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Abstract—In this paper, we discuss the acceleration of a climate
model known as the Community Earth System Model (CESM).
The use of Graphics Processor Units (GPUs) to accelerate
scientific applications that are computationally intensive is well
known. This work attempts to extract the performance of GPUs
to enable faster execution of CESM and obtain better model
throughput. We focus on two major routines that consume the
largest amount of time namely, radabs and radcswmx, which
compute parameters related to the long wave (infra-red) and
short wave (visible and ultra-violet) radiations respectively. We
propose a novel asynchronous execution strategy in which the
results computed by the GPU for the current time step are
used by the CPU in the subsequent time step. Such a technique
effectively hides computational effort on the GPU. By exploiting
the parallelism offered by the GPU and using asynchronous
executions on the CPU and GPU, we obtain a speed-up of about
26× for the routine radabs and about 5.6× for routine radcswmx.

I. INTRODUCTION

The importance of climate to energy usage and agriculture
has made it a prominent field of study. Climate models predict
temperature changes, winds, radiation, relative humidity and
other such factors. Climate study is carried out based on the
mathematical models of the physical processes. These models
generally have a lot of computational intensive routines that
require a lot of computing power.

Climate models simulate the interaction of the various
components of the climate such as atmosphere, land, ocean and
ice. These different components interact with each other by the
exchange of energy, momentum and matter. There are a variety
of models that vary in their degree of complexity. Physical
processes like radiation, circulation and precipitation interact
with chemical and biological processes to form a complex
dynamic system. The length and time scales involved are
diverse. The climate models use the equations of conservation
of mass, momentum, energy and species to model the various
components of the climate. Numerical methods are used
extensively to solve these equations.

A. Model Details

One such climate model is the Community Earth System
Model [1]. This is developed and maintained by the National
Center for Atmospheric Research (NCAR). CESM consists
of five geophysical component models, i.e., atmosphere, land,
ocean, sea-ice and land-ice. There is also a coupler component
that coordinates the interaction and the time evolution of the
component models as shown in Figure 1 .

Land

Atmosphere

Land-Ice

Ocean Sea-Ice

Coupler

Fig. 1. CESM Model Interactions

The model used for atmosphere is Community Atmosphere
Model (CAM) [2]. CAM consists of two computational
phases, namely, dynamics and physics. The dynamics advances
the evolutionary equations for the flow of atmosphere and the
physics approximates sub-grid phenomena including clouds,
long and short wave radiations, precipitation processes and
turbulent mixing. The default core for the dynamics is a
finite volume method that uses a longitude × latitude ×
vertical level computational grid over the sphere. The physics
in CAM is based upon vertical columns whose computations
are independent from each other. The parallel implementation
of the physics is based on the assignment of columns to
MPI processes and using OpenMP threads within a process
to compute the columns assigned to a process.

CESM can be run with a variety of combinations for the
different components. Each of the components may be either
active, data, dead or stub and the choice of model physics and
dynamics can be prescribed, leading to a combination called
compset. There are a variety of compsets that are supported
by CESM. The CESM grids can also be specified by setting
an overall model resolution. The various resolutions used in
this study are shown in table (I). The number of processors
to be used overall and for each component can also be set
individually.

B. Use of Computational Accelerators in HPC

Graphics Processing Units (GPUs) have been used to accel-
erate computationally intensive scientific applications in differ-
ent domains including molecular dynamics [7], computational
finance [4], computational chemistry [5], fluid dynamics [8],
medical imaging [6] and climate science [9]. GPUs provide
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high compute performance per unit of power consumption,
thus providing attractive options for future exascale computing
systems. GPUs are used as accelerator devices that offload
intensive computations from the host CPUs. The GPUs use a
SIMT (Single Instruction Multiple Thread) instruction model
where large number of threads perform the same operation on
different data. Applications like climate science that use nu-
merical methods can exploit this execution model effectively.
This heterogeneous environment can be used effectively if both
the CPU and the GPU perform computations asynchronously.
This is an important idea that can lead to large magnitude of
speed-ups in the applications. Thus the use of SIMT paral-
lelism along with MPI and OpenMP will provide significant
performance benefits for climate models.

