions are shown in Table

1.

4.1.1 Partitioning the Graph. The partGraph function divides

the graph into partitions for the devices using 1D block partitioning

and based on the proportional performance of the given application

for the given graph for the devices.

4.1.2 Independent Computations. After partitioning the graph,

our framework sends the respective partitions to the devices. The

indComp function then executes the application independently

on the devices without any communication between the devices.

Within each node, we assign one of the CPU threads, denoted as

GPUdriverThread, to drive the GPU execution, and the other CPU

threads, denoted as processingThreads, for executing the CPU multi-

core version.

The indComp function also has an optional excpCond argument.

Note that the independent computation on a device involves ex-

ecution of a graph application/algorithm like BFS, MST etc. on a

partition assigned to the device. However, execution of the original

graph algorithm as such while treating the partition as the com-

plete graph input needed by the algorithm will lead to incorrect

results. The original algorithm has to be modified such that cer-

tain edges or vertices of the partition subgraph are not processed

while performing the steps of the algorithm. This is enabled by

the excpCond argument that specifies an exception condition. For

example, an exception condition of EXCPT_BORDER_VERTEX
specifies that the algorithmic steps should not be performed for

the border vertices of the partition. Our framework also provides

EXCPT_BORDER_EDGE exception condition.

4.1.3 Merge. ThemerдeParts function merges the results ob-

tained on the devices due to the independent computations. In

each node, our framework copies the required information from

the GPU device to the host and merges to an internal data struc-

ture. After merging, we update the graph data structure in the CPU

using optimized parallel graph update functions implemented in

our framework. In MST, we contract each component to a single

vertex and remove all the internal edges of the community using

parallel thread operations. We also remove multiple edges across

the communities.

4.1.4 Post Processing. After the merge step, if the remaining

graph data size is reasonably small the framework runs the algo-

rithm given by the postProcessKernelName on one of the devices

using the remaining data. The final output is made available in the

CPU in the f inalOutput argument.

4.2 Multi-Node Multi-Device MST with HyPar
Algorithm 1 shows the multi-node multi-device MST (MND-MST)

algorithm using HyPar API.

Algorithm 1 MND-MST algorithm using HyPar

1: procedure mergeParts(G, current_set, cpuRep, rank, nProcessors, ghostList)
2: removeSelfEdges(G, current_set, cpuRep)

3: createGhostMessage(G,ghostList,cpuRep,rank)

4: sendGhostMessage(G, ghostList, cpuRep, rank, nProcessors)

5: removeMultiEdges(G, current_set, cpuRep)

6: gEdges← calculate G.edges in a group

7: if дEdдes > threshold then
8: exchangeSegmentsWithinGroups(G, current_set, cpuRep, rank, nProcessors)

9: else
10: return mergeGroup = true

11: end if
12: end procedure
13:

14: procedureMST(G)

15: MPI_Instance newMPI(argc,argv)

16: G=readGraph(inputFile, nVertices, rank, nProcessors);

17: partRatio← partGraph(G)

18: initRep(G,cpuRep) ▷ Initialize with vertex id

19: repeat
20: Initialize ghostList data structure

21: makeGhostInformation(G,current_set,ghostList,rank,

22: nProcessors)

23: indComp(G,current_set,cpuRep,EXCPT_BORDER_VERTEX)

24: mergeParts(G,current_set, cpuRep, rank, nProcessors, ghostList)

25: ifmerдeGroup then
26: mergeGraph(G,current_set, cpuRep, rank, nProcessors, groupSize)

27: end if
28: until data is gathered to a single machine

29: postProcess(G,current_set,cpuRep,EXCPT_BORDER_VERTEX,

30: finalOutput)

31: end procedure

4.3 HyPar Runtime
HyPar follows several runtime strategies for realizing the APIs for

efficient multi-device executions.

4.3.1 Ratio for Graph Partitioning. We assume a homogeneous

set of nodes in which the graph is partitioned equally among the

nodes. Within a node, to determine the ratio of CPU-GPU perfor-

mance, we form a small number of different induced subgraphs (for

our study, we used 5-10 subgraphs), execute each subgraph on both

CPU and GPU, find the performance ratio, and obtain an average of

the ratios for the subgraphs. Each subgraph is generated randomly

such that the number of vertices in the subgraph is 5% of the total

number of vertices in the original graph. In addition to performance,

we also take into account the GPU memory requirements for the

problem.

