
1 23

Journal of Grid Computing

ISSN 1570-7873
Volume 9
Number 3

J Grid Computing (2011) 9:379-403
DOI 10.1007/s10723-010-9170-z

Strategies for Rescheduling Tightly-
Coupled Parallel Applications in Multi-
Cluster Grids

H. A. Sanjay & Sathish S. Vadhiyar

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V.. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

J Grid Computing (2011) 9:379–403
DOI 10.1007/s10723-010-9170-z

Strategies for Rescheduling Tightly-Coupled Parallel
Applications in Multi-Cluster Grids

H. A. Sanjay · Sathish S. Vadhiyar

Received: 1 February 2010 / Accepted: 26 October 2010 / Published online: 9 November 2010
© Springer Science+Business Media B.V. 2010

Abstract As computational Grids are increasingly
used for executing long running multi-phase paral-
lel applications, it is important to develop efficient
rescheduling frameworks that adapt application
execution in response to resource and application
dynamics. In this paper, three strategies or algo-
rithms have been developed for deciding when
and where to reschedule parallel applications that
execute on multi-cluster Grids. The algorithms
derive rescheduling plans that consist of potential
points in application execution for rescheduling
and schedules of resources for application execu-
tion between two consecutive rescheduling points.
Using large number of simulations, it is shown
that the rescheduling plans developed by the al-
gorithms can lead to large decrease in application
execution times when compared to executions
without rescheduling on dynamic Grid resources.
The rescheduling plans generated by the algo-
rithms are also shown to be competitive when

This work is supported by Department of Science and
Technology, India. project ref. no.
SR/S3/EECE/59/2005/8.6.06.

H. A. Sanjay · S. S. Vadhiyar (B)
Supercomputer Education and Research Centre,
Indian Institute of Science, Bangalore, India
e-mail: vss@serc.iisc.ernet.in

H. A. Sanjay
e-mail: sanjay@rishi.serc.iisc.ernet.in

compared to the near-optimal plans generated by
brute-force methods. Of the algorithms, genetic
algorithm yielded the most efficient rescheduling
plans with 9–12% smaller average execution times
than the other algorithms.

Keywords Rescheduling · Parallel applications ·
Multi-phase · Rescheduling plans

1 Introduction

Grids have been found to be powerful research-
beds for executing various kinds of parallel appli-
cations [1, 2]. Due to the dynamic nature of Grid
environments in terms of varying availability and
performance of resources, there has been increas-
ing interest in recent years to develop efficient
rescheduling mechanisms that adapt application
execution in response to change in resource and
application characteristics [3–8]. Rescheduling in-
volves changing the resource set on which an ap-
plication is executing.

One of the primary challenges in building a
rescheduling framework involves developing poli-
cies for deciding when and where to reschedule
the applications. Existing efforts on rescheduling
policies consider simple classes of parallel applica-
tions [7] and homogeneous applications with uni-
form behavior throughout application execution
[3, 4]. Most of the existing efforts use dynamic
or online profiling techniques to monitor perfor-

Author's personal copy

380 H.A. Sanjay, S.S. Vadhiyar

mance of the application processes and reschedule
the processes on performance degradations [6–
9]. Online profiling of application characteristics
during application execution can incur large exe-
cution overheads.

In this paper, we focus on developing re-
scheduling policies for parallel applications with
multiple phases of computation and communi-
cation characteristics. In these multi-phase ap-
plications, the execution times of the different
phases on even a dedicated set of resources are
significantly different. The phases can either be
qualitatively different phases inherent to the ap-
plication or can be iterations of an iterative ap-
plication in which the execution characteristics of
the different iterations are different.

The work derives rescheduling plans for ex-
ecuting the multi-phase applications on multi-
cluster Grids based on the different performance
characteristics of different application phases. A
rescheduling plan consists of potential points in
application execution for rescheduling and sched-
ules of resources for application execution be-
tween two consecutive rescheduling points. The
plan is built for a specific set of resource character-
istics and considers change in application behavior
between different phases. The best schedule for
one phase in the plan can be different from the
best schedule of another phase due to application
dynamics. On Grids with high load dynamics or
high variability in resource characteristics, these
plans can be updated periodically during appli-
cation execution, thus also considering resource
dynamics. Thus, application adaptation to both re-
source and application dynamics are considered in
this paper. To our knowledge, this is the first work
on algorithms to determine points of rescheduling
for multi-phase parallel applications considering
both application and resource dynamics.

Three algorithms were developed, namely an
incremental algorithm, a divide-and-conquer al-
gorithm and a genetic algorithm, for deriving a
rescheduling plan for a parallel application execu-
tion. The plans are derived using the performance
modeling strategies, developed in a previous work
[10], that predict execution times of parallel appli-
cations for dedicated or non-dedicated resources.
The algorithms use performance model functions
built for a single homogeneous dedicated or non-

dedicated cluster to derive rescheduling plan for
the cluster. An algorithm, that uses reschedul-
ing plans derived on different clusters to form
a single coherent rescheduling plan for applica-
tion execution on a Grid consisting of multiple
clusters, was also developed. Using large number
of simulations with five complex scientific multi-
phase parallel applications, it is shown that the
rescheduling plans generated by the algorithms
result in large reductions in application execu-
tion times when compared to executions on single
schedules on dynamic multi-cluster Grids. The ge-
netic algorithm gave the most efficient reschedul-
ing plans with 9–12% smaller average execution
times than the other algorithms. The rescheduling
plans generated by the algorithms are also highly
competitive when compared to the near-optimal
plans generated by brute-force methods.

In one of our previous efforts [10], performance
modeling strategies were developed for predicting
the execution times of parallel applications on
non-dedicated homogeneous clusters of machines.
Another previous work [11], discussed scheduling
algorithms that use the predictions by the per-
formance models of the earlier effort to choose
a set of resources in a non-dedicated cluster for
execution of a single-phase parallel application
with uniform computation and communication
characteristics throughout its execution. The focus
of the current work is to propose rescheduling
algorithms for adaptive execution of multi-phase
parallel applications on single and multiple clus-
ters. Specifically, given a parallel application with
multiple phases of computation and communica-
tion, three algorithms are first proposed for deter-
mining a rescheduling plan for adaptive execution
on a single non-dedicated cluster. Another algo-
rithm is then proposed for using the rescheduling
plans derived for a single cluster to determine
a single coherence rescheduling plan for adap-
tive application execution on a Grid consisting
of multiple clusters. A rescheduling plan divides
the application into intervals, with each interval
consisting of a consecutive set of phases, such
that an interval is executed on a set of resources
and the application is migrated between intervals
to different sets of resources. For effecting the
migration of the application between intervals to
different sets of resources with different number

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 381

of processors during execution, the existence of
a checkpointing framework, such as the work by
Vadhiyar and Dongarra [12], is assumed.

In Section 2, related work is described.
Section 3 describes our earlier work on perfor-
mance modeling and scheduling that are used
by the algorithms for generating rescheduling
plans. Section 4 defines the problem of finding
rescheduling plans and motivates the need for
algorithms for generating plans. The algorithms
for forming rescheduling plans for an application
on a cluster are described in Section 5. Section
6 explains the method for forming rescheduling
plans on multi-cluster Grids using the plans gen-
erated for single clusters. Section 7 describes the
experiment setup and presents results showing the
efficiency of the rescheduling plans. The applica-
tion of the rescheduling strategies for workflow
applications is described in Section 8. Section 9
presents conclusions and future work.

2 Related Work

Recently, many frameworks have been developed
to reschedule executing parallel applications on
Grids [3, 6, 7, 13–16]. In this section, the cur-
rent work is compared with those efforts that
deal with tightly-coupled parallel applications and
workflow applications.

2.1 Rescheduling Tightly-Coupled Parallel
Applications

Adapting loosely applications to Grid dynamics
are relatively simpler since individual tasks can be
migrated to better resources with minimal coordi-
nation with other tasks for adaptation [7].

There has been recent interest in developing
rescheduling or reconfiguration frameworks for
MPI based tightly coupled parallel applications
[3, 6, 13]. The work by Fernandez et al. [13] allows
application reconfiguration by over-decomposing
parallel application into large number of entities
(processes or threads) and migrating the threads
when the availability of nodes change. These tech-
niques are not practical for Grid systems where
node availability can frequently vary. When the
resource availability is small, many entities will

be executed on a single node leading to appli-
cation performance degradation and overloading
of system resources. The work reports about 36–
88% increase in execution times of some applica-
tions when many threads are mapped to a single
processor.