C. Execution Profile of CAM

Figure 2 illustrates the execution profile of CAM. This
figure shows that the physics routines that compute the long
and short wave radiations are the most time consuming,
taking about 32% of the total time spent in the atmosphere
routines. The routine radabs takes the largest percentage
of the overall run time when compared to any other single
routine. Radabs computes the absorptivities for gases like
H2O,CO2, O3, CH4, N2O,CFC11 and CFC12. By default,
this is run only every twelve simulated hours because of the
expensive computations within this routine. Ideally we would
like to run this routine at least once every hour (as water
vapour concentration can change significantly on the diurnal
scale and significantly change the emissivity and absorptivity
of the atmosphere) without unduly increasing the overall time
spent in radabs.

radabs 
(long wave radiations)

other cam routines

camrun2

camrun4

Stepon run1
( dynamics routine)

convectionStratiform_tend 

 Remaining parts 
    of radiation

Radcswmx 
(short wave radiation)

Fig. 2. Execution Time Division of CAM Routines

The next most time consuming routine of the atmosphere
was found to be the short-wave radiation routine, radcswmx.
The purpose of this routine is to compute the heating fluxes
due to the solar radiation. It is based upon the Delta-Eddington
approximation for solar radiation [3]. The frequency of exe-
cution of this routine is 1 hour.

D. Present Work

In this work, we have accelerated the CAM model of CESM
by asynchronous executions of the radiation routines, radabs

and radcswmx, on GPUs along with the executions of other
steps of the model on CPU cores. We have developed a novel
asynchronous model in which the result of the asynchronous
executions of these routines in a time step are used in the
next time step, thereby almost providing zero-times for the
routines. We have conducted experiments on single core
with single GPU, multi-core OpenMP execution with single
and multiple GPUs, and multi-node multi-core MPI-OpenMP
executions with multiple GPUs. Our experiments show 1.03×-
2.3× improvement in the execution times of the entire model
with the utilization of GPUs.

Section 2 presents related work on accelerating climate
models on GPU and gives the relevance of our work. Section
3 describes the methodology used to accelerate radiation
routines in CESM. In Section 4 we present the various
experiments and results related to speedups obtained due to
acceleration and asynchronous executions of the two physics
routines. The last section presents conclusions and gives scope
for future work.

II. RELATED WORK AND PROJECT RELEVANCE

There have been many efforts to port various climate models
to the GPU. Some of the major efforts are discussed in
this section. The weather and climate models benefited from
increasing processor speed for a large number of years. With
the limit on the clock rate being nearly achieved, emerging
architectures are being used to improve model performance.
There have been many efforts to port various climate models to
the GPUs, as GPUs have become popular as high performance
computing tools. In this section we discuss some of the
previous efforts to accelerate climate models using GPUs.

The use of the fine grained parallelism of GPUs to enhance
the performance of the Weather Research and Forecast (WRF)
model resulted in a 5-20x speed-up for the computationally
intensive routine WSM5 [9]. The WRF single moment 5-
tracer (WSM5) which is part of the physics routine was
chosen to be ported on the GPU. The Fortran code was
converted into CUDA by the use of compiler directives that
were developed by the authors. The NVIDIA GTX-8800 GPU
used for the WSM5 micro-physics kernel gave a performance
of 65 GFlops.

Another attempt at using GPUs for performance in climate
modelling was made at the Earth System Research lab (ESRL)
in NOAA. The Non-hydrostatic Icosahedral (NIM) model
was ported to the GPU [10]. The approach was to run the
entire model on the GPU and use the CPU only for model
initialization and communication. They developed the Fortran-
to-Cuda (F2C-ACC) compiler to convert the Fortran code into
CUDA. As most climate models are written in Fortran and
there are only a few compilers that support CUDA-Fortran, this
tool is extremely useful to accelerate the GPU porting. It does
not support all the Fortran 90 constructs and the code must be
analyzed and modified by hand. The dynamics portion which
is the most expensive part of the NIM model was accelerated
using GPU and the speed-up achieved was about 34 times on
Tesla - GTX-280 when compared to a CPU (Intel Hapertown).
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The Oak Ridge National Laboratory (ORNL) ported the
Spectral element Dynamical core of CESM ( HOMME ) to
the GPU [11]. A very high resolution of (1/8) th degree was
used as a target problem. Using asynchronous data transfer,
the most expensive routine performed three times faster on
the GPU than the CPU. This execution model was shown to
be highly scalable.