4.3.2 Threshold for Independent Computations. The indepen-
dent computations are performed on the devices over several it-

erations. In some applications, the size of the problem used for

the independent computations decreases with the iterations. For

example, the number of components in the MST application de-

creases over time. After a certain threshold, it is advantageous to

stop the independent computations and proceed with the merging

step since, after this threshold, independent computations may im-

pact the performance due to the lack of sufficient parallelism on

both the devices. Our HyPar-runtime automatically detects this

threshold by observing the trend in execution times of the indepen-

dent computations over multiple iterations. When the execution

time does not show further decrease, the runtime automatically

switches to performing the merging step.

4.3.3 Recursive Invocation of Partitioning - Independent Com-
putations - Merging. After merging within a node, we update the

graph data structure and keep only the required vertices and its

outgoing edges. Using experiments we found that if the reduced
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Function Remarks
par tGraph (дraph) Partitions the graph into multiple partitions for multiple nodes, and within each node creates two partitions for the

CPU and the GPU.

indComp (дraph,
current_set, indCompResult, excpCond )

Performs independent computations of a graph kernel on the partitions. Returns the result in indCompResult .

merдePar ts (дraph,
current_set, indCompResult,
rank, nProcessors, дhostList )

Merges the results from the independent computations on the devices and communicates ghost vertices.

postProcess (дraph,
current_set, indCompResult,
excpCond, f inalOutput )

Performs post-processing by executing the kernel on the vertices in current_set and the final result is available

in f inalOutput .

Table 1: HyPar-API Functions

graph after the merge step is sufficiently large, it is beneficial to in-

voke independent computations again using the reduced graph. Our

HyPar-runtime follows this recursive approach by again partition-

ing the reduced graph using already calculated partitioning ratio

and followed by indComp andmerдeParts steps. For our current
work, we use the number of edges in the reduced graph (specifi-

cally, a threshold of 100 million edges) to decide to continue with

recursion or to move to the post processing step.

4.3.4 Threshold For Hierarchical Merging. Our multi-node algo-

rithm has a phase of exchanging segments between the processors

in a group using a ring-based algorithm, and performing indepen-

dent computations and collaborative merging with the new set of

segments. It then switches to a phase of moving all the segments in

the group to the group leader and performing independent compu-

tations. Our HyPar runtime automatically switches from the former

to the latter phase if the size of the data in the group is less than a

threshold. To find the threshold we use a simple strategy based on

a convergence criteria. If after exchange of segments and collabora-

tive merging, the size of the data does not reduce significantly, the

exchanges between the processors of the group are stopped and

the data is merged to the leader.

5 EXPERIMENTS AND RESULTS
5.1 Experimental Setup
We have uses two platforms for our experiments. We have used a 16

node cluster consisting of AMD Opteron(tm) 3380 processor. Each

node is equipped with 8 CPU cores operating at 2.6GHz and 32GB

of Main Memory. We have also used a CrayXC40 supercomputing

system to evaluate our multi-device code. We use 16 nodes and

each node is equipped with one Intel Xeon Ivybridge E5-2695 v2

processor and one Nvidia Tesla K40 GPU accelerator card. The CPU

processor has 12 cores running at 2.4GHz with 64GB main memory.

The accelerator card has 2880 cores with 12GB Device Memory.

The graphs used in our experiments are shown in Table 2. The

graphs were obtained from the University of Florida Sparse Matrix

Collection [8] and the Laboratory for Web Algorithmics [5][4]. As

shown in the table, we have used several real world graphs from

different categories and having different characteristics including

varying degrees for our experiments. All the graphs are large-sized

graphs with mostly billions of edges that cannot fit within a single

node. We have converted these graphs to undirected graphs and

assigned random weights to the edges. All the results shown are

obtained using averages of three runs.

Graph |V | |E | Approx.
Diam.

Avg.
Deg.

Max.
Deg.

road_usa 23.9M 57.7M 6262 2.41 9

gsh-2015-tpd 30.8M 1.16B 9 37.73 2176721

arabic-2005 22.7M 1.26B 29 55.50 575662

it-2004 41.2M 2.27B 27 55.01 1326756

sk-2005 50.6M 3.62B 17.56 71.49 8563816

uk-2007 105M 6.60B 22.78 62.76 975419

Table 2: Graph specifications. In the table, M stands for mil-
lion and B stands for billion.