The work by Hussein et al. [8] considers migra-
tion of components in coupled scientific models
in response to resource and application dynamics
based on predictions using exponential smooth-
ing techniques. The ReSHAPE framework [3]
can shrink and expand processor configurations
for parallel applications on homogeneous clus-
ter. The framework supports only homogeneous
applications with uniform behavior throughout
application execution and allows only shrinking
to processor configurations on which the appli-
cations have previously run. The framework em-
ploys trial-and-error for rescheduling to different
processor configurations with the objective of exe-
cuting on a processor configuration that gives best
performance for the application. Thus the method
can involve rescheduling to inefficient processor
configurations.

Varela et al. have developed a modular frame-
work called Internet Operating System (IOS)
[6, 9] for supporting adaption to both changing
application and resource characteristics. Their de-
cisions for rescheduling consider only process-
level characteristics and are not suitable for large
scale multi-phase scientific applications involv-
ing application-level change in characteristics in
different phases. In the work by Bal et al. [7],
an adaptation coordinator uses profile informa-
tion from application processes and calculates
weighted average efficiency for the application.
This metric considers processor utilization by
the processes and the speed of the processors.
The framework adds and removes nodes when-
ever the efficiency values are beyond some pre-
defined range. The framework does not consider
large-scale reconfiguration or migration of ex-
ecuting applications and are more suitable for
reconfiguring processes of divide-and-conquer
applications.

All the above frameworks use profiling to ob-
tain process-level characteristics during applica-
tion execution. Online profiling can lead to large
application overheads and these efforts report in-

Author's personal copy

382 H.A. Sanjay, S.S. Vadhiyar

crease in execution times of up to 20% in some
cases [6, 7]. The GrADSolve infrastructure by
Vadhiyar and Dongarra [4, 17] uses performance
models that give expected or predicted perfor-
mance for each iteration or phase of a paral-
lel application. The framework is more suitable
for iterative applications with uniform behavior
throughout application execution. The existing
rescheduling strategies also do not consider fu-
ture change in application characteristics. In the
strategies described in this paper, potential points
of rescheduling are formed based on the global
knowledge of all the application phases.

2.2 Scheduling and Rescheduling Workflows

Various hybrid scheduling and rescheduling
strategies have been proposed for workflow ap-
plications [14, 15, 18–20]. The work by Zhang
et al. [18] compares different scheduling algo-
rithms for a large number of execution en-
vironments and workflow DAG structures for
scheduling workflow applications on Grids. They
consider list-based and level-based scheduling al-
gorithms and a hybrid heuristic scheduling (HHS)
algorithm that combines both list and level-based
strategies. The work also proposes a new mea-
sure called effective aggregated computing power
(EACP) for use as a metric in level-based heuris-
tics for resource selection. Gong et al. [15] propose
a dynamic resource-critical workflow scheduling
algorithm that takes into account environmental
heterogeneity including resource capacities and
software configurations, and dynamism including
load, queue waiting time and availability. Their
algorithm reassigns the schedule based on tasks
completed in the workflow and resource status at
runtime.

The work by Sakellariou and Zhao [20] at-
tempts to reschedule workflow applications at
selected points during the execution to reduce
the rescheduling costs. They perform selective
rescheduling of selected workflow tasks based on
measurable properties including estimated and ac-
tual start times, and slacks (minimum spare time
of the path from the node to the exit node) of
the nodes. The work by Zhang et al. [14] builds
a hybrid rescheduling strategy for workflow appli-
cations. In the first step of this hybrid strategy, a

subset of batch queue resources are statically se-
lected based on aggregate computing power the
batch queues. In the second step, the workflow
tasks are dynamically scheduled to resources,
where the mapping of a task is computed at run-
time based on a list-based scheduling algorithm.
When the ratio between the actual and estimated
performance of the application exceeds a toler-
ance level, their application manager performs
rescheduling by performing resource re-selection.
They follow a two phase rescheduling procedure
in which the old and new resource pools are com-
bined, and the rest of the application DAG is
migrated to a new set of resources. Thus resched-
uling is performed if either the resource condi-
tions change or to mitigate the effects of earlier
bad rescheduling decisions.

These efforts primarily perform remapping or
migration of a task/application of a workflow be-
fore its execution based on change in resource
characteristics. In the current effort described in
this paper, the algorithms derive a rescheduling
plan for migrating an application in the middle
of its execution based on both application and
resource dynamics. This work work can be inte-
grated into the workflow rescheduling strategies
where in addition to changing the mapping deci-
sions of the workflow tasks, the tasks can be mi-
grated during execution based on the rescheduling
plans derived in this paper.

2.3 Integration with Realistic Schedulers

The current work can be integrated into Grid
meta-schedulers complying with the Grid stan-
dards [16, 21–24]. Emperor [24] is a OGSA
metascheduler that integrates models for predict-
ing resource characteristics, scheduling algorithm
that uses these measures for deriving a schedule,
and a job submitting mechanism for spawning the
application on the schedule. They use AR and
ARIMA methods for resource load predictions,
the MDS, GRIS, GIIS, and GASS mechanisms
of Globus toolkit [25] for information retrieval,
resource discovery and file staging, and job ex-
ecution time predictions in their scheduling al-
gorithm. The current work can be added to the
scheduling algorithm of EMPEROR, by which the
algorithms described in this paper can use the re-

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 383

source performance measures in the EMPEROR
framework to derive the rescheduling plan. The
algorithms can also make use of Globus’ Re-
source Specification Language (RSL) for descrip-
tion about application phases, thereby enabling
portability. They can also be generalized to use
the standard naming schemes as in WSRF [26] and
XML for resource and application specifications.

Huedo et al. have developed a GridWay meta-
scheduler that is compliant with the web service
(WS) framework of the Globus toolkit [16]. They
demonstrated that the performance of their meta-
scheduler is reasonable. The GridWay metasched-
uler provides a virtualization layer on top of
Globus services and performs job execution man-
agement and resource brokering. Dumitrescu et
al. have proposed a resource brokering architec-
ture called GRUBER [22] for providing user-level
service agreement in dynamic Grid environment
with different virtual organizations involving mul-
tiple administrative domains. Using the architec-
ture, the resource providers can specify the terms
of usage of the resources, thus proving controlled
resource sharing. Moltó et al. [23] have developed
generic WSRF-based multi-user resource broker-
ing and metascheduling architecture for remote
execution of scientific applications.

These architectures and schedulers provide for
easy replacement of resource selection algorithms
in the metascheduling framework. Thus, the re-
source selection algorithm of the current work
involving rescheduling plans can be substituted
for the scheduling policies in these real sched-
ulers or frameworks, thereby leveraging various
services in-built in the frameworks. These services
include the Grid Resource Allocation and Man-
agement (GRAM) [27] for execution manage-
ment of rescheduled applications, WebMDS for
monitoring and discovery [28] for obtaining dy-
namic resource properties, GridFTP [29] for data
access and movement and application migration,
and GSI for security [30].

3 Background

3.1 Grid and Application Models

This paper considers execution of multi-phase
tightly-coupled parallel applications on multi-

cluster Grids consisting of dedicated or non-
dedicated, interactive or batch systems. Tightly-
coupled applications are defined as applications
that involve frequent heavy communications
among the parallel tasks. These applications are
differentiated from workflow applications [31]
where communications on an edge of a workflow
graph are not as frequent as the inter-task com-
munications in tightly-coupled applications and
mostly happen once after the completion of an
application component. Hence, while loosely cou-
pled and workflow applications achieve good per-
formance when executed across multiple clusters,
tightly-coupled applications exhibit poor perfor-
mance across multiple clusters due to low-speed
network links between the clusters and are typ-
ically executed within a single cluster consisting
of homogeneous machines. In the strategies for
rescheduling a multi-phase tightly coupled paral-
lel application in multi-cluster Grids, a phase of
the application is executed in a single cluster while
the different phases can be executed in different
clusters due to rescheduling between the phases.

3.2 Performance Models for Single-Phase
Applications

In our previous work [10], performance modeling
strategies were developed for predicting execu-
tion times of tightly-coupled parallel applications
on dedicated or non-dedicated homogeneous re-
sources. The time taken for execution of a parallel
application is calculated as:

T(N, P, minAvgAvailCPU, minAvgAvailBW)

= fcomp(N)

fcpu(minAvgAvailCPU) · fPcomp(P)

+ fcomm(N)

fbw(minAvgAvailBW) · fPcomm(P)
(1)

where

• N: problem size or data size; P: number of
processors;

• minAvgAvailCPU , minAvgAvailBW: repre-
sent the transient CPU and network charac-
teristics, respectively.

