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Grids consist of both dedicated and non-dedicated clusters. For effective mapping of parallel applications
on grid resources, a grid metascheduler has to evaluate different sets of resources in terms of predicted
execution times for the applications when executed on the sets of resources. In this work, we have
developed a comprehensive set of performance modeling strategies for predicting execution times
of parallel applications on both dedicated and non-dedicated environments. Our strategies adapt to
changing network and CPU loads on the grid resources. We have evaluated our strategies on 8, 16, 24
and 32-node clusters with random loads and load traces from a grid system. Our strategies give less than
30% average percentage prediction errors in all cases, which, to our knowledge, is the best reported for
non-dedicated environments. We also found that grid scheduling using predictions of execution times
from our performance modeling techniques will lead to perfect mapping of applications to resources in
many cases.
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1. Introduction

Many computational grid frameworks [35,36,5] are composed
of multiple dedicated or non-dedicated clusters, with each
cluster consisting of a set of homogeneous machines. Grids have
been found to be powerful research-beds for executing various
kinds of parallel applications [28,7,3]. Some parallel applications
are tightly-coupled involving heavy communications among the
parallel tasks [28,3]. These applications exhibit poor performance
when executed across multiple clusters due to low-speed network
links between the clusters and are typically executed within
a single cluster. When a tightly-coupled parallel application is
submitted to a grid, a metascheduler evaluates different candidate
resource sets, with each candidate set consisting of resources from
a cluster, and selects the “most suitable” resources for application
execution. The candidate resource sets are mostly evaluated in
terms of predicted execution times of the application and the
resource set with the minimum predicted execution time is chosen
for application execution [28]. Thus, models that predict execution
times of the parallel applications on a set of resources are of
importance to the efficiency of the scheduling decisions.

Many performance modeling strategies have been proposed
in the literature for predicting execution times of parallel
applications. However, the existing strategies have different
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limitations that prevent them from being used for large non-
dedicated grid systems.

1. Most of the existing modeling strategies assume uniform loading
conditions on the systems when the experiments for modeling are
conducted and use the models to predict execution times for large
problem sizes and/or larger number of processors for the same
loading conditions [39,34,33,6,25,2,1,24,10]. This assumption is
unrealistic in non-dedicated environments.

2. Some of the models require source code of the applications for
the construction of the models and for instrumentation of the crit-
ical components [39,25,2,1,10,41,4]. Analysis and instrumentation
of source codes of applications are time-consuming for large com-
plex applications and can prevent large-scale deployment of these
applications on grids.

3. Some modeling methods also require analytical models
expressing the computation and communication characteristics
of the applications [39,25,2,1,34,33,30,29,31]. Building robust
analytical models require detailed knowledge of the applications
and such knowledge is available only with the application
developers. Requiring this knowledge can prevent application
developers from integrating their applications into grids.

4. Some of these modeling strategies also perform large number
of benchmarks of the individual code segments to automatically
determine the analytical models for the code segments [25,2,1,34,
33,414].

5. Some of the existing efforts for non-dedicated environments can
deal with different loading conditions during training the models
and predictions, but require the loads to be constant during an
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application execution [6,41,4]. Hence these models can deal with
grids with only limited amount of non-dedicatedness.

In this work, we have developed a comprehensive set of
performance modeling strategies to predict the execution times
of tightly-coupled parallel applications on a set of resources in
a dedicated or non-dedicated cluster. The main purpose of our
prediction strategies is to aid grid metaschedulers in making
scheduling decisions. Following are the specific aspects of our
performance modeling strategies, based on linear regression,
that result in good prediction accuracies of our models on non-
dedicated grid systems.

1. Our prediction strategies can deal with non-dedicated systems
where the loads can change during application executions.
Our techniques periodically monitor and measure loads on the
processors and network links during application execution. The
aggregates of these measurements across all processors and links
are used as parameters of our linear regression models.

2. By continuously updating these aggregate values of loads,
and using the predicted values in our performance models, our
strategies are able to dynamically adapt to changing CPU and
network loads on the grid resources.

3. Our techniques also continuously evaluate the fitness of a
performance model function for changing loads and can use
different functions at different times for the same application
based on grid load and application dynamics.

Besides, our models do not require detailed knowledge and
instrumentation of the applications and can be constructed
without the involvement of application developers. Moreover, our
strategies can derive an initial coarse-level performance model
for an application by conducting only up to 30 experiments with
the application. The model is subsequently refined with increasing
executions of the application by the grid users. These features
enable the use of our modeling strategies for rapid and large-
scale deployment of parallel applications on non-dedicated grid
systems.

We have evaluated our strategies on 4 different clusters for
7 different applications, with both random CPU and network
loads and also with load traces obtained from machines in a real
grid testbed [18]. We verified our performance models both in
terms of average percentage performance prediction errors and
also in terms of its usefulness to a metascheduler to arrive at
the correct scheduling decisions. Due to the adaptiveness of our
models to resource dynamics, we obtained less than 30% average
percentage prediction errors in all cases, which to our knowledge,
is the best reported for predicting application execution times for
any problem sizes and number of processors on non-dedicated
systems. We also found that scheduling decisions made with the
help of our predictions can result in perfect scheduling in most
cases.

In Section 2, we analyze the various existing strategies for
performance predictions of parallel applications. In Section 3,
we describe in detail our strategy for performance modeling on
non-dedicated systems including the various components of our
performance models, the use of candidate functions for the models
and the cross-platform performance modeling for performance
predictions on different clusters. Section 4 details our experiments
and results for predicting execution times of different applications
on different clusters and with different loading conditions and also
compares our strategy with earlier work in terms of modeling
overhead. Section 5 describes our current plan of extending our
work to deal with large scientific applications. Section 6 gives
conclusions of our work and Section 7 presents future work.