The Swiss Federal Institute of Technology ported to the
GPU a model called Consortium for Small scale Modelling
(COSMO) which is used for Swiss weather prediction [13].
They used OpenACC directives to accelerate the compute
bound physics routines and rewrote the dynamics portion
which is memory bound. The speed-up achieved varied from
2-7 for various routines.

The climate model ASUCA is a production weather code
developed by the Japan Meteorological Agency [12]. By
porting their model fully onto the GPU they were able to
achieve 15 TFlops in single precision using 528 GPUs. The
TSUBAME 1.2 supercomputer in Tokyo Institute of Tech-
nology was used to run the model. It is equipped with 170
NVIDIA Tesla S1070 GPU nodes making a total of 680 GPUs.
The CPU is used only for initializing the models and all the
computations are done on the GPU. There are different kernels
for the different computational components.

From these efforts it is clear that the use of GPUs for high
resolution climate models is a necessity. We have chosen the
CESM model for acceleration using GPUs. Most of the work
to accelerate climate science routines have been concentrated
on the dynamics. In this work, we choose to accelerate the
physics routines as they were observed to be more expensive.
Most of earlier works on climate models do not attempt to use
asynchronous executions on the CPU and the GPU to avoid
CPU idling and increase the model throughput.

There have been efforts on asynchronous executions in
other scientific domains including linear algebra [16], N-Body
simulations [15], and Adaptive Mesh Refinement applications
[17]. However, our asynchronous model of executions of
climate modeling routines is unique since it uses the domain-
specific knowledge that the results of certain computations
performed in a time step need not be used in the same
time step. These computations can then be spawned off for
GPU executions, while the CPU proceeds with the rest of the
computations and the results of the GPU computations can be
used in the next time step.

III. GPU IMPLEMENTATION

The main objective of this work is to accelerate the com-
putation intensive routines of CESM that are most expensive
in terms of their execution times. The F compset which is
the default stand-alone CAM was used. As described earlier
these routines were identified by profiling the CESM model
using the HpcToolkit profiler [14]. The default dynamical core
for the model is the finite volume dynamical core. The physics
component of the atmosphere mainly consists of the stratiform,
convection and radiation routines. As can be seen from the

profiling of CAM (fig 2), the most expensive routines are the
radiation routines.

The computational grid for the atmosphere is divided into
latitudes, longitudes along the x and y direction and vertical
columns along the z direction. The vertical columns extend
from the surface up through the atmosphere. The columns
are further divided into layers. The characteristic feature of
the physics routines is that the computations are vertically
independent, i.e., in the z direction. Every column can be
computed independent of the other columns giving rise to
data parallelism that can be exploited on the GPU. For the
purpose of load balancing among the different CPU processes,
the columns are grouped into chunks. A chunk is a unit of exe-
cution containing a configurable number of columns. A chunk
may or may not contain contigous set of vertical columns
i.e. columns from neighbouring grid points may not be in
a single chunk. This method of combining vertical columns
into chunks is used to remove computational imbalances in
shortwave radiation routines ??. These chunks are distributed
among the MPI processes and the OpenMP threads. Every
physics routine is called for each chunk. The psuedo-code for
physics calculations is shown below:

Algorithm 1 Pseudo code for physics calculations
for every time step do

for each chunk do
call stratiform routine
call convection routine
...
call radiation routine
...