Author's personal copy

384 H.A. Sanjay, S.S. Vadhiyar

• fcomp, fcomm: indicate the computational and
communication complexity, respectively, of
the application in terms of problem size;

• fcpu: function to indicate the effect of proces-
sor loads on computations;

• fPcomp: used along with computational com-
plexity to indicate the computational speedup
or the amount of parallelism in computations;

• fbw: function to indicate the effect of network
loads on communications;

• fPcomm: used along with communication
complexity to indicate the communication
speedup or the amount of parallelism in
communications.

The formula shown in (1) splits the execution
time of a parallel application into two parts, fcomp

and fcomm, for representing computation and com-
munication aspects, respectively, of the parallel
application. The scalability of the computational
and communication times with increasing number
of processors, is represented by fPcomp and fPcomm,
respectively. The increase in CPU and network
loads on non-dedicated systems increase the com-
putation and communication times, respectively.
minAvgAvailCPU and minAvgAvailBW repre-
sent the inverse of the CPU and network loads,
respectively. Hence, the corresponding functions,
namely, fcpu and fbw, are contained in the de-
nominators. The formula shown in (1) gener-
alizes the parallel runtime equations of many
parallel numerical kernels that deal with memory-
resident data [32]. These parallel kernels have
single phase of uniform computations and com-
munications and are integral to many scientific ap-
plications. The calculations of minAvgAvailCPU
and minAvgAvailBW using available CPUs and
bandwidths, obtained from Network Weather Ser-
vice (NWS) [33], are explained in the previous
work [10]. Available CPU is a fraction of the
CPU that can be used for the application and is
inversely proportional to the amount of CPU load.
Available bandwidth of a link is the bandwidth on
the link available to an application, and is usu-
ally lesser than the link capacity and is inversely
proportional to the network load on the link. The
details of the performance models, calculations of
minAvgAvailCPU and minAvgAvailBW, mod-

eling procedure and results can also be found in
the previous work [10].

3.3 Performance Models for Multi-Phase
Applications

For predicting the execution times of large-scale
parallel applications with multiple phases of com-
putation and communication complexities, the
major phases of execution in the applications will
have to be determined. For this work, the phases
are marked at compile time. We use the work
by Shen et al. [34, 35] that employs a technique
called active prof iling for identifying execution
phases. Active profiling uses controlled inputs and
analysis of execution traces of basic blocks to
identify candidate phase markers or phase bound-
aries, real inputs to eliminate false positives, and
detailed analysis for identifying inner phase mark-
ers. For some parallel applications not amenable
to active profiling, manual analysis of high-level
structure of the source code is used and long-
running subroutines and loop-nests are consid-
ered as candidate phases [36]. For each of the
detected phases, the CPU and network load mea-
surements and execution times within the phase
boundaries can be used to derive per-phase per-
formance models as shown in (1).

3.4 Scheduling Strategies

For scheduling tightly-coupled parallel applica-
tions on a non-dedicated or dedicated homoge-
neous cluster, the performance model of (1) is
used for comparing various candidate schedules,
and the best schedule with minimum predicted ex-
ecution time for the application is chosen. In our
previous work [11], a novel heuristic called Box
Elimination was proposed for determining the
best schedule. The algorithm works on a 3-D box
of Grid points with each Grid point correspond-
ing to a (minAvgAvailCPU , minAvgAvailBW,
number of processors) tuple. The algorithm re-
peatedly searches through the space of hypothet-
ical points in the box, maps the points to real
schedules of machines and evaluates the schedules
to determine the best schedule. The algorithm
carefully avoids evaluating large number of poor

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 385

schedules by eliminating regions of hypothetical
points in the box based on a hypothetical point
that was searched. The details of the algorithm can
be found in the previous work [11].

4 Problem Statement

Let us consider a multi-phase parallel application
of a given problem size, S, with P contiguous
phases of execution, p1 < p2 < ... < pP, ordered
by the times of execution. pi < pj denotes that
phase i is executed before phase j in the applica-
tion. Let f1, f2, · · · , fP represent the performance
model functions, determined by (1), for the P
phases. Let us also consider T processors with
their available CPU values given by a vector of
size T and the available bandwidths of the links
connecting the processors given by a matrix of size
T × T. Let rcost be the worst-case overhead for
rescheduling the executing application. The model
functions, f1, f2, · · · fP, number of processors, T,
the available CPUs and bandwidths and rcost con-
stitute the inputs to the problem of determining a
rescheduling plan.

Let us consider a disjoint partitioning of the
phases into L intervals, I1, I2, · · · IL, with the fol-
lowing properties.

1. Interval I j consists of m j contiguous phases,
pstart j < pstart j+1, · · · pstart j+m j−1 where start j

is the index of the starting phase in I j.
fstart j, fstart j+1, · · · fstart j+m j−1 are the corre-
sponding performance model functions of the
phases in interval I j.

2. The intervals are ordered: I1 < I2 < · · · IL

where Il < Im denotes that phases in interval
Il are executed before the phases in interval
Im.

3. The cumulative performance model func-
tion, g j, for interval I j is given as g j =∑m j

k=1 fstart j+k−1.
4. t j is the execution time corresponding to

the schedule determined by box elimination
heuristic for interval I j, using the performance
model function g j, problem size, S, and the
resource characteristics.

The concept of phases and intervals is illus-
trated in Fig. 1. The disjoint set of intervals along

..
P2

..
Pm1

Pstartj

Pstartj+1
..

..

..

..

Ij

P1

Pstartj+mj 1

I1

IL

Fig. 1 Phases and intervals

with the schedules for executing the intervals rep-
resent a rescheduling plan. The application can be
potentially rescheduled at the end of an interval.

The problem is to find an optimal rescheduling
plan {I1 < I2 < · · · ILopt} such that

Lopt∑

i=1

ti + (Lopt − 1)rcost (2)

is minimized subject to the condition

ti > tthres, ∀i ∈ {1, 2, · · · Lopt} (3)

In (2), the first term represents the total time spent
in execution of the application and the second
term represents the total rescheduling cost of the
rescheduling plan. The condition given in (3) is
used to avoid frequent rescheduling or reschedul-
ing trashing by stipulating a minimum threshold
of tthres for execution of an interval. For this work,
tthres was set to 20 min since the rescheduling
cost can be 5–10 min in some real reconfiguration
frameworks [4]. A valid interval is defined as the
interval for which the predicted execution time is
less than tthres and a valid rescheduling plan as the
plan in which all intervals are valid.

Author's personal copy

386 H.A. Sanjay, S.S. Vadhiyar

4.1 Complexity

The total number of ways to partition a contiguous
set of N items into different number of partitions
is equal to 2(N−1). This brute-force complexity can
be significantly reduced by using a dynamic pro-
gramming algorithm as follows. Let T(k, p) be the
time for optimal rescheduling plan for executing
the first p phases using k reschedules and t[a, b]
be the estimated execution time for the interval
of phases [a, b], using the performance model
functions in the interval. Then the problem can be
formulated as:

T(1, p) = t[1, p] ∀p

T(k, p) = min
r

(T(k − 1, p − r)

+ t[p − r + 1, p] + rcost)

∀p, ∀k > 1 (4)

The minimum of T[k, P] for all k will then cor-
respond to the optimal rescheduling plan. How-
ever, even this dynamic programming solution
leads to evaluation of 21,000 candidate plans for
an application consisting of 50 phases of execu-
tion. Since evaluating such high number of can-
didate rescheduling plans is time-consuming and
since the rescheduling plan will have to be up-
dated periodically during runtime to adapt to re-
source dynamics, various heuristics for generating
efficient rescheduling plans are adopted.

5 Algorithms for Generating Rescheduling Plans
in a Single Cluster

All the algorithms accept as input the applica-
tion problem size, problemSize, the total num-
ber of execution phases for the application,
phaseCount, the performance model functions,
f1, f2, · · · fphaseCount, for the phases, the reschedul-
ing cost, rcost, the total number of processors,
P, and the available CPU and bandwidth values
of all the processors and links, respectively. The
algorithms produce as output a rescheduling plan,
plan, which includes a set of identifiers of the
phases at the end of which the application can be
potentially rescheduled and the schedules for exe-

cuting the application between the phases. These
phases are referred to as interval markers.