2. Related work

Most of the existing efforts on performance modeling deal
with dedicated environments and require detailed analytical
models and source codes for application components. The work
by Xu et al. [39] builds a two-level hierarchical performance
model for predicting execution times of parallel programs.
At the top level, a graphical model called thread graph is
constructed for a parallel program. The thread graph, consisting of
communication structures, events and segments, represents a high
level abstraction of the program and is used by a graph traversal
algorithm to estimate the parallel execution time. The execution
times of the individual segments of the thread graph are estimated
using a low-level model that combines analytical and experimental
methods to capture system level effects on performance. However,
their model needs analysis of the application for constructing the
thread graph for the top level model and analyzing the loop level
constructs for the lower level model. The source code also needs
instrumentation to obtain the measurements corresponding to
small number of iterations in the individual segments to predict
the execution times for a larger number of iterations.

The PACE toolkit [25,2] performs analysis of the application’s
source code to form a set of performance model objects for
the application components using CHIPS performance model
language. Though PACE can perform predictions on heterogeneous
platforms, it needs at least some parts of the source code of
the applications and description of the hardware configuration.
The POEMS project [1] has built a robust infrastructure including
a specification language, component models, a database for
storing task dependencies and performance results of individual
components, to predict the execution times of the parallel
applications. The different components used by the application
are specified by a detailed specification language, requiring
intervention of the application developer. The POEMS project
needs source code of the application for component specification
and task graph generation. Prophesy’s [34,33] curve-fitting model
utilizes both experimental results and the complexities of the
applications to predict execution times of applications for larger
problem sizes. The curve-fitting models used in Prophesy do
not separate system and application parameters and encapsulate
all kinds of system dynamics in the model coefficients. The
model developer needs detailed knowledge of the components
of the application. Secondly, benchmark experiments have to
be conducted for various application specific subcomponents
including broadcasts, floating-point additions, multiplications etc.
The number of such benchmarks increases as more applications are
added due to the increase in the number of subcomponents. Our
model strategies use only generic benchmarks, that are integral to
many grid systems, for measuring CPU and network loads.

Some recent efforts on performance modeling deal with lim-
ited kind and amount of non-dedicatedness on the systems.
Dimemas [6] is used for analyzing the performance of parallel
applications. The parallel application instrumented with instru-
mentation libraries is executed either on a dedicated or non-
dedicated, sequential or parallel system, leading to the generation
of Dimemas trace files. These trace files along with the specifica-
tion of a target parallel system are fed to a simulator which outputs
the performance behavior of the application on the target system.
Dimemas cannot predict for systems where the loads vary during
application execution. The work by Grove et al. [20] requires the
application developer to specify the complexity of serial portions
and message passing constructs for his application using a per-
formance modeling language. Their work takes into account only
the contention caused on the network by the application itself and
not due to external load. Our modeling strategies work for non-
dedicated environments where the loads on the machines can vary
during application execution.
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The effort by Yan et al. [41] predicts execution times of
parallel applications on non-dedicated heterogeneous systems.
They consider a system where a set of workstations can be
used for the execution of parallel application and external load
can appear in the form of workstation owners executing their
own processes. They use Program Execution Graphs (PEGs) for
modeling application characteristics. Anglano [4] extended this
work by using Petri-Net models for characterizing application
behavior. In addition to requiring analysis of the source code and
detailed benchmarking, both the efforts use a parameter called O;
that represents the average execution time of the owner process
or external load on machine i. Calculation of O; is not feasible on
grid systems where the interference by external load can vary
over time. The work by Schopf and Berman [30,29,31] predicts
execution times in dynamic non-dedicated environments where
the loads can vary at different times. They use stochastic values
of load measurements in their component models and obtain
stochastic predicted execution times. Their work requires profiling
tools for determining the communication and computation
requirements of the application. Their component models are
also based on detailed parametrized analytical models requiring
intervention of the application developer.

3. Methodology

In our modeling method, we calculate the time taken for the
execution of parallel application as:

T(N, P, minAvgAvailCPU,minAvgAvailBW)
_ f comp (N )
" fepu(minAvgAvailCPU) - focomp (P)
+ f comm (N )
fow(minAvgAvailBW) - focomm (P)

where

e N: problem size; P: number of processors;

e minAvgAvailCPU, minAvgAvailBW: represent the transient CPU
and network characteristics, respectively;

e fecomps feomm: indicate the computational and communication
complexity, respectively, of the application in terms of problem
size;

e fpu: function to indicate the effect of processor loads on
computations;

e fpcomp: Used along with computational complexity to indicate
the computational speedup or the amount of parallelism in
computations;

e fy,: function to indicate the effect of network loads on
communications;

o frcomm: Used along with communication complexity to indicate
the communication speedup or the amount of parallelism in
communications.

The formula shown in Eq. (1) splits the execution time of a
parallel application into two parts, feomp and fcomm, for representing
computation and communication aspects, respectively, of the
parallel application. This representation is useful for scheduling
purposes since a scheduler can allocate the appropriate CPU
and network resources of a grid based on the computation and
communication requirements, respectively, of the application.
The scalability of the computational and communication times
with increasing number of processors, is represented by fpcomp
and fpcomm, respectively. Since, in most parallel applications,
the execution times decrease with the increase in number of
processors, these functions are contained in the denominators.
The increase in CPU and network loads on non-dedicated systems
increases the computation and communication times, respectively.

minAvgAvailCPU and minAvgAvailBW represent the inverse of the
CPU and network loads, respectively. Hence, the corresponding
functions, namely, f.p, and f,, are contained in the denominators.
Finally, the formula shown in Eq. (1) generalizes the complexity
equations of many parallel numerical drivers that deal with
memory-resident data [9,17]. Eq. (1) represents a coarse-level
model and does not include fine-level performance behavior of
the applications including memory access stride and range, cache
misses and the corresponding system parameters including cache
configurations and memory bandwidth [2,1,11,41]. Our model
is primarily intended for scheduling purposes and most of the
schedulers of parallel applications [8] do not consider these fine-
level parameters.