Graph Pregel+
Exe
Time

Pregel+
Comm
Time

MND-MST
Exe Time

MND-MST
Comm
Time

road_usa 113.19 76.82 21.56 8.07

gsh-2015-tpd 112.53 79.09 84.49 47.29

arabic-2005 93.26 67.95 19.83 9.52

it-2004 161.09 113.99 40.20 15.95

sk-2005 272.04 207.49 45.78 17.96

uk-2007 523.63 321.73 60.39 24.53

Table 3: Performance Comparison with Pregel+

5.2 Comparison with Pregel+ [20]:
To compare with Pregel+, we have run our experiments on the

AMD cluster. We have run Pregel+ on 16 nodes with 8 workers on

each node and one of the machines acted as the master while the

other nodes acted as slaves. We compiled Pregel+ with Hadoop-

2.6.1 and gcc 4.8.5. We ran our multi-node CPU only version of

MND-MST with 8 OpenMP threads on each node. Table 3 shows

the comparison results with Pregel+.

As shown in Table 3, our MND-MST version achieves a perfor-

mance improvement of 75-88% over Pregel+ except for gsh-2015

graph. For gsh-2015 graph we achieve 24% performance improve-

ment. As shown in the table, we get these large scale benefits over

Pregel+ due to the reduction of communication time. Pregel+ fol-

lows BSP approach and has large communication and synchro-

nization overheads. Our MND-MST algorithm improves the com-

munication time over Pregel+ by 85-92% with an average of 89%

except for the gsh-2015 graph. For the gsh-2015 graph, we obtain

about 40% reduction in communication time. We get relatively less

performance improvement for gsh-2015 because the independent

computations do not yield large components for this graph. Hence,

it requires more number of exchange of segments and collaborative

merging in a group at initial iterations thereby increasing com-

munication time. For the other graphs, the MND-MST algorithm



ICPP 2018, August 13–16, 2018, Eugene, OR, USA Rintu Panja and Sathish Vadhiyar

●

●

●

Number of Nodes

E
xe

 T
im

e
 (

s
e

c
o

n
d

s
)

●

● ●
●

Pregel+

MND−MST

1 4 8 16

0
5

0
1
0

0
1

5
0

2
0

0
2

5
0

3
0

0

(a) arabic-2005

●

●

●

Number of Nodes

E
xe

 T
im

e
 (

s
e
c
o

n
d
s
)

●
●

●

Pregel+

MND−MST

1 4 8 16

0
1

0
0

2
0

0
3

0
0

4
0
0

5
0

0
6
0

0

(b) it-2004

Figure 4: Inter-node Scalability of Pregel+ and MND-MST

Nodes arabic-2005 it-2004
1 52.60

4 24.82 55.92

8 23.62 47.80

16 19.88 40.20

Table 4: Performance of MND-MST with increasing number
of Nodes

forms larger components in indComp routine and achieves larger

performance benefits over the prevalent BSP approach.

Figure 4 shows the scalability comparison of MND-MST with

Pregel+ upto 16 nodes. Pregel+ obtains good scalability from 4 to 8

nodes for both the graphs shown in the figure. But the scalability

improvement comes with added overheads. Due to these overheads,

we are not able to run Pregel+ for arabic-2005 graph in a single

node, as shown in Figure 4(a). Our single node MND-MST version

completes faster than Pregel+ on 16 nodes. Table 4 shows the total

execution time of MND-MST with increasing number of nodes

in the AMD cluster. As shown in the table, for arabic-2005 graph

we obtain 2.12x performance improvement on 4 nodes and 2.64x

performance improvement on 16 nodes compared to our single

node version.

In BSP approaches, the computing processes need to communi-

cate after every superstep. Thus BSP approaches can incur large

communication and synchronization overheads. As shown in Figure

5, for both of these graphs, Pregel+ takes more time for inter-node
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Figure 5: Computation vs Communication for Pregel+ and
MND-MST

communications rather than doing useful computations. For 16

nodes, it spends about 75% of the total execution time for commu-

nications, and only 25-32% in useful computations. We obtain large

scale benefits over Pregel+, as in our novel divide-and-conquer

strategy for multi-node execution, the processors spend 62-75% of

the execution time in performing useful computations.