5.1 Incremental Algorithm

This algorithm incrementally tries to construct a
rescheduling plan by adding intervals to the plan
in increasing order. The pseudo code of the al-
gorithm is given in Fig. 2. For forming the first
interval, it considers adding phases to the interval
in increasing order starting from the first phase,
pstart. After each addition of a phase, it checks
if the interval is valid using the condition in (3)
(line 10). Once the algorithm finds a valid interval,
with the last phase of the interval denoted by
pend, it uses Box Elimination algorithm to find
the schedule, prevSched, for the interval using
the cumulative function of all performance model
functions for the phases in the interval, the prob-
lem size and resource characteristics (lines 7 and
14). It then tries to form a lager interval by adding
the next phase, pend+1, to the interval (line 14)
and again invoking Box Elimination algorithm to
determine a new schedule, curSched for this larger
interval (line 16). It predicts the execution time of
the larger interval when executed on the sched-
ules, prevSched and curSched, as tprevSched and
tcurSched, respectively (lines 17–20). The algorithm
compares the cost of continuing on prevSched,
tprevSched, and the cost of rescheduling to curSched,
(tcurSched + rcost). Rescheduling to curSched in-
volves a rescheduling cost, rcost. If tprevSched <

(tcurSched + rcost) (line 21), then the algorithm
decides that the application behavior has not
changed significantly in the newly added phase.
This is because the earlier schedule, prevSched,
determined for executing the phases, pstart – pend,
is found to be equivalent to curSched for execut-
ing the phases, pstart – pend+1, indicating that the
application behavior does not significantly change
in the phase, pend+1, to necessitate changing the
machines considered for execution. In this case,
the algorithm considers adding more phases to
the interval (line 22). Thus this algorithm uses the
quality in schedules to detect significant changes
in application behavior.

If (tcurSched + rcost) < tprevSched (line 24), the al-
gorithm determines that the application behavior

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 387

Fig. 2 Incremental
Algorithm (IA)

has changed significantly in the phase, pend+1, ne-
cessitating a change in the set of machines con-
sidered for execution. In this case, the algorithm
forms the interval, pstart–pend, and adds pend as
an interval marker to the rescheduling plan and
begins the new interval from the phase, pend+1

(line 25). This process of forming subsequent in-
tervals by incrementally adding phases and using
the change in quality of schedules to decide the
interval markers continues till the algorithm adds
the last phase of application execution to the
rescheduling plan. This algorithm tries to find a
balance between reducing the rescheduling costs
by forming larger intervals and reducing the ex-
ecution times of the intervals by forming new
intervals when it encounters a phase with different
application behavior.

5.1.1 Complexity

The total number of steps in the incremental al-
gorithm is equal to the number of phases in the
application. For each step, box-elimination sched-
uling algorithm [11] is invoked for determining
the schedule of an interval. Thus the complexity
of the incremental algorithm is equal O(phases ×
complexity_BE) where complexity_BE is equal
to the complexity of the box-elimination algo-
rithm, which is approximately given by:

complexity_BE

= O
(
log4/3 points × (

proc_cnt2 + pr_limit

+ cpu_limit + bw_limit))

(5)

Author's personal copy

388 H.A. Sanjay, S.S. Vadhiyar

points is the total number of schedules in the
search space and is dependent on the minimum
and maximum values of number of processors,
available CPU and bandwidth values, and the
discretization of these ranges. proc_cnt is the total
number of processors in the worst case. pr_limit,
cpu_limit and bw_limit correspond to range of
number of processors,available CPU and avail-
able bandwidth, respectively. Analysis of the com-
plexity of the box-elimination can be performed
from the description of the algorithm given in
[11].

5.2 Division Heuristic

In this scheme, the application execution is pro-
gressively divided into increasing number of in-
tervals. The best rescheduling plan is formed for
a given number of intervals using the best plans
for the lower number of intervals. The best plan
for some number of intervals, inter, denoted as
bestplaninter, is the plan for which the total pre-
dicted application execution time is minimum
among all the candidate rescheduling plans con-
taining inter intervals. The total predicted execu-
tion time for a rescheduling plan is calculated by
adding the sum of the predicted times for the in-
tervals in the plan and the sum of the rescheduling
costs. The predicted time for an interval is calcu-
lated as in the incremental algorithm by forming
the cumulative function of all the performance
model functions for the phases in the interval
and using the Box Elimination algorithm with the
cumulative function to find the best schedule of
machines for the interval and the corresponding
execution time.

bestplan2 is formed for two intervals by con-
sidering all candidate rescheduling plans with two
intervals. Each candidate rescheduling plan cor-
responds to assigning one of the phases of appli-
cation execution as an interval marker. bestplan3

is then formed for three intervals using bestplan2

for two intervals. For forming bestplaninter, for
inter intervals, using bestplaninter−1 for inter − 1
intervals, the interval markers in bestplaninter−1

are used and the phases other than these interval
markers are considered as candidates for another
interval marker. Thus, the interval markers in

P1

Pn

P2

P1 P1 P1 P1

P2 P2 P2

Pn Pn Pn Pn

P2

bestplan1 bestplan2 bestplan3 bestplan4 bestplan5

Fig. 3 Illustration of division heuristic

bestplaninter−1 are contained in the rescheduling
plans evaluated for inter intervals. This is illus-
trated in Fig. 3.

This procedure is continued for higher number
of intervals until no valid rescheduling plan can
be formed for a given number of intervals. In
this case, the best rescheduling plans generated
for all the lower number of intervals are con-
sidered and the overall best plan is chosen. The
division heuristic is suitable for applications that
exhibit hierarchical behavior of application exe-
cution. These applications contain a small set of
large phases of execution and each of these large
phases can be further divided hierarchically into
smaller phases.

5.2.1 Complexity

Since the application execution is progressively
divided into increasing number of intervals, the
number of phases considered for forming an in-
terval marker in a given iteration of the division
heuristic progressively decreases for different iter-
ations. Thus, the worst case complexity of the al-
gorithm is given by O(phases2 × complexity_BE).

5.3 Genetic Algorithm

In genetic algorithm, a population of chromo-
somes is initially generated and the chromosomes
undergo cross-over and mutations across various
generations. The chromosomes with high fitness

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 389

1 1 1 1 1 10 0 0 0 0 0 0 0

I1 I2 I3 I4 I5 I6

Fig. 4 Chromosome representation of rescheduling plan

values are retained over successive generations. In
the problem of determining an efficient reschedul-
ing plan, a chromosome represents a candidate
rescheduling plan. The chromosome or reschedul-
ing plan is represented as an array where the
number of elements in the array is equal to
the number of phases of application execution.
The array consists of 0’s and 1’s with the 1’s repre-
senting the interval markers. This is illustrated in
Fig. 4.

The chromosome fitness function is calculated
using (7).

reverseFitness = execTime
(

1+ violationCount
totalIntervals

)

×
(

1 + avgViolationExtent
execTime

)

(6)

f itness = 1
reverseFitness

(7)

where execTime is the predicted execution time of
the rescheduling plan or chromosome calculated
as in the incremental and division algorithms by
using Box Elimination schedules for each interval
and adding the sum of the predicted execution
times of the intervals and the rescheduling costs.
A violating interval is defined as an interval that
does not satisfy the condition specified in (3).
violationCount is the number of violating inter-
vals and avgViolationExtent is the average of the
extent of the violations in the violating intervals.
The violation extent of a violating interval is the
difference between the threshold limit, tthres and
the execution time of the interval. Thus the fitness
metric attempts to minimize the rescheduling time
and improve the validity of a rescheduling plan.

The mutation step tries to generate a chromo-
some with high fitness value from base chromo-
somes by splitting a large interval into two equal

intervals and merging a small interval with the
neighboring interval. Splitting a large interval into
two small intervals will reduce the value of the
first term, execTime, of (6) since the sum of the
execution times of the two small intervals will be
less than the execution time of the large interval.
This is because efficient schedules can be formed
for small intervals with small number of phases
while schedule of machines for a large interval
cannot efficiently meet the requirements of the
characteristics for the large number of phases in
the interval. Merging of two intervals helps to
minimize the last two terms of (6) and hence
improve the validity of the plan.

After performing cross-over and mutations
of chromosomes for a given generation, selec-
tion of chromosomes for the next generation is
performed using Roulette-wheel based selection
method and elitism. By using Roulette-wheel based
probabilistic selection policy, chromosomes with
high fitness values have high probabilities of being
retained for the next generation. The algorithm
also uses elitism in which the chromosomes with
fitness values that are within 10% of the highest
fitness value in the generation are retained for
the next generation. The steps of cross-over, mu-
tations and selection are repeated for a certain
number of generations. After performing exper-
iments with the genetic algorithm for different in-
put configurations with different total number of
generations, a total of 50 generations was chosen
for the algorithm. Executing for 50 generations
resulted in convergence to solution or best sched-
ule within reasonable time for most of the experi-
ments. After executing the genetic algorithm for
50 generations, the best valid rescheduling plan
with the highest fitness value is chosen.

5.3.1 Complexity

For each generation, a given population of chro-
mosomes representing rescheduling plans are
evaluated for fitness. For calculating fitness of a
chromosome, the predicted execution cost of the
plan is determined for the schedules of the inter-
vals in the chromosome formed using the Box-
Elimination algorithm. Thus, the complexity of
the genetic algorithm is given by O(generations ×
populationSize × complexity_BE).