In order to calculate minAvgAvailCPU and minAvgAvailBW, we
measure AvailCPU and AvailBW. AvailCPU is a fraction of the CPU
that can be used for the application and AvailBW of a link is
the bandwidth on the link available to an application. Network
Weather Service (NWS) [38,37], a tool for forecasting system pa-
rameters, was used for obtaining these values. During training
the model functions for application, we measure AvailCPUs and
AvailBWs on all processors and links involved in application ex-
ecution at periodic intervals of time from the beginning to the end
of the application execution. We then calculate for each proces-
sor and link, AvgAvailCPU and AvgAvailBW, respectively. These are
the averages of the periodic AvailCPUs and AvailBWs collected dur-
ing the application execution. Finally, we calculate minAvgAvailCPU
and minAvgAvailBW values by finding the minimum of AvgAvailCPU
and AvgAvailBW values, respectively, on all processors and links.
By considering minAvgAvailCPU and minAvgAvailBW, we assume
that the slowest processor and link used by the application affect
the overall execution time. Eq. (1) does not consider network la-
tencies since our models are intended for clusters where the nodes
are connected by low-latency links.

Our modeling strategy consists of a number of stages for
determining the model functions of Eq. (1) consists of a number
of stages. Due to uncertainties caused by the non-dedicatedness in
the environment, a set of good model functions are chosen at the
end of each stage of modeling. For a particular model function, the
coefficients are determined by linear regression using the training
samples. We evaluate a model function in terms of standard error,
SE, defined as: SSE = YN ,(y; — y))?; Error_var = (Si';);SE =
Error_var where N denotes the number of experiments, y;, the
actual execution time and y|, the predicted execution time for
experiment i, p is the number of terms in the model and SSE is
the sum of squares error. The following subsections detail the
individual stages.

3.1. Modeling computation

In order to find the computational complexity, feomp in Eq. (1)
for the application, we use a candidate set of 77 model functions.
These are polynomial, logarithmic, and mixture of polynomial and
logarithmic functions and are commonly used in many curve fitting
packages and tools [13,12,23]. These functions also encapsulate
the behavior of many parallel applications. We execute the
application on a single non-dedicated processor with different
problem sizes and observe the minAvgAvailCPUs and execution
times. Since most of the systems follow round-robin scheduling,

we use minAvgAvailCPU value for f.,,. For each candidate function,

-+ Jeandidatec : .
Jeandidatecomp fOT feomp, We fit ot esy with the experiment data.

At the end of this stage, we sort the functions in terms of the
ascending order of their standard error values and choose at most
20 candidate functions for fe,mp for subsequent stages of modeling.
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Table 1

Candidate functions for fpcomp and frcomm

S. No. fpcomp (P), frcomm (P) S. No. fpcomp; frcomm S. No. fpcomp, frcomm S. No. fpcomp> frcomm
1. P 5. P2 9. 1/4/P 13. 1/p2>

2. P 6. p3 10. 1/P 14. 1/p3

3. plS 7. log(P) 11. 1/p15 15. mg%

4. p? 8. P - log(P) 12. 1/p? 16. #g(m

Table 2 select, based on resource dynamics, one of the functions with

Candidate functions for fp,,
S. No. fow (bw)  S.No. Sfow S. No. fow S. No. fow

1. Vbw 3. bwl> 5. bwe> 7.
2. bw 4, bw? 6. w3 8.

log(bw)
bw - log(bw)

3.2. Modeling communication

To find the communication complexity, foomm, and the effect
of network loads on the application, represented by f,, in Eq.
(1), we execute the parallel application on 2 processors with
different problem sizes and under different CPU and network loads.
For each of the experiments, we observe minAvgAvailCPU and
minAvgAvailBW values. We then use the following equation for
execution times on 2 processors:

T1(N, minAvgAvailCPU, minAvgAvailBW)

— fcomp (N) fcomm (N)
2 - minAvgAvailCPU 2 - f,,,(minAvgAvailBW)

For feomp in Eq. (2), we use the 20 functions with top accuracy values
determined in the computation modeling phase. For f.omm, we use
the 77 candidate functions used for computation modeling. For
fow, we evaluate 8 candidate functions shown in Table 2. Thus, we
evaluate a total of 12 320 (20 x 77 x 8) combinations of functions for
Eq.(2)in terms of standard error values and fit the execution times
T1 with the actual execution times. For each of the 20 functions
for feomp, We choose at most 10 combinations of functions for feomm
and f;, with minimum standard error values to form filtered_list.
Finally, 20 combinations of feomp, fromm and f,w with minimum
standard error values are chosen from the filtered_list for the next
stage.