end for
end for

The two most important components of the radiation routine
are the radcswmx and radclwmx subroutines that compute
short wave and long wave heating rates respectively. The
radclwmx subroutine uses broad band absorptivity/emissivity
method to compute clear skies and assumes randomly over-
lapped clouds with variable cloud emissivity to include effects
of clouds. It computes the clear sky absorptivity/emissivity at
a frequency lower than the model radiation frequency as these
computations are expensive. The functions that calculate the
absorptivities and emissivities for different gases are radabs
and radems respectively. Out of the two it was observed that
radabs was the most time consuming routine in-spite of having
a lower frequency of calculation. So this was the routine that
was selected to be ported to the GPU. Radcswmx was the
next most time consuming routine. It computes the heating
rates due to solar radiation. The following two sections discuss
these two routines and the strategies used to port them onto
the GPU.

A. Acceleration of Long Wave Radiation

Radabs consumes 10% of the total time spent in the
atmosphere run. In the default execution mode it is run at a 12
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Algorithm 2 Pseudo code for radiation calculations
for every time step do

for each chunk do
if do short-wave heating this time step then

call radcswmx
end if
if do long-wave heating this time step then

if do absorp/emiss calc this time step then
call radabs
call radems

end if
Long-wave radiation computation

end if
end for

end for

hour frequency. A simple strategy to parallelize this routine is
to let each column of a chunk be computed by a single thread.
Hence we can form a GPU kernel that has the same number
of threads as the number of columns in a chunk. For each
chunk, the radabs kernel computes the absorptivities for all the
columns. It is clear that in this strategy, the GPU parallelism is
limited by the number of columns in a chunk, thereby giving
low GPU occupancy. Since this is a configurable parameter,
we attempted to increase the number of columns in a chunk
to the maximum allowed by the CPU memory. A GPU kernel
computed the absorptivities for all columns in a chunk. Since
the code is written in Fortran, a Fortran to CUDA compiler
( F2CACC ) was used to aid in the conversion of the code
into CUDA. The OpenACC compiler provided by PGI which
automatically converts Fortran or C code to CUDA with
the help of compiler directives was also used. The speed-up
obtained by this strategy is very negligible as the number of
columns per chunk is still low, and the CPU remains idle while
the GPU performs computations.

B. Asynchronous Execution of Radiation Computations

The time spent in GPUs can be effectively hidden by
asynchronous execution. The technique can be summarized
as

• Transfer relevant data to GPU
• Begin computation on GPU
• CPU continues its execution of other parts of the code
• Data is transferred to CPU during the next call to radia-

tion
Since the computations of the columns are independent, for

the radabs routine the collection of columns into chunks is
not necessary. All the columns of all chunks can be combined
together and executed at once in one kernel invocation. We
also need to ensure that the CPU does not idle while waiting
for the GPU to finish its computations. Hence a novel strategy
was proposed to achieve both these objectives. Since the
radabs computations are not performed every time step and
the numerical methods involved in the computations are stable,
we can use the absorptivities computed in the previous radabs

time step for the current radabs time step. When radabs is
called for each chunk, the input arguments for each invocation
are marshalled into a buffer. After radabs is called for the last
chunk, the buffer is transferred to the GPU, and the GPU
kernel is executed asynchronously while the CPU proceeds
with other calculations. During the next invocation of radabs
in the next time step, the results of the previous radabs
computations on GPU are brought back to the CPU and
utilized. The psuedo code for asynchronous executions is as
follows:

Algorithm 3 Strategy for Asynchronous Execution: Radabs
for every time step do

for each chunk do
if do absorp/emiss calc this time step then

collect the data necessary for computation.
receive the computed values of previous
radabs time step
if last chunk then

copy the necessary data of all columns
launch the kernel asynchronously
continue other computations.

end if
end if

end for
end for

Now since the radabs calculations are done asynchronously
the time spent in the radabs routine is only to collect the
relevant data for the next radabs computation and copy back
the results of the previous radabs computation. This greatly
reduces the time spent in radabs and thus enables a more
frequent radabs computation. Hence the use of asynchronous
executions enables us to make computations, that were done
infrequently due to their expensive nature, more frequent.