Author's personal copy

390 H.A. Sanjay, S.S. Vadhiyar

6 Rescheduling Plans for Multi-Cluster Grids

The algorithms in the previous section gener-
ate single-cluster rescheduling plan (SCRP) for
a cluster based on the performance models ob-
tained for the cluster. Invoking an algorithm on
different clusters with the corresponding perfor-
mance models on the clusters will lead to forma-
tion of different SCRPs for the different clusters.
This section discusses the problem formulation
and an algorithm for the formation of a coherent
rescheduling plan involving multiple clusters of a
Grid using the SCRPs generated for the individual
clusters by the algorithms described in the previ-
ous section.

6.1 Problem Formulation

1. Let us consider a multi-phase parallel appli-
cation with P contiguous phases of execu-
tion. Let C be the total number of available
clusters.

2. fi, j (1 ≤ i ≤ P, 1 ≤ j ≤ C) denotes the the per-
formance model function of the ith phase on
the jth cluster.

3. intraCost is the rescheduling cost associated
with rescheduling an application to a different
set of machines within the same cluster,
and interCost is the rescheduling cost for
rescheduling to a different cluster.

4. {SI1, j < SI2, j < · · · SIL j, j} are the intervals in
the single cluster rescheduling plan (SCRP) of
a cluster j (1 ≤ j ≤ C), formed using one of
the three algorithms discussed in the previous
section. L j represents the number of intervals
formed in cluster j. Let Sgk, j be the cumula-
tive performance model function for interval
SIk, j in cluster j and Stk, j be the execution
time corresponding to the schedule deter-
mined by box elimination heuristic for interval
SIk, j, using the performance model function
Sgk, j.

The problem is to find an optimal multi-
cluster rescheduling plan (MCRP) containing
the intervals {MI1 < MI2 < · · · MILopt}, with the
intervals in the plan scheduled on resources

{MS1, MS2, · · · MSLopt} in the clusters {MC1,

MC2, · · · MCLopt} for execution such that

Lopt∑

i=1

ti + (Lopt − 1)rcost (8)

is minimized subject to the condition

ti > tthres, ∀i ∈ {1, 2, · · · Lopt} (9)

The definitions of ti and rcost for a multi-cluster
rescheduling plan (MCRP) are slightly different
from the corresponding definitions for a single-
cluster rescheduling plan (SCRP) given in Section
4 and (2). For a MCRP, ti is the predicted exe-
cution time for schedule MSi found using the cu-
mulative performance model function, Sgi,MCi , of
the interval MIi in cluster MCi. The rescheduling
cost, rcost, is defined as:

rcost

=
{

0 if MSi = MSi−1
intraCost if MSi �= MSi−1 and MCi = MCi−1
interCost if MSi �= MSi−1 and MCi �= MCi−1

(10)

For forming the intervals in MCRP, one of the
three algorithms discussed in the previous section
for forming the SCRPs on the individual clusters
is repeatedly invoked, and the intervals in the
SCRPs are used as follows. For forming a particu-
lar interval, MIi in MCRP, the SCRPs are formed
for the phases from the beginning of the interval
MIi to the final phase of of application execution.
The smallest of the first intervals in the SCRPs
in terms of execution time is then chosen as the
interval MIi. The next interval MIi+1 is formed by
once again forming SCRPs for the phases from the
beginning of the interval MIi+1.

6.2 Algorithm

The algorithm for multi-cluster rescheduling plan
(MCRP) takes as input the application problem
size, the total number of execution phases for the
application, P, the number of clusters, C, a C × P
matrix of performance model functions, f , where
fi, j denotes the performance model obtained on
the jth cluster for the ith phase, a vector of total

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 391

number of processors in each cluster, and the
available CPU and available BW values of the
processors and links of all the clusters, the cost for
rescheduling in the same cluster, intraClusterCost
and and the cost for rescheduling to a different

cluster, interClusterCost. The algorithm is shown
in Fig. 5.

The MCRP generation algorithm begins by in-
voking one of the SCRP generation algorithms,
scrpAlgo, described in the previous section, for

Fig. 5 Algorithm for
generating multi cluster
rescheduling plan

Author's personal copy

392 H.A. Sanjay, S.S. Vadhiyar

generating rescheduling plan for each cluster (line
5). It then decides a schedule for executing the
first interval by first sorting the first intervals
in the rescheduling plans of all the clusters in
terms of the number of phases in the intervals
(line 7). It chooses the smallest first interval,
multiClusterInterval1, that is valid in all the clus-
ters (line 14). The algorithm finds schedules in
each cluster for executing multiClusterInterval1

using Box Elimination (lines 18–23) and chooses
the cluster and schedule of machines in the clus-
ter with the minimum predicted execution time
for multiClusterInterval1 execution (line 24). The
algorithm adds the multiClusterInterval1 and the
corresponding schedule to MCRP (line 26).

For determining the jth interval of MCRP and
schedule for the interval, the algorithm regener-
ates SCRPs for the remaining phases not con-
tained in MCRP and forms multiClusterInterval j

similar to the formation of multiClusterInterval1

for the first interval. The algorithm then deter-
mines three predicted execution times:

1. timeInPrevSchedule which is the predicted
execution time for multiClusterInterval j when
executed on the schedule determined for
the previous interval, multiClusterInterval j−1

(lines 29 and 30). This schedule is denoted as
sameSchedule. In this case, the application will
be continued to execute on the same schedule
and will not be rescheduled.

2. timeinPrevCluster which is the predicted ex-
ecution time for multiClusterInterval j when
executed on the schedule obtained by in-
voking the Box Elimination algorithm for
multiClusterInterval j for the cluster contain-
ing the schedule determined for the previous
interval (lines 31 and 32). This schedule is de-
noted as scheduleonSameCluster. In this case,
the cost for rescheduling to a different sched-
ule on the same cluster, intraClusterCost, is
added to timeinPrevCluster.

3. bestTime which is the minimum of predicted
execution times for multiClusterInterval j ob-
tained on all the clusters by invoking Box
Elimination algorithm for the interval in each
of the clusters (line 24). This schedule is de-
noted as bestSchedule. In this case, the cost
for rescheduling to a different schedule on a

different cluster, interClusterCost, is added to
timeinPrevCluster.

The algorithm then performs a three-way com-
parison between timeInPrevSchedule, (timein
PrevCluster + intraClusterCost) and (bestTime+
interClusterCost) to decide if multiCluster
Interval j has to be executed on sameSchedule,
scheduleonSameCluster or bestSchedule (lines
33–41), respectively. The algorithm continues
performing the above steps until it includes all the
phases in MCRP. The algorithm for generating
MCRP is illustrated in Fig. 5.

6.2.1 Complexity

The complexity of the MCRP algorithm de-
pends on the SCRP algorithm used for forming
rescheduling plans for each cluster. The SCRP
algorithm is repeatedly invoked after choosing
an interval from the intervals formed in all clus-
ters. In the worst case, the number of invoca-
tions of the SCRP algorithm can be equal to the
number of application phases. Thus the complex-
ity is given by O(phases × complexity_SCRP)

where complexity_SCRP is the complexity of the
SCRP algorithm used. The SCRP algorithm can
be one of incremental, division and genetic al-
gorithms. The number of clusters do not impact
the complexity of the MCRP algorithm since the
SCRP algorithm for each cluster can be invoked
independently.

7 Experiments and Results

A large number of simulations were performed
using a custom-built simulator to evaluate the
rescheduling strategies. The details of the simu-
lator are given in the following subsection. The
results corresponding to the simulations shown
in this section include both the predicted exe-
cution times and rescheduling costs for the ap-
plications. Five large scale multi-phase parallel
applications were used for evaluating the re-
scheduling strategies.

1. Molecular dynamics simulation (MD) of
Lennard-Jones system systolic algorithm.

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 393

2. ChaNGa (Charm N-body GrAvity solver)
[37], an application for performing collision-
less N-body simulations.

3. Athena [38], a grid-based code for astrophys-
ical gas dynamics with nested and adaptive
mesh capabilities.

4. LAMMPS [39] (Large-scale Atomic/Molecular
Massively Parallel Simulator), a classical mo-
lecular dynamics simulation code for studying
crack propagation in 2-D solid materials.

5. MIT Photonic-bands (MPB) [40], a program
for computing the band structures (dispersion
relations) and electromagnetic modes of peri-
odic dielectric structures.