(2)

3.3. Modeling scalability

In the final stage, the scalability functions, fpcomp and frcomm Of
Eq. (1) are determined. The application is executed with 2, 4 and
8 processors under different loading conditions and the resulting
execution times are observed. We then fit different combinations
of functions in Eq. (1) with the observed execution times. For
each of the 20 feomp, feomm and f,,, combinations determined at the
end of the communication modeling phase, we evaluate different
combinations of functions for fpcomp and fpcomm. The 16 candidate
functions for fpcomp and fpcomm are shown in Table 1. Thus, we
evaluate a total of 5120 (20 x 16 x 16) combinations of functions in
this stage. For each of the 20 fcomp, feomm and f, combinations, we
choose at most 50 combinations of fpcomp and focomm functions with
minimum standard error values. Thus, at the end of the training
phase, we obtain a list of at most 1000 combinations of functions
for Eq. (1). The combinations are sorted in the ascending order of
their standard error values to form a sorted_list.

While choosing the top functions in each stage, we ensure
that the chosen functions have standard errors that are at most
20% greater than the minimum standard error and that the
number of chosen functions are below a threshold limit. The
values for these limits were found by trial-and-error in order
to provide flexibility for our prediction strategies to dynamically

minimum standard error and, yet limit the number of function
evaluations for a given prediction. Some parallel applications may
have constraints regarding the minimum number of processors
that they need to execute. In these cases, we cannot use single
processor executions to determine the computation complexity
functions. We first execute the application with different problem
sizes on the minimum number of processors. We then form
different combinations of m, feomm and f, functions
for Eq. (1) and fit the model shown in the equation with the
actual execution times. To prune down the number of function
evaluations, we follow a procedure that eliminates candidate
computation and communication functions which lead to large
standard error values for greater than a specified number of times.
We then proceed to the scalability modeling phase.

3.4. Prediction of execution times

To predict the execution time of an application with a given
problem size and given number of processors, the top combination
of functions in the sorted_list, obtained in the training phase, is
used in Eq. (1). The prediction of execution time needs values
for problem size, number of processors, minAvgAvailCPU and
minAvgAvailBW. Problem size and number of processors for
execution are obtained from the user. During training the models,
the minAvgAvailCPU and minAvgAvailBW values were obtained
by observing the system loads during application execution. For
prediction of execution time of an application, these values have to
be predicted, since the values represent the system loads that will
exist during the period of application execution. Hence, we forecast
the values based on the history of load dynamics measured on the
system using the forecasting tools from NWS.

We then use the problem size and number of processors
supplied by the user and the predicted MinAvgAvailCPU and
MinAvgAvailBW to predict the execution time of the application.
After the application is executed on the resources chosen by a
grid scheduler, the actual execution time of the application and
the MinAvgAvailCPU and MinAvgAvailBW values are observed and
added to the training data along with the problem parameters as
a data point. The combinations of functions in the sorted_list are
evaluated by means of standard error values with the updated
training data. This can lead to reordering of the combinations in
the sorted_list and use of a different combination for the next
prediction. In order to avoid evaluating all the combinations in
the sorted_list at the end of every prediction, we eliminate those
combinations of functions whose ranks in the sorted_list are
within the lowest 10 percentile for 5 continuous predictions. Thus
the sorted_list shrinks over time and converges to contain only
the most promising combinations. In order to take into account
new load dynamics, the original set of candidate combinations
of functions are reconsidered by revisiting the communication
modeling phase of training at the end of every 50 predictions.
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3.5. Cross-platform performance modeling

We have also developed techniques whereby the sorted list of
model functions and training data obtained for an application on
a given parallel platform called reference platform can be used for
predicting execution times of the application on another parallel
platform called target platform. In order to use a combination of
functions obtained on a reference platform for a target platform,
the coefficients of the different functions of Eq. (1) have to be
scaled to take into account the performance difference between the
reference and the target platforms. The computation complexity
feomp is scaled by a CPU scaling factor, Rcpu, which is determined
by obtaining single processor execution times of the application
with a moderate problem size on dedicated target and reference
processors, and finding the ratio between the two times. In
order to determine the scaling factor for the communication
complexity, we conduct dedicated 2-processor experiments with
different problem sizes on the reference and target platforms. The
top model in the sorted_list is then fitted with the 2-processor
experiment data on the reference platform. The coefficients of
the functions in the top model and the resulting goodness of fit
are determined. The trained function is then fitted with the 2-
processor experiment data on the target platform after scaling
the computation complexity with Rcpu. The communication
complexity of the resulting function is then scaled with different
scaling factors until the goodness of fit for the 2-processor
experiment data on the target platform matches with the goodness
of fit obtained on the reference platform. The resulting scaling
factor is noted as the bandwidth scaling factor, Rbw. Rbw may be
a non-unit real number due to difference in communication and
computation overlaps in different platforms.

For predicting the execution time of an application on a target
platform, the top model in the sorted_list with the minimum
standard error, obtained on the reference platform, is considered.
The coefficients of the functions in the model are obtained by
training the model with the data corresponding to non-dedicated
executions for different problem sizes and processors available for
the reference platform. If feomp, feomm, fecomps fecomm fepus fow are the
functions for the top model obtained on the reference platform,
the predicted execution time of the application with problem size
N and P processors of the target platform is then given by Eq.
(3). The minAvgAvailCPU and minAvgAvailBW values shown in the
equation are obtained by forecast of CPU and network loads on the
target platform.