C. Acceleration of Short Wave Radiations

The radcswmx routine calculates the heating due to solar
radiation. The solar spectrum is divided into 19 intervals. The
frequency of these computations is one hour of simulation
time. The chunks are load balanced so that half the columns
in the chunk are day columns and the rest are the night
columns. The radcswmx computations are done only on the
columns that are in daylight. The columns are rearranged
so that all the day columns are together and all the night
columns are together. This makes it easier to compute only
the day columns. The radcswmx routine can be divided into
three stages. The first stage computes the layer reflectivities
and transmissivities for each layer using the Delta-Eddington
solutions [3]. In the second stage the columns are divided
into sets of adjacent layers called regions in which clouds are
maximally overlapped. The clouds are randomly overlapped
between different regions. This stage determines the number
of unique cloud configurations, called streams, within a region.

The first and the second stages are independent of each
other. The third stage computes the up and down fluxes and
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the solar heating rate. This stage is dependent upon the first
two stages. The strategies for parallelization of the first and the
third routines are similar. A single thread is associated with a
single column. The second stage which involves some random
calculations is done on the CPU.

The first and the third stage are converted into CUDA
kernels in which a single column is computed by a single
thread. The strategy for asynchronous executions is similar to
that of radabs. All the chunks compute the second stage and
store the data required for the first and second stages. The last
chunk calls the two kernels asynchronously. This method is
justified as the short-wave computations are performed every
hour and the solar radiation from the previous time step may
not vary much from the current time step.

Algorithm 4 Strategy for Asynchronous Execution: radcswmx
for every time step do

for each chunk do
if do short-wave heating then

receive the previous heating rates
store the data required for stage I
perform stage II
store the data required for stage III
if last chunk then

copy the necessary data of all columns
launch the kernels asynchronously
continue other computations.

end if
end if

end for
end for

For a multi-threaded program, the chunks are divided among
the CPU threads. In this case, if we are using a single GPU,
one of the CPU threads is used to launch the kernel. The
other threads marshal their data into a buffer and a simple
synchronization primitive is used to ensure that the data from
all the threads has been collected. Similarly for a multi-
threaded program with multiple GPUs, the CPU threads are
divided into as many groups as there are GPUs available. The
threads within a group synchronize among themselves and one
thread in the group is used to launch the GPU kernel for a
GPU. In the case of multiple nodes, each node is assigned a
single MPI process and the OpenMP threads of each process
access the GPUs in the same way as a single-node multi-
threaded program. The number of columns per chunk was
configured to divide the chunks equally among the threads.

All the CUDA kernels used a large amount of registers,
so the shared memory was used in such a way that it did
not limit the occupancy that could be achieved by the register
usage. Most of the arrays had the column index as the fastest
varying dimension leading to coalesced accesses to memory.
The thread divergence in the kernels is very minimal.

SNo Resolution lat × lon (grid spacing in
degrees)

columns

R1 f45 g37 4 x 5 3312
R2 f19 g16 1.9 x 2.5 13824
R3 f09 g16 0.9 x 1.25 55296
R4 f05 g16 0.47 x 0.63 221184

TABLE I
TABLE OF DIFFERENT RESOLUTIONS OF CESM USED IN OUR

EXPERIMENTS

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

The CESM model was run for various resolutions and
various hardware configurations and the results are shown
comparing the existing model runs on CPU with our asyn-
chronous execution model. The various resolutions chosen are
shown in Table I. All these resolutions use the finite volume
grid for atmosphere and displaced pole grid for ocean. The lat
× lon represent the approximate spacing between grid points
for the finite volume grid in degrees. For the component sets
in CESM [18], [19], we used stand-alone CAM (Community
Atmosphere model) containing CAM4 physics with finite
volume semi-Lagrangian dynamical core. In these component
sets, only atmosphere and land models are active while sea
ice and ocean are prescribed from data. The CAM4 physics
uses the radabs and radcswmx routines. Each resolution has a
different number of vertical columns. The number of columns
is equal to the product of the number of latitude and longitude
grid points.