By using active profiling [34, 35] and manual
analysis of source codes, the total number of
application execution phases was determined as
30 for MD, 50 for ChaNGa, 100 for Athena, 26
for LAMPPS and 32 for MPB. The performance
model equations for the application phases were
obtained on a 48-core AMD Opteron cluster con-
sisting of 12 2-way dual-core AMD Opteron 2218
based 2.64 GHz Sun Fire servers connected by
Gigabit Ethernet. In the experiments, the avail-
able CPU values ranged from 0.1–1.0 where a
value of 1.0 indicates an unloaded processor. Thus
the available CPU of 0.75 for a processor in the
simulation setup represents an AMD processor
that is one-fourth loaded.

7.1 Details of Simulator

A custom-built simulator was developed for simu-
lating application execution on a single cluster or
multi-cluster Grid using a rescheduling plan. The
simulator considers different inputs given as input
configuration files. The application conf iguration
f ile specifies various application configuration pa-
rameters, namely the problem size, the number
of computational and communication phases of
the application, and the performance model func-
tions of each phase. A performance model for
a phase is a function of the application problem
size, the number of processors for execution, the
CPU speed, the maximum network bandwidth,
the CPU load expressed as available CPU which
a number between 0–1 (0 for fully loaded and 1
for free CPU), and the network load expressed as

available bandwidth which is a percentage of the
maximum network bandwidth. The performance
model function gives the estimated execution time
of the phase when executed on the given number
of processors with given CPU and network loads.
The performance model functions can be obtained
using the performance modeling strategies de-
scribed in our previous work [10].

The resource conf iguration f ile input to the
simulator specifies the number of clusters for
multi-Grid experiments, and for each cluster
specifies the total number of processors, the CPU
speed of the processors, the maximum intra-
cluster network bandwidth of the links connecting
the processors in the cluster, the available CPU
(inverse of CPU load) for each processor, and the
available bandwidth (inverse of network load) for
each link in the cluster. For multi-cluster Grids,
the file also specifies the maximum inter-cluster
bandwidth of the links between the clusters, and
the network loads on the links.

The rescheduling conf iguration f ile input to the
simulator specifies the intra and inter cluster costs
of rescheduling or rescheduling overheads, and
also specifies a period of updating the CPU and
network loads in the resource configuration file to
simulate the resource load dynamics in the multi-
cluster Grid experiments. This configuration file
also specifies one of the three algorithms de-
scribed in Section 5 to generate the single cluster
rescheduling plan (SCRP).

The simulator is implemented as two processes,
a main process and a resource update process.
The resource update process updates the CPU
and network loads in the resource configuration
file with the period specified in the reschedul-
ing configuration file. The main process uses the
parameters in the different configuration input
files, generates a single-cluster rescheduling plan
(SCRP) for each cluster specified in the resource
configuration file and a multi-cluster rescheduling
plan (MCRP) if more than one cluster is specified
in the resource configuration file. For generating
SCRP, the simulator uses the resource and appli-
cation parameters specified in the resource and
application configuration file, respectively, passes
these parameters to the performance model func-
tions for the different application phases in the
application configuration files, and obtains the

Author's personal copy

394 H.A. Sanjay, S.S. Vadhiyar

predicted execution times of the phases. The
simulator passes these predicted execution times
along with the rescheduling costs specified in the
rescheduling configuration file to the algorithm
specified in the configuration file to form SCRP
for each cluster. In multi-cluster Grids, the simula-
tor uses these SCRPs, the inter-cluster bandwidths
specified in the resource configuration file, and
the rescheduling costs, and invokes the MCRP
algorithm described in Section 6 to form a multi-
cluster rescheduling plan.

7.2 Results

In this section, the accuracy of using multiple per-
formance models for the different phases of a sin-
gle application in predicting the execution time of
the application is first shown. The efficiency of the
rescheduling plans generated by the reschedul-
ing strategies is then evaluated by comparing the
plans with the plans generated by a brute force
method. Finally, the multi cluster rescheduling
plan generation algorithm is evaluated using sim-
ulations of dynamic multi-cluster Grids.

7.2.1 Prediction Accuracy due to Cumulative
Performance Models

The efficiency of the rescheduling plans formed
by the algorithms for a multi-phase application
primarily depends on the accuracy of the per-
formance models of the individual phases of the
application. In this section, the accuracy of the
performance models of the phases in predicting
the execution time of the application is evaluated.
A cumulative performance model is formed for
the complete application using the performance
models for the individual phases of the application

and the cumulative model is used to predict appli-
cation execution time. Some existing rescheduling
efforts [4] determine points of rescheduling in an
application by using a single performance model
formed for the complete application by observing
only the total execution time of the complete
application and not the execution times of the
individual phases. The accuracy of such single per-
formance models in predicting the performance of
multi-phase applications is also evaluated. Thus,
the usefulness of such models in forming efficient
rescheduling plans for the multi-phase applica-
tions is evaluated.

Different applications were executed with
different problem sizes and number of processors
on the non-dedicated AMD cluster, and the ex-
ecution times of the individual phases and the
entire applications were observed for 150 exper-
iments. For each application, a single performance
model was developed for the complete application
executions using the total executed times. Perfor-
mance models were also developed for the indi-
vidual phase executions using the phase execution
times. A cumulative performance model was then
formed for the complete application using the
performance models for the individual phases of
the application. The single and cumulative per-
formance models were used for predicting execu-
tion times for different application and processor
configurations. Table 1 compares the percentage
prediction errors (PPE) when using single and
cumulative performance models for predicting ex-
ecution times of the applications.

It can be found that using single performance
model function gives highly inaccurate predictions
or greater than 35% average PPEs for ChaNGa,
LAMMPS and MD applications. These applica-
tions exhibit highly non-uniform behavior dur-

Table 1 Percentage predictions errors (PPEs) with single and cumulative models for 150 experiments

Application PPE (single model) PPE (cumulative model)

Avg. Std. dev. Avg. Std. dev.

MD 46.36 35.05 24.62 16.41
Athena 22.18 11.97 18.26 8.84
ChaNGA 86.87 73.37 25.2 20.41
MPB 28.47 16.19 18.37 12.30
LAMMPS 35.34 27.99 21.7 13.21

Cumulative models have lower PPEs or higher prediction accuracy than single models

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 395

ing executions and the computation and com-
munication characteristics widely vary between
the phases. In comparison, Athena and MPB
have fairly uniform computation and communi-
cation characteristics throughout application exe-
cutions. Hence using single performance models
for Athena and MPB gave less than 30% average
PPEs. In all cases, using cumulative performance
models formed from the models of individual
phases gave less prediction errors than using sin-
gle performance models.

Figure 6 shows the percentage prediction errors
with single and cumulative models for ChaNGa
application for different application and processor
configurations for 150 experiments. The x-axis
represents the different configurations. The figure
illustrates that the PPEs of the cumulative models
are on an average 70% lower than the PPEs of
the single models in all the experiments. Thus,
the performance models of the individual phases
of the different applications give reasonably small
prediction errors and can be used for formation
of efficient rescheduling plans by the algorithms.
It is also shown that single performance models
for complete applications, formed using the total
execution times of the applications, have high pre-
diction inaccuracies for multi-phase applications
and cannot be used for formation of efficient
rescheduling plans.

7.2.2 Evaluation of Single-Cluster Rescheduling
Plans

In this section, the efficiency of the rescheduling
plans generated by the algorithms is evaluated
by comparing the execution costs of the plans
with the costs of the near-optimal rescheduling
plans generated by a brute force method. The
brute force method determines a near-optimal
rescheduling plan for an application with N
phases by evaluating all the candidate reschedul-
ing plans and choosing the best rescheduling plan
with the minimum execution cost. For determin-
ing the execution cost of a rescheduling plan,
execution costs of the individual phases are added
with the rescheduling costs. By means of simula-
tions with different resource configurations and
different multi-phase applications on a single clus-
ter, single-cluster rescheduling plans (SCRPs) are
generated using the algorithms and the brute force
method and the execution costs of the plans are
compared.

The brute force method typically takes about
6-8 hours for execution for an application with
30 phases since it has to evaluate all the 2(30−1)

rescheduling plans possible with 30 phases. The
SCRP generation algorithms in this work take
only few minutes for execution. This is because
the incremental and division algorithms, after

Fig. 6 Percentage
prediction errors with
single and cumulative
models for ChaNGa for
150 experiments.
Cumulative models have
about 70% lower PPEs
than single models

0 50 100 150
0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

Individual Prediction Experiments

P
er

ce
nt

ag
e

P
re

di
ct

io
n

E
rr

or

ChaNGa – Percentage Prediction Errors
with Time Progression

With Multi–Phase Models
With Single Model

Author's personal copy

396 H.A. Sanjay, S.S. Vadhiyar

forming an interval with a set of phases, con-
sider only the remaining phases for formation
of subsequent intervals in the rescheduling plan.
Thus, in the worst case, the total number of
candidate rescheduling plans evaluated by these
algorithms for an application with 30 phases
is approximately 30(30 − 1)/2. The genetic al-
gorithm, in the worst case, evaluates approxi-
mately (generations × populationSize) candidate
rescheduling plans. In the genetic algorithm im-
plementation, a total of 50 generations and 200
chromosomes were considered, leading to a total
of 10,000 evaluations. However, in practice, since
many chromosomes are retained across genera-
tions, the total number of candidate reschedul-
ing plans that are considered is significantly less.
Thus, the algorithms take much less time to exe-
cute than the brute force method.