Repu - feomp (N)
fepu (MinAvgAVailCPU) - focomp (P)

RbW - feomm (N)
fow (MiNAVEAVaIIBW) - focomm (P)

Tpredicted =

4. Experiments and results

4.1. Experiment setup

Experiments were conducted validating the modeling strate-
gies in terms of predictions of execution times. In order to avoid
intrusion on production grid systems, we conducted experiments
on systems that are under our administrative control. The experi-
ments were conducted on 4 different clusters:

1. a 8-processor Intel Pentium IV cluster with each processor
having 2.8 GHz speed, Fedora Core 2.0, Linux 2.6.5-1.358 operating
system, a 512 MB RAM, a 80 GB hard disk, and connected by a
100 Mbps switched Ethernet;

2.a 32-processor IBM P720 cluster arranged in 8 nodes, with each
node a 4-way IBM Power 5 SMP with hard disk capacity of 146 GB

and running Suse Linux 9.0 sp 1 operating system, each processor
having 1.65 GHz CPU speed and 1 GB RAM and all the 8 nodes are
connected to each other by Gigabit Ethernet links through Gigabit
Nortel switch;
3. a 16-processor AMD cluster arranged as 8 dual-core AMD
Opteron 1214 based 2.21 GHz Sun Fire servers running CentOS
release 4.3 with 2 GB RAM, 250 GB Hard Drive and connected by
Gigabit Ethernet and
4. a 24-processor Woodcrest cluster arranged as 12 Dual-Core
Intel Xeon 5130 based 2.0 GHz HP xw6400 Workstations running
Fedora Core 6 (Zen), with 4 GB RAM, 160 GB Hard Drive and
connected by 100 Mbps Ethernet.
The IBM cluster was used in a dedicated mode with the help of
space-sharing using IBM LoadLeveler batch queuing system. The
other clusters were used in non-dedicated modes. On the dual-
core AMD and Woodcrest systems, taskset option was used to
control the process assignment to the cores. On all the clusters,
1, 2, 4 and 8 processors were used for training the models and
up to the maximum number of available processors were used for
predictions. During training, about 30 problem sizes within a small
problem size range were used and during predictions, random
problem sizes within and outside the training problem size range
were used.

We have tested our prediction strategies with 7 different
parallel applications.
1. ScaLAPACK [9] eigen value solver for a double precision symmet-
ric matrix using PDSYEV kernel. 2-D block cyclic distribution was
used.
2. 1-D FFT application from FFTW [17] package. The transform
data are distributed over multiple processes. The application uses
routines for parallel one-dimensional transforms of complex data.
3. Conjugate Gradient (CG) application to solve a system of
linear equations with a real symmetric positive definite matrix.
Diagonal matrix is used for preconditioning. Row-wise block
striped partitioning was used.
4. Molecular dynamics simulation (MD) of Lennard-Jones system
systolic algorithm. N particles are divided evenly among the P
processes running on the parallel machine. The calculation of
forces is divided into P stages. The traveling particles are shifted
to the right neighbor processor in a ring topology.
5. Poisson Solver using 2-D Jacobi. Uses 1-D domain decomposition
with non-blocking communication. The domain decomposition is
along the x-axis. The application is run until the maximum number
of Jacobi iterations are reached.
6. Integer Sort (IS). Parallel Integer sort application. Local sorting
by individual processes followed by a global sort across processes.
7. Symmetric Successive Over-Relaxation (SSOR) using red-black
ordering. Cartesian topology is used for arrangement of processes.
Grid points are updated using five-point finite-difference stencil.

During the course of an application execution, available CPUs
of the nodes and available bandwidths of the inter-node links
are collected every 2 min. We used synthetic loads on our
system to simulate the load conditions on real grid systems.
2 different loading conditions were used for our experiments:
random and grads. In random loading, synthetic CPU and network
loading programs were continuously run on the processors in the
background. For loading the CPUs of a system at a given point of
time, a set of processors was randomly chosen, random amounts of
loads were introduced on each of the processors and the loads were
maintained for random amounts of time. For network loading, we
used a loading program to introduce synthetic network loads on
the links of the system and to reduce the available bandwidths of
the links. At a given point of time, a random number of source-
destination pairs is chosen, and random amounts of network loads
are introduced on the links between the source-destination pairs,
and the loads are maintained for random durations. This process of
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Fig. 2. Available CPUs and bandwidths for grads loading conditions.

random CPU and network loading is repeated continuously on the
system. The details regarding the amount and duration of loads in
random loading can be found in our earlier work [40]. In the grads
loading, the traces [19] of CPU and network loads measured by
NWS in the GrADS [18] grid research-bed were used to guide the
parameters to our synthetic CPU and network loading programs.
These parameters include the amount and duration of each CPU
and network loading, on each processor and link, respectively. The
load traces on nodes of the GrADS research-bed, that had similar
CPU and network characteristics to the nodes of our clusters, were
used for loading. Even though we use simulated load conditions of
GrADS testbed, we verified that the load dynamics introduced by
our simulated loads matched with those on the machines of the
GrADS testbed [19].

Figs. 1 and 2 show the available CPU and available bandwidth
values for a 3 h period on a processor and link, respectively,
in the Intel system, for random and grads loading conditions,
respectively. From the figures, we find that the CPU loads on the
GrADS real grid testbed are more stable than the random CPU
loads. However, the large variations in the random CPU loads help
to represent systems with high load dynamics and hence help in
better validation of the robustness of our performance modeling
strategies than the grads CPU loads. We find that the random

network loads have similar dynamics as the grads loads and hence
are realistic. Thus, by conducting experiments both on extreme
load dynamics and real grid conditions, we show the usefulness
of our models under different conditions.