Our experiments were run on two platforms. The first is the
Fermi cluster located in our department. The cluster has five
nodes connected by Gigabit Ethernet. Each of the first four
nodes (Fermi1 - Fermi4) contain four Intel(R) Xeon(R) CPU
W3550 processors operating at 3.07 Ghz clock speed and one
NVIDIA C2070 card. The fifth node (Fermi5) has 16 Intel(R)
Xeon(R) CPU ES-2660 processors operating at 2.20 Ghz clock
speed and three NVIDIA M2090 GPU cards. The first four
nodes have 16 GB main memory each and Fermi5 has 64 GB
main memory with Intel 12.0.4 compiler. The second platform,
Pune cluster, is located in the NVIDIA development center in
Pune, India. This has 4 nodes connected by IB 40Gb/s. Each
node has 8 Core Intel i7 operating at 3.07 GHZ clock speed,
and 2 GPUs which are a mixture of S2050, C2070 and K20
GPU cards. Each node has 24GB RAM with the PGI 13.4-0
and OpenACC accelerator compilers.

The experiments were performed with four execution con-
figurations. These are:

• Single core and Single GPU
• Multi-core OpenMP with Single GPU
• Multi-core OpenMP with Multiple GPUs
• Multi-node MPI with OpenMP and Multiple GPUs
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B. Results

C. Verification

In our method of asynchronous calculations, the results
of radiation calculations at a particular time step are used
only in the next time step. The resulting simulation output
changes but since the absorptivities and emissivities are slowly
varying functions of time (hence they were calculated once
every 12 hours and assumed to be constant for the next
twelve hours) using the next time step does not lead to
significant degradation in the quality of simulations (since
the frequency of these qualifications can now be increased
to 1 hour, we believe the simulations will be superior vis-
a-vis the default configuration). We verified the accuracy of
the results by finding the error growth and root mean square
(RMS) difference of the temperature values produced in the
original and the modified code after one day of simulations.
We found that the RMS difference was very small and of the
order of 10−2 to 10−3, thus demonstrating that the accuracy
of the modeling is not compromised due to our asynchronous
executions.

Single core and Single GPU: For both the radabs and
radcswmx, experiments were performed using a single CPU
core and a single GPU. Those resolutions for which the data,
required for the kernel computations, could fit on a single GPU
were run. For the radabs kernel, the experiments were run with
the R1, R2 and R3 resolutions and for the radcswmx kernel,
the experiments were run with the R1 resolution. For the R1
and R2 resolutions, every experiment was run for five model
days and for the R3 and R4 resolutions,the experiments were
run for a single model day. Figure 3 shows the speed up values
achieved for radabs for different radiation frequencies and
resolutions. The speed ups varied from 3.4 to 26.4 ×. Figure 4
shows the speed ups achieved for the entire model run, the
atmosphere run and physics run for the three resolutions by
the acceleration of the radabs routine. For each of these
routines, the speed up achieved is limited by the percentage
of time occupied by radabs in them. From these two figures,
we can observe that the speed-up obtained for the resolution
R2 is maximum. This is because the number of columns in
resolution R1 are too less to exploit the SIMT parallelism in
the GPU effectively. The speed up for resolution R3 is not
higher than for resolution R2 because for the first and the last
time step the radabs calculations are done on the CPU. For a
higher resolution, radabs takes a longer time to compute on
the CPU. In Figure 3 and Figure 4, we observe that the highest
speed up is achieved for the 1 hour frequency as there are more
number of radabs invocations at this frequency. The speed
up achieved reduces as we decrease the radabs frequency of
computation.

On the Pune cluster we compared the performance of
OpenACC and our asynchronous code using a single CPU
and a single GPU for the radabs routine. The model was run
for five simulation days with R1 and one simulation day with
R2 resolutions. The radabs calculations were performed at a
1 hour frequency. Figure 5 shows the execution times of the
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GPU case on Fermi Cluster

entire model for the CPU based code, the OpenACC accel-
erated code and our asynchronous algorithm. The speed up
obtained by using the OpenACC directives is 2.07× whereas
for asynchronous execution the speed up obtained is 2.68×
for resolution R1. The reasons for the better performance
of our strategy are asynchronism and more data parallelism.
The OpenACC implementation calls a GPU kernel for each
chunk of columns resulting in increased data latency, whereas
our implementation invokes a GPU kernel for all the chunks
simultaneously.