Application executions were simulated for
different applications on a cluster of 512 proces-
sors. For each application, 50 simulation exper-
iments were conducted with different resource
load configurations. For each simulation experi-
ment, SCRPs were generated for a resource load
configuration using each of the three algorithms
and the brute force method. For each SCRP for
a simulation experiment, the predicted execution
cost was observed.

For obtaining a resource load configuration
for a simulation experiment, random values were
chosen for maximum intra-cluster bandwidth of
links in a cluster, available bandwidth of each
link and the available CPU value of each proces-
sor. The maximum intra-cluster bandwidth was
chosen as one of 100 Mbps, 1 Gbps, 5 Gbps
and 10 Gbps. The intra-cluster bandwidths on
the links connecting processors of a cluster im-
pacts the cost of rescheduling an application.
Higher bandwidths lead to smaller rescheduling
costs due to smaller times incurred in transferring
checkpoints of the application across the network
for continuation of the application on different
number of processors in a cluster. This leads to
reduction in overall execution time of the ap-
plication for a given rescheduling plan, as given
by the relationship between the rescheduling cost
and execution time in (2). However, as can be
seen in the equation, while the execution times
of different candidate rescheduling plans change

with change in intra-cluster bandwidths, the rel-
ative rankings of the candidate plans will remain
the same since a rescheduling plan is derived for a
single rescheduling cost. Hence the optimal single-
cluster rescheduling plan (SCRP) does not change
with the change in intra-cluster bandwidths.

The available bandwidth of each link was ran-
domly varied to be within 20–80% of the max-
imum available bandwidth. The available CPU
value was also randomly varied between 0.1–1.0
for each processor. Although existing work use
more realistic CPU and network models [24, 41,
42] than the random variations in CPU and net-
work loads used in the experiments, such random
large variations are used to simulate systems with
extreme load dynamics. The large variations in the
random CPU and network loads help to represent
systems with high load dynamics and hence help
in better demonstration of the robustness of the
rescheduling algorithms and the simulator than
the realistic models. In our earlier work, it was
shown that the random network loads used in the
experiments have similar dynamics as the realistic
network loads and hence are realistic. In the real-
istic CPU and network bandwidth environments,
as represented by the existing models [24, 41, 42],
it is expected that the rescheduling plans will in-
volve smaller number of rescheduling events, and
hence incur smaller rescheduling overheads.

Figure 7 shows the average execution times
of the rescheduling plans generated by the al-
gorithms and the brute force method for the
ChaNGA application. For this comparison, we
considered only 15 phases of the ChaNGA ap-
plication execution obtained by considering the
execution with the first 45 phases and merging
every three consecutive phases into one single
phase. Table 2 shows the average percentage
differences between the execution times of the
plans generated by the algorithms and the brute
force method for different rescheduling over-
heads for the ChaNGA application. The maxi-
mum rescheduling cost of 5 minutes considered in
the evaluations corresponds to the overheads in
real checkpointing systems [12].

Figure 7 and Table 2 show that the reschedul-
ing plans generated by the algorithms are highly
efficient and the execution times of the plans
generated by the algorithms are competitive when

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 397

Fig. 7 Comparison of the
algorithms with brute
force method (ChaNGA).
The y-axis shows the
average execution times
of the rescheduling plans
for 50 experiments

0 60 120 180 240 300
0

0.5

1

1.5

2

2.5
x 10

4

Rescheduling Overhead in Seconds

P
re

di
ct

ed
 E

xe
cu

tio
n

T
im

e
in

 S
ec

on
ds

ChaNGa : Comparison of Rescheduling Plans of Our Algorithms
and Brute Force Method for different Rescheduling Overheads

Bruteforce
Incremental
Division
Genetic

compared to the execution times of the plans
generated by the brute force method. The max-
imum percentage difference between the execu-
tion times of the plans of the brute force method
and the algorithms is less than 10%. Thus, the
algorithms result in efficient rescheduling plans
whose execution times are comparable to the ex-
ecution times of the near-optimal rescheduling
plans generated by the brute force method.

Table 2 Comparison of the algorithms with brute force
method (ChaNGA)

Rescheduling Incremental Division Genetic
overhead (s)

0 1.23 0.06 0.01
60 1.15 1.38 0.63
120 3.54 2.86 1.53
180 2.42 4.96 3.24
240 3.28 7.18 4.33
300 4.78 9.32 6.17

The numbers show the average percentage differences in
execution times of the rescheduling plans of the brute force
method and the algorithms for 50 experiments and for
different rescheduling overheads

It is also found that the average execution times
of the rescheduling plans generated by the genetic
algorithm are lesser than the times correspond-
ing to incremental and division algorithms in
most cases. This is because the genetic algorithm
explores widely varying candidate rescheduling
plans due to initial random population generation,
and cross-overs and mutations for each gener-
ation. However, incremental and division algo-
rithms evolve the intervals in a rescheduling plan
based on the intervals that are already formed in
the plan. Thus, the candidate rescheduling plans
considered in the incremental and division algo-
rithms are not as widely varying as in the genetic
algorithm. Hence genetic algorithm attempts to
obtain globally efficient rescheduling plans result-
ing in smaller execution times.

7.2.3 Rescheduling Plans for Multi-Cluster Grids

In this section, the efficiency of Multi-Cluster
Rescheduling Plans (MCRPs) generated by the
algorithm, described in Section 6, is evaluated
for application executions on multi-cluster Grid

Author's personal copy

398 H.A. Sanjay, S.S. Vadhiyar

environments with load dynamics. The MCRPs
are formed using the Single-Cluster Resched-
uler Plans (SCRPs) generated for each cluster
by the three algorithms. A number of simula-
tion experiments was conducted with different
multi-cluster Grids and applications. For each
simulation experiment with an application, a
multi-cluster Grid is randomly generated with a
specific number of clusters and processors in a
cluster, maximum inter and intra-cluster band-
widths, and network and processor loads. One of
the three algorithms, namely, incremental, divi-
sion and genetic algorithms, was used to generate
an SCRP for each cluster in the Grid. The SCRPs
of the clusters were used to generate an MCRP
for multi-cluster application execution using the
algorithm described in Section 6. In a simulation
experiment, the change in load characteristics of
the clusters during application execution was also
simulated, resulting in change of MCRP during
execution. Thus application executions on typical
Grid systems involving resource load dynamics
were simulated. For the simulation experiment,
the total execution time of the MCRP was calcu-
lated using the execution times of the individual
application phases on different clusters and intra
and inter rescheduling costs. The execution costs
of the MCRPs were compared with the costs of
executing an application on a single schedule in a
cluster. The single schedule was determined using
the scheduling algorithm based on the resource
characteristics that existed at the beginning of
the application execution. By this comparison, we
attempt to show the benefits of rescheduling in
general, and using the algorithms for reschedul-
ing in particular, over using a single schedule
for executions involving application and resource
dynamics.

For the simulation experiments, 250 multi-
cluster Grid setups were randomly generated,
the performance model functions of the different
phases of MD application were used, and the
MCRPs developed using SCRPs generated by
different algorithms were compared for each
setup. U[x, y] is used to denote uniform probabil-
ity distribution in the interval (x, y). For randomly
generating each multi-cluster setup Grid setup,
U[5, 12] number of clusters and U[32, 512] num-
ber of processors in each cluster were generated.

In order to simulate heterogeneity of processors
in different clusters, a random cpu scaling factor
is used from the set (0.6, 0.8, 1.0, 1.2, 1.4)1 for
each cluster, and multiplied with the coefficients
of computational complexity of the performance
model equations.