For evaluating the modeling strategies, we calculated the
average percentage prediction errors, and also determined the
usefulness of the strategies for scheduling. Since our modeling
strategies are primarily meant to improve the quality of scheduling
in grid systems, a more useful evaluation related to scheduling
is to compare the minimum execution times predicted by our
model and the minimum actual execution times for various
problem sizes. We first split the problem sizes of an application
into different groups such that the actual execution times of
the application when executed with different problem sizes
in a group on a dedicated system differ by a maximum
of 50 s. For each of the problem size groups, we obtain
actual and predicted execution times for different problem
sizes in the group and different number of processors. We
then obtain the problem size, minPredictedProblemSize, and
number of processors, minPredictedProcessors, corresponding to
minimum of the predicted execution times. We then obtain the
actual execution time, actualForminPredicted, corresponding to
minPredictedProblemSize and minPredictedProcessors. We compare
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ScalLAPACK Eigen Value Problem — Percentage Prediction Errors
for Different Problem Sizes and Processors
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Fig. 3. Percentage prediction errors (PPE) for ScaLAPACK eigen value problem on
the intel cluster with random loading. Different colored data points correspond
to different ranges of percentage prediction errors. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

actualForminPredicted with minActual, the minimum of actual
execution times. The percentage difference between the two
values indicate the loss in efficiency a grid scheduler would incur
if it uses the predictions by our modeling strategies for evaluating
the candidate schedules. For a perfect scheduler, the percentage
difference should be 0.

4.2. Results

Fig. 3 plots the percentage prediction errors for different
problem sizes and number of processors for the eigen value
problem. We find that the percentage prediction errors are less
than 30% for 72% of the predictions and less than 40% for 85%
of the predictions. Fig. 4 plots the percentage prediction error
values for different experiments in the order the experiments
were conducted for the eigen value problem. We find that during
the initial experiments, the error values are high with some
predictions having about 40-85% percentage prediction errors. In
the latter stages, the error values converge to 20-30%. The figure
also shows predictions by a single model for all the experiments.
We chose the model that was the best or had minimum standard
error at the end of the training phase for these predictions.

Table 3
Predictions on the 8-processor Intel cluster

Problem Load type PPE (single model) PPE (multiple
models)

Avg. Std. Dev. Avg. Std. Dev.
Eigen Random 25.41 20.79 22.47 16.73
Eigen Grads 40.5 37.2 27.93 21.2
FFT Random 31.16 26.9 25.16 22.63
CG Random 222 16.22 20.82 15.79
MD Random 18.85 13.66 16.66 14.30
MD Grads 10.05 7.47 8.7 7.67
Poisson Random 31.62 24.96 27.86 22.36
IS Random 11.53 9.01 11.68 9.38
IS Grads 11.00 148 114 15.59
SSOR Random 22.98 19.65 16.22 13.78
SSOR Grads 10.5 118 9.69 8.07
Table 4

Predictions on 16-processor AMD and 24-processor Woodcrest (WC)

Prob. : Cluster Load PPE (single model) PPE (multiple
models)
Avg. Std. Dev. Avg. Std. Dev.

Eigen:AMD Random 34.7 23.2 233 19.6
Eigen:AMD Grads 17.38 14.96 16.61 11.30
MD:AMD Random 23.7 19.7 25.05 20.2
MD:AMD Grads 12.06 11.08 13.09 13.34
Poisson:AMD Grads 14.47 12.96 15.95 13.88
SSOR:AMD Grads 35.25 83.93 13.49 11.07
IS:AMD Grads 32.02 57.89 13.88 16.46
Poisson:WC Random 37.41 19.53 28.78 14.37
IS:WC Random 38.24 23.73 27.7 20.93

As can be seen, using a mixture of good models and choosing
different models at different points of time give smaller prediction
errors than using a single model for predictions on non-dedicated
environments. The average percentage prediction errors for all
experiments using multiple models is 22.47% with a standard
deviation of 16.73% while the average using a single model is
25.41% with a standard deviation of 20.79%.

Tables 3 and 4 summarize the results regarding percentage pre-
diction errors obtained on the 8-processor Intel, 16-processor AMD
and 24-processor Woodcrest clusters. The results demonstrate that
our modeling strategies give good predictions for both random
loading conditions and the loading conditions that exist on one of
the current grid systems, and for higher number of processors than
those used during the training.

Table 5 indicates the usefulness of prediction methodology for
scheduling a MD application on the non-dedicated Intel cluster

ScalLAPACK Eigen Value Problem — Percentage Prediction
Errors with Time Progression
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Fig. 4. Percentage prediction errors (PPE) at different times for ScaLAPACK eigen value problem on the Intel cluster with random loading.
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Table 5
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Usefulness of predictions for scheduling of MD on the 8-processor Intel cluster with random loading

Problem size N and P for minimum N and P for minimum actual ~ Actual exec. time for (1): Actual exec. time for (2): % Increase in exec. time due
group predicted execution execution (3) (4) to prediction ((3 — 4)/4)
time: (1) time: (2)
864-936 864,8 864,8 428.92 428.92 0.00
1032-1080 1032,8 1032,8 589.06 589.06 0.00
1296-1344 1296,8 1296,8 825.17 825.17 0.00
1440-1488 1440,8 1440,8 927.55 927.55 0.00
1608-1656 1608,8 1608,8 1166.04 1166.04 0.00
1704-1776 1704,8 1704,8 1292.47 1292.47 0.00
1896-1944 1944,8 19448 1650.34 1650.34 0.00
2256-2304 2280,8 2304,8 2637.62 2439.54 8.00
2400-2448 2400,8 2448,8 2896.47 2757.99 2.00
2568-2616 2592,8 2592,8 3068.87 3068.87 0.00

with random loading. The last column denotes the percentage
difference between actualForminPredicted and minActual and is
indicative of the loss in efficiency of a scheduler when using the
predicted execution times by our modeling strategies. As can be
seen, the maximum percentage increase in execution time when
a scheduler uses our predicted times is only 8%. In a grid system
with high load dynamics, where it is difficult to achieve perfect
scheduling, the loss in efficiency of the scheduler by only 8% is
tolerable. We also find that except for 2 problem size groups,
using our performance modeling strategies to schedule molecular
dynamics application on the resources will give rise to perfect
scheduling as can be seen by the 0 values in the last column. We
obtained similar good results for scheduling for ScaLAPACK eigen
value problem, integer sort and SSOR applications.