For the radcswmx routine, we ran the model on the Fermi
cluster for the resolution R1. Since the frequency of radcswmx
calculations is 1 simulation hour, we did not attempt to
increase the frequency of calculation. A five day model run
was conducted and the speed up obtained for the radcswmx
by our strategy was 5.66× and the overall model speed up
was about 1.15×. This speed up is not as much as the speed
up obtained for the radabs routine for the same resolution
since radcswmx occupies 16% of the total execution time while
radabs occupies 55%.

A run was performed in which both the radabs and rad-
cswmx routines were accelerated using a single CPU core
and two GPUs, one for each of the routines, on the Fermi
cluster for the resolution R1. The radabs frequency was set to
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Fig. 6. Execution Times for the entire model with OpenMP executions
with and without GPU computations for radabs with resolution R1 on Fermi
cluster

1 hour and the model was run for five simulation days. The
speed up achieved for the overall model using this approach
is 2.38× when compared to 2.09× obtained with only the
radabs acceleration. The performance improvement obtained
by accelerating both the routines over the acceleration of only
the radabs is 14%.

Multi-core OpenMP with Single GPU: In this configu-
ration we used OpenMP with four CPU cores and a single
GPU. These runs were performed on the Fermi cluster. For
radabs, the experiments were performed with R1, R2 and R3
resolutions for which a single GPU is sufficient to hold the
buffers for all the columns. The speed up values were obtained
by comparing with the OpenMP executions on 4 cores. About
50-80% reduction in the execution time for the entire model
and 2.3×-3.4× speedup for the radabs routine were obtained
with a 1 hour frequency. Figure 6 shows the execution times
of the model for the resolution R1. As expected the frequency
of 1 hour gives the best performance.

Table II shows the number of computation days saved for
the different resolutions by acceleration of the radabs routine
in this configuration for a 100 year simulation. This is the
number of computation days that would have been saved if the
model had been run with our accelerated code when compared

Frequency R1 R2 R3
1 hour 9 51 169
2 hour 5 21 77
3 hour 4 14 41
6 hour 1 8 29

TABLE II
ESTIMATED NUMBER OF COMPUTATION DAYS SAVED FOR A 100 YEAR
SIMULATION FOR THE OPENMP AND SINGLE GPU CASE ON THE FERMI

CLUSTER
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Fig. 7. Execution Times for the Entire Model with 1 hour Frequency for
OpenMP and Multiple GPU case on Fermi cluster

to the OpenMP CPU version. The number of days saved in
general increases with the increasing resolutions due to the
larger amount of computations.

With the acceleration of only the radcswmx routine, perfor-
mance improvement of 7% was obtained over the OpenMP
CPU version for the entire model with the R1 resolution. For
the same resolution, both the routines radcswmx and radabs
were accelerated together using 4 CPU cores and 2 GPUs, one
for each of the routines. The frequency of radabs calculations
was set to 1 simulation hour. The speed up achieved was 1.95×
over the OpenMP CPU version when compared to the speed up
of 1.51× obtained with accelerating only the radabs routine.

Multicore OpenMP with Multiple GPUs: For these runs,
we used 12 CPU cores for OpenMP and 3 GPUs on the
Fermi 5 cluster. With more number of GPUs it is possible
to run higher resolutions and the use of 12 CPU cores
also enables the lower resolution models to run faster. We
performed the experiments for R2, R3 and R4 resolutions
for the radabs routine for the four different frequencies. The
speed-up obtained in this configuration is compared to a 12
core OpenMP run. The speed up achieved is 2.2-3.6 × for the
radabs routine and 1.53-1.19 × for the entire model. Figure 7
shows the executions times of the entire model for a 1 hour
frequency for different resolutions.