The maximum intra-cluster bandwidth of links
in a cluster was chosen to be one of 100 Mbps,
1 Gbps, 5 Gbps and 10 Gbps. The maximum
inter-cluster bandwidth of links connecting two
clusters was chosen to be one of 0.6, 0.8, 1, 5,
and 10 Mbps. These bandwidths are commonly
observed on the links connecting two clusters lo-
cated at two different sites in many Grid systems.
While the change in intra-cluster bandwidths im-
pacts only the rescheduling cost and not the so-
lution for a SCRP as discussed in Section 7.2.2,
the change in inter-cluster bandwidths and the
relative difference between the intra and inter-
cluster bandwidths can change the solution for
a multi-cluster rescheduling plan (MCRP). This
is because the algorithm for MCRP, discussed in
Section 6, chooses an interval in a plan and the
schedule for the interval based on the comparison
between the intra and inter rescheduling costs,
associated respectively with executing the interval
in the same cluster as the previous interval and
executing in a different cluster. The comparisons
using the intra and inter rescheduling costs are
given in (10). These intra and inter rescheduling
costs in turn depend on intra and intra band-
widths, respectively, since rescheduling involves
transfer of application checkpoints on the links
for continuation of application on a different set
of machines. Thus, slower inter-cluster links can
cause the algorithm to form a MCRP containing
more intra-cluster rescheduling than inter-cluster
rescheduling.

The available bandwidth of each link was ran-
domly varied to be within 20–80% of the max-
imum available bandwidth. The available CPU
value was also randomly varied between 0.1–1.0
for each processor. To simulate load dynamics in
the Grid during application execution, the avail-
able CPU and bandwidth values of the processors

1The scaling factors are chosen from a small range since the
CPU speeds of modern processors vary by small amounts.

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 399

and links, respectively, are varied after addition
of every interval to the multi-cluster rescheduling
plan (MCRP) in the MCRP generation algorithm.
The MCRP for the subsequent intervals is formed
based on the updated processor and network
loads. Hence the rescheduling plans involving the
different intervals are dynamically updated based
on the resource dynamics.

Table 3 summarizes the execution times of
the MCRPs generated using SCRPs formed by
different algorithms. The table also shows the ex-
ecution times when the application is executed on
a single schedule, determined at the beginning of
the application execution, for the entire duration
of the application. The large standard deviations,
shown in the table, are due to the differences
between the simulation setups used for the exper-
iments in terms of the number of clusters, number
of processors in a cluster, heterogeneity of the
processors, inter and intra cluster bandwidths and
load dynamics.

It is found that rescheduling in response to
application and resource dynamics, using the
rescheduling plans generated by the algorithms,
gives large reductions in execution times when
compared to execution of the applications on a
single schedule throughout application execution.
Application execution on a single schedule is not
able to adapt to high resource and application dy-
namics leading to huge execution times. It is also
found that MCRPs based on genetic algorithm
give 9–12% smaller average execution times than
MCRPs based on incremental and division heuris-
tics. This is because genetic algorithm explores
different rescheduling plans at all stages using
cross-over and mutation and attempts to achieve
globally efficient rescheduling plans while in the

Table 3 Comparison of algorithms on multi cluster Grid
setups (MD)

Rescheduling method Avg. (h) Std. dev. (h)

Incremental 6.8 4.72
Division 6.58 5.30
GA 5.97 4.05
Single schedule 68.77 75.38

Average and standard deviations of execution times of
rescheduling plans by the algorithms and execution on
single schedule for 250 experiments

incremental algorithm, the intervals are added
to the rescheduling plans without the knowledge
about the formation of the subsequent intervals.
The assumption in the division heuristic about
the hierarchical execution behavior of the appli-
cations is not applicable to molecular dynamics
application. This results in large standard devia-
tion values in the division heuristic although the
average execution times in the division heuristic
is lesser than in the incremental algorithm. Thus,
using the multi-cluster Grid simulations, it is seen
that rescheduling plans by the algorithms give
much smaller execution costs than single schedule
executions and the genetic algorithm that explores
diverse rescheduling plans gives best average
performance.

7.2.4 Impact of Cluster Heterogeneity on
Ef f iciency of Rescheduling Plans

In this section, the effect of heterogeneity of
different clusters in a multi-cluster Grid setup on
the efficiency of the algorithms is determined. The
weight of a cluster was calculated as a product of
number of machines in the cluster and the cpu
scaling factor for the cluster. Clusters with larger
weights are expected to yield better schedules.
The ratio of the maximum and minimum weight
was calculated for a multi-cluster setup. Higher
values of this ratio indicate greater heterogeneity
between the clusters. The 250 multi-cluster setups
was divided into different groups with different
ranges of ratios. The groups that had less than
5 setups were eliminated. The execution costs
of the rescheduling plans by the algorithms for
various groups of cluster heterogeneities was then
analyzed.

Figure 8 shows the average performance of the
algorithms for different groups of ratio values.
It is found that with increasing ratio of maxi-
mum to minimum cluster weight or increasing
heterogeneity, the application execution times de-
crease. This is because with increasing differences
in capacities of the clusters, the schedules for
most of the phases of application execution will
be chosen from the cluster with largest weight
or highest capacity. Hence, with increasing het-
erogeneity, applications incur more intra-cluster
rescheduling costs and less inter-cluster reschedul-

Author's personal copy

400 H.A. Sanjay, S.S. Vadhiyar

Fig. 8 Effect of cluster
heterogeneity on
execution times
multi-cluster Grid setup

5–6 7–8 9–10 11–10 15–10 21–22 23–24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Ratio of Maximum and Minimum Cluster Weight

E
xe

cu
tio

n
T

im
e

in
 S

ec
on

ds

Effect of Cluster Heterogeneities in a Multi–Cluster Setup

Incremental
Division
Genetic

ing costs. Since the intra-cluster rescheduling costs
are smaller than the inter-cluster rescheduling
costs, the execution times of the applications de-
crease with increasing heterogeneity. It is also
found that genetic algorithm gives better aver-
age execution times than incremental and division
heuristics for all cases.

8 Discussion: Application to Workflows

The strategies in this paper for rescheduling us-
ing rescheduling plans can also be applied to
workflow applications consists of both serial and
parallel jobs [43–48]. A workflow application is
represented as a Directed Acyclic Graph (DAG)
where each node of the graph represents a par-
allel or sequential job/application that forms a
component of the overall application and an edge
denotes the control and data dependency between
two application components. Most of the practical
workflow applications have a well defined start
node/application that initializes and sets up the
data and execution environment for a workflow.

Such a workflow application can be scheduled
and rescheduled on a Grid consisting of multiple
clusters using the algorithm for generating multi-
cluster rescheduling plan (MCRP) described in
Section 6. A meta heuristic can be devised that
first forms the BFS (breadth-first-search) tree
from the workflow graph with the start node as the
root of the tree. The meta heuristic will traverse
the tree top-down, trying to minimize the execu-
tion time of each level of a tree. For a given level,
the meta heuristic will invoke in parallel the algo-
rithm for forming MCRP, described in Section 6,
for each node/application in the level. Since the
MCRP algorithm is invoked in parallel and inde-
pendently for the applications in the level, this
can result in “scheduling conflicts” where a sin-
gle resource can be contained in the schedules,
formed by the MCRP algorithm, for multiple ap-
plications in the level of the tree. To resolve these
conflicts, the MCRP algorithm can be extended by
which, after the algorithm forms an interval of the
rescheduling plan for an application in the level,
it sends the schedule of the interval to the meta
heuristic. The meta heuristic, after receiving the

Author's personal copy

Rescheduling Strategies for Multi-Cluster Grids 401

schedules of the intervals of all the applications
in the level, can resolve scheduling conflicts by
giving scheduling preference to the critical appli-
cation with the highest execution time. The meta
heuristic then removes the resources scheduled
for the application from the available resources,
and invokes the MCRP algorithm for the other
applications in the level to form schedules for the
intervals from the remaining resources. The meta
heuristic, by iterating across different intervals of
the different applications of a level, coordinating
with the MCRP algorithm invocations for the ap-
plications, and by traversing the different levels
of the tree, can thus form a global multi-cluster
rescheduling plan for the entire workflow appli-
cation. A more complicated strategy would be to
extend the MCRP algorithm to consider multiple
applications instead of a single application, where
it uses the performance model functions of the
applications in a level to form a set of a non-
conflicting intervals for the applications, instead
of a single interval for an application. Note that
the above strategies can also consider sequential
jobs of a workflow since the performance models,
scheduling strategies, and rescheduling plans, de-
scribed in this paper, can also be applied for multi-
phase sequential applications.

9 Conclusions and Future Work

This paper described strategies for deciding when
and where to reschedule executing tightly-coupled
multi-phase parallel applications on multi-cluster
Grids. While our earlier efforts discussed per-
formance modeling strategies for predicting exe-
cution times of single-phase parallel applications
[10], scheduling algorithms for allocating a set of
resources for single-phase parallel applications on
a single cluster [11], and techniques for malleabil