4.3. Modeling overheads

The following lists the various overheads in deriving a
performance model using some of the techniques which are
representative of the other performance modeling strategies
described earlier:

1. Adve and Vernon [1]: (Overhead for deriving a deterministic
graph for the application) + ([number of problem size configura-
tions] x [number of processor configurations] x [number of tasks
in the application]) experiments for model derivation.

2. Prophesy [34,33]: ([number of problem size configurations]
x [number of processor configurations]) experiments for model
derivation.

3. Anglano [4]: (Overhead for source code analysis for identifying
computation and communication segments) + ([Number of
segments| x [number of problem size configurations] x [number
of processor configurations]) experiments for model derivation.

4, Lee et al. [24]: (300-1000) experiments for model derivation.

5. PACE [25,2]: (Overhead for source code analysis to identify
subtasks) + (Overhead for mapping their performance modeling
language outputs to the subtasks for compilation).

6. Ipek et al. [21]: (250-500) experiments for model derivation.
7.0ur strategy: (20 1-processor + 20 2-processor + 10 4-processor
+ 10 8-processor) experiments for model derivation + (overhead
for deriving sorted list of functions [~5 min]).

We find that some of the strategies require user intervention
to manually analyze the source code of the application and the
associated overhead cost is highly non-deterministic. The number
of experiments needed to derive models in some strategies are
functions of number of processor and problem size configurations.
Our modeling strategy does not need source code analysis by the
user and need the smallest number of experiments to derive the
models. The time taken for a prediction with our model is 2-4 s.
The primary reason for the small number of experiments in our
strategy is that we do not require our initial models to be accurate.

Rather, we continuously evaluate our models as applications are
executed in grid systems.

In terms of implementation in production grid systems, all
modeling strategies require the application developer to register
information about the locations of the executables to a centralized
application database. Models requiring source codes [39,25,2,1,10,
41,4,31] incur additional registration overhead for obtaining the
source files and other libraries for the application. These models
also incur the overhead of extensive analysis and instrumentation
of the source code. The existing models for dedicated systems [39,
34,6,25,2,1,24,10] incur synchronization overheads among the
processors to ensure dedicatedness during experiments for
deriving the model functions. Our modeling strategy incurs the
following additional overheads:

1. During the experiments, our strategy incurs the overhead of
monitoring the cpu and bandwidth loads. However, many of the
grid systems consist of infrastructures for monitoring information
about resources [38].

2. Our models also incur a small overhead in porting the
functions derived on one cluster to other clusters for cross-
platform modeling. However, while the existing strategies perform
extensive experiments on all clusters to derive model functions for
each cluster, our strategy, due to cross-platform modeling, requires
extensive experiments on only one cluster.

3. After an application is executed on a cluster, our strategy
incurs the overhead of adding parameters corresponding to
the application run to the cluster database and reevaluation of
the model functions. This step is needed for model adaptivity
to changing load dynamics. Moreover, these evaluations are
conducted simultaneously with the predictions, i.e. a scheduler can
make use of a previous model for immediate predictions while the
model is refined for use in later predictions.

4.4. Cross-platform performance predictions

For validating the cross-platform performance prediction
techniques described in Section 3.5, we used 3 platforms: the
8-processor Intel cluster, 16-processor AMD cluster and 32-
processor IBM cluster. For a given pair of reference and target
clusters and for a given application, we use the top model
function for the application that was obtained after conducting
exp-refer experiments, corresponding to different problem sizes
and processors, on the reference cluster. The computation and
communication functions of the model are then scaled by the
corresponding scaling factors, as explained in Section 3.5, and the
resulting model is then used to predict execution times for the
application on the target cluster. The percentage prediction errors
for the model on the target cluster were obtained by conducting
exp-target experiments with the application, corresponding to
different problem sizes and processors, on the target cluster
and obtaining the actual and predicted execution times for the
experiments.
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Table 6
Cross-platform predictions on the 8-processor intel, 16-processor AMD and 32-processor IBM clusters
Prob. Reference cluster Loading on reference cluster exp-refer Target cluster Loading on target cluster exp-target Avg. PPE
Eigen Intel Random 309 IBM Dedicated 50 18.53
Eigen AMD Grads 203 IBM Dedicated 50 25.9
Eigen Intel Random 309 AMD Grads 150 26.67
MD Intel Grads 212 IBM Dedicated 50 23.04
MD AMD Grads 206 IBM Dedicated 50 22.08
MD Intel Grads 212 AMD Random 100 28.23
MD AMD Grads 206 Intel Grads 150 18.68
SSOR Intel Grads 235 AMD Grads 150 21.20
SSOR AMD Grads 240 Intel Grads 150 22.55
IS Intel Random 300 IBM Dedicated 100 25.70
IS Intel Random 300 AMD Grads 150 26.06
IS AMD grads 226 Intel Grads 123 27.08

Since the IBM cluster is a space-shared batch system, the
processors are not subject to external load and are dedicated for
our experiments. Hence, we used a value of 1 for minAvgAvailCPU,
i.e. unloaded processor, for our experiments on the IBM cluster.
However, the network links can still be subjected to external load
since the other user applications may cause network traffic on the
shared switches and links used by our experiments. We measured
the bandwidths on a link of the cluster periodically for 4 days and
used the average of the bandwidths for minAvgAvailBW.