Since we use asynchronous memory transfers to the GPU,
pinned memory is allocated on the host node. The amount
of pinned memory for the R4 resolution is 14GB. Since each
of the 12 OpenMP threads has its own memory stack, the R4
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Experimental Configuration Without GPUs With GPU
Single CPU and Single GPU 3807.81 1679.04

4-OpenMP and Single GPU 1317.67 705.37

2-MPI and 4-OpenMP and 2 GPUs 960.4034 714.7923

12-OpenMP and 3GPUs 784.26 510.21

TABLE III
EXECUTION TIMES OF THE MODEL FOR A 1 HOUR FREQUENCY FOR
DIFFERENT CONFIGURATIONS ON FERMI CLUSTER FOR radabs USING

RESOLUTION R3

resolution results in excessive pinned memory. This causes the
other routines in the model to run slower than the OpenMP
CPU version leading to a degradation in the overall model
performance. So, for this resolution, the memory transfers to
the GPU were made synchronous without the use of pinned
memory. Hence the speed up for the resolution R4 is 19%
compared to the 53% speed up seen in resolution R2.

For radcswmx the resolution R2 was run for this config-
uration on the Fermi 5 node. The speed up achieved for this
resolution was 12.5% for the entire model and 31.5% for the
radcswmx routine alone.

Multi-node MPI with OpenMP and GPUs: In this config-
uration, we used multiple nodes of Fermi cluster with one
MPI process per node and OpenMP for the CPU cores within
each node and one GPU per node. The speed-up comparison
is against a run that does not use GPUs. Our experiments were
performed with two nodes of the Fermi cluster for the radabs
routine for the four different frequencies, with 2 MPI processes
and 4 OpenMP threads per process. We ran the experiments
with R2 and R3 resolutions. The speed up, achieved for the 1
hour frequency of radabs calculation for the entire model is
34% for the R2 resolution and 27.9% for the R3 resolution.
Similar to the earlier configuration, pinned memory was not
used for the R3 resolution since it degraded the performance.
This was not observed when using OpenMP with single GPU
(Table II) as those simulations were performed on Fermi 5
which has 64GB main memory whereas the multi-node runs
were performed on Fermi 1 and Fermi 2 which have only 16
GB main memory.

Table III gives the execution times of the model after
accelerating the radabs routine for a 1 hour computation
frequency for the different experiment configurations. The
execution time for the GPU enabled execution for Multi-node
MPI with OpenMP and 2 GPUs is more than the time taken
for OpenMP with Single GPU. This is also explained due to
the use of pinned memory.

V. CONCLUSIONS AND FUTURE WORK

The use of GPUs to accelerate applications that are em-
barrassingly parallel leads to significant performance improve-
ments. In this paper, we have described a novel way to perform
hybrid computing for physics routines of the climate models.
The most time consuming routines radabs and radcswmx were
ported from Fortran code to CUDA C. We have performed
experiments with different resolutions and different hardware

configurations. The use of an auto parallelizer tool OpenACC
was also explored. The results show a 26× performance im-
provement over a single CPU core. Our asynchronous execu-
tions also performed better than the OpenACC parallelization.
At all resolutions the gains are significant and allows for fre-
quent computations of absorptivities and emissivities, hitherto
done at a very coarse temporal frequency of 12 hours. With
asynchronous executions on GPU the rate of computation does
not suffer and the simulations also gain from an atmospheric
science perspective due to better resolution of diurnal cycle
of the radiational parameters which could be significantly
affected by high frequency fluctuations of water vapour. Due
to pinning memory constraints, some of the combinations
(such as Multi-node-Multiple GPU with OpenMP vis-a-vis
Single GPU and OpenMP) showed lowered efficiencies. Most
recent studies using GPUs for climate modeling have been on
improving throughput through acceleration of an atmospheric
model’s dynamical core. Our study complements these and
clearly shows that computational accelerators can be very
effective in improving model throughput through large im-
provements in model physics. We further propose to study the
acceleration of cloud-convection and stratiform routines. The
different dynamical cores such as the finite volume and the
spectral element can also be considered for acceleration.
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