5.3 Scalability for CPU-only MND-MST
In this section, we analyze the scalability of MND-MST CPU-only

version on the Cray cluster. Figure 6 shows the scalability for the

large graphs. As shown in the figure, we obtain good scalability for

these graphs. We could not accommodate the last two graphs in

a single node of the Cray cluster. For sk-2005 graph, we achieve

speed up of 1.31 and 1.9 for 8 and 16 nodes, respectively, compared

to 4 nodes. The scalability is even larger for the uk-2007 graphs

with speedups of of 1.54 and 2.11 at 8 and 16 nodes, respectively,

compared to 4 nodes.

For road_usa graph, we obtain slowdowns for larger number

of nodes. As the size of the graph is very small, with increasing

number of nodes ,it requires very less time for computations and

takes more time in communications. This is illustrated in Figure

7. For this graph, with more number of partitions, the indComp
kernel has less work and most of the work is done by postProcess
kernel. The MND-MST algorithm is not able to form larger com-

ponents and the algorithm has to rely on postProcessor kernel
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Figure 6: Scalability of CPU only MND-MST on Cray

when the reduced data is merged to a single node. For gsh-2015

graph, we obtain slow down on 4 nodes compared to its single

node performance. But, we obtain speedups with further increase

in the number of computing nodes. This is explained in Figure 7.

For gsh-2015 the indComp kernel forms many smaller components

on each node. Hence, it requires more number of iterations for

hierarchical merging. As hierarchical merging requires exchanges

of segments with computing nodes, it also takes significant time

for communication as shown in the figure. With increasing number

of nodes, the work for indComp kernel even decreases. But as the

data structures are reduced after each indComp routine, the size of

the data reduces at lower levels of the hierarchy with the help of

more computing nodes. Hence, it takes lesser time for communica-

tion with increasing number of nodes. As smaller components are

formed, the work for postProcess kernel increase with increasing

number of nodes. For the larger size graphs, most of the execution

time is for the indComp kernel. As shown in Figure 7, for uk-2007

graph, the processors are mostly involved in performing indComp.
As large size components are formed in each partition, very less

times are taken for for communications and the postProcess kernel,
thereby achieving good scalability.

5.4 Scalability for Multi-device(CPU-GPU)
Execution

Next, we analyze the scalability of MND-MST CPU-GPU version

and compare withMND-MSTCPU only version. As shown in Figure

8, we find good scalability with our CPU-GPU version. We utilize

the GPUs only for indComp and possibly for postProcess kernel in
the distributed environment as explained in Section 4.1. As shown

in Figure 8(a), our CPU-GPU version gives 14% performance im-

provement over the our CPU-only version for the it-2004 graph

in a single node. With the increase in the number of nodes, the

amount of computations by the indComp kernel decreases. Hence,

the performance improvement is only 10% over our CPU-only ver-

sion for 16 nodes. For large size graphs, as the indComp kernel

requires more time we obtain larger benefits by involving GPU.

This is shown in Figure 8(c), where we obtain we obtain 15.5%

performance improvement on 4 nodes for the uk-2007 graph. The

scalability of it-2004 and uk-2007 graphs follows the same pattern.

For sk-2005 graph we obtain 15% performance improvement over

gsh−2015 road_usa uk−2007
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Figure 7: Execution Time for Different Phases

CPU-only version for upto 8 nodes, but with 16 nodes both the

CPU-only and CPU-GPU versions perform equivalently. Overall,

with our CPU-GPU version of MND-MST, we obtain performance

improvements upto 23% with an average of 9% over the CPU-only

version for all the graphs in Table 2.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a novel strategy for Minimum Spanning

Tree algorithm on multi-node multi-device settings, with divide-

and-conquer approach. Our experiments show that our novel strat-

egy provides average performance improvements of 71% over the

state-of-art, best performing distributed approach which follows

Bulk Synchronous Processing(BSP) method for inter-node com-

munications. Our method improves over the communication and

synchronization cost involved with BSP using the strategy of inde-

pendent processing and obtains good scalability. When extended
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Figure 8: Scalability Comparison of MND-MST CPU only and MND-MST CPU-GPU versions on Cray

to multiple devices in distributed settings, we obtain performance

improvements upto 23% over our CPU-only version. We plan to

extend this work to to implement more graph applications in future.

We also plan to develop APIs and runtimes for graphs applications

that are not amenable for divide-and-conquer executions.
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