Table 6 summarizes the prediction results due to cross-platform
modeling for different reference and target cluster combinations.
About 60-100% of predictions were obtained with less than 30%
prediction error. The average percentage prediction error is less
than 30% in all cases. We also find that model functions and training
data obtained on a non-dedicated reference platform can be used
for good predictions on other non-dedicated environments under
different loading conditions and dedicated batch systems.

4.5. Comparison with a modeling strategy for non-dedicated systems

We compared the predictions by our modeling strategies with
the modeling strategy by Schopf et al. [30,29,31] for non-dedicated
systems. We considered the same 2D SSOR problem that they had
considered in their work. Stochastic values of available bandwidths
and available CPUs based on the NWS traces were input to the
Schopf’s model for predicting execution times. We found that the
average percentage prediction errors due to our modeling were
less than 20% while the average percentage prediction errors due
to Schopf modeling were between 27-45%. We also found that
for large problem sizes, the stochastic values by Schopf have large
ranges and hence will not be useful for grid schedulers to make
scheduling decisions.

4.6. Summary

In summary, in all our experiments, 48-98% of predictions
were obtained with less than 30% prediction error. The average
percentage prediction error is less than 30% in all cases. Although
these percentages are high in the context of predictions on
unloaded environments, these numbers are reasonable and to our
knowledge, the best reported on non-dedicated environments.
Using multiple models was found to be beneficial over using
a single model for prediction in many cases. Also, using single
model for predictions resulted in greater than 30% average
percentage prediction errors in some cases. Thus, our approach
of adaptively using different models for different predictions
yield good prediction results in non-dedicated systems. We also
showed that scheduling using our predictions will result in perfect
scheduling in many cases and the maximum loss in efficiency of
a scheduler when using our models is only 11%. Our modeling
overheads are smaller and more deterministic when compared to

other models. Our cross-platform techniques were able to give less
than 30% average percentage predictions when porting the models
to either dedicated or non-dedicated platforms.

5. Performance predictions for large scientific applications

The performance modeling techniques discussed in this work
are intended for simple parallel kernels that have single phase
of uniform computations and communications among processors.
We plan to extend this work for large scientific applications where
the computation and communication complexities can vary in
different phases of application execution and where the amount
of computations and communications within a phase can be non-
uniform among different processors [26,15,22].

For predicting the execution times of large applications with
multiple phases of computation and communication complexities,
we plan to investigate the appropriateness of various available
techniques for phase detection and prediction [14,16,32,27]. These
techniques use various application parameters including working
sets, conditional branches and basic blocks to identify phases in the
application. The primary challenge will be to study the usefulness
of the techniques for various kinds of non-dedicatedness of
the systems. Another challenge is to determine the appropriate
thresholds in variation of performance metrics that can be used
to define phase boundaries. For each of the detected phases,
we can then use the CPU and network load measurements and
execution times within the phase boundaries to derive per-phase
execution models as shown in Eq. (1). The predictions by the per-
phase execution time models can then be used by rescheduling
strategies to dynamically migrate the application to different sets
of resources suitable for a phase as the application enters the phase.

Our work can be easily extended to deal with non-uniform
computations and communications among processors within a
single phase of application execution. In this case, instead of
modeling the execution time for the entire application, we model
per-process execution times as shown in Eq. (4).

Tpia (N, P, AvgAvailCPU 4, AvgAvailBW ;4)

— f comp-pid (N )
Sepu-pid (AVgAvailCPUpid) - frcomp-pid (P)

+ fcomm—pid (N)
Sow-pia (AVEAVailBW i4) - focomm-pia (P)

In Eq. (4), Tyiq is the time for executing the phase by a process
with identifier, pid, and can be different for different processes.
While this execution time is the time between beginning and
end of the phase for some processes, it is the time between
beginning of the phase and the beginning of large wait times spent
in synchronizations at the end the phase for the other processes.
AvgAvailCPU ;4 and AvgAvailBW ;4 represent the average CPU and
network loads, respectively, during the phase and correspond

(4)
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to the processor on which the process, pid is executed. feomp-pid,
fcomm-pidrfcpu-pidvfbw—pidnycomp-pid and chomm—pid are the functions for
process, pid, and correspond to the functions shown in Eq. (1) for
the entire application.

6. Conclusions

In this work, we had devised performance modeling techniques
for predicting execution times of tightly-coupled parallel applica-
tions for the purpose of scheduling the applications on grid re-
sources. We have also developed cross-platform modeling tech-
niques for porting the results of performance modeling on one plat-
form or cluster to other clusters in the grid. The overheads of our
modeling strategies were shown to be less than that of the other
techniques. Due to the consideration of resource dynamics dur-
ing application executions and dynamic evaluation of performance
model functions, our performance modeling strategies gave less
than 30% average percentage prediction errors in all cases, which is
reasonable for non-dedicated systems. We also found that schedul-
ing based on predictions by our strategies will result in perfect
scheduling in many cases.

7. Future work

Our future work is to develop robust grid scheduling techniques
that efficiently use the predictions from our performance mod-
els. We also plan to augment our techniques for predicting execu-
tion times for complex multi-phase and multi-component appli-
cations where the computation and communication complexities
can drastically change between different phases of application ex-
ecution. The observations about the multiple phases will be used
to build efficient rescheduling techniques for migrating the appli-
cations to different resources at the phase boundaries. We plan to
extend our modeling techniques to model the I/O costs in the ap-
plications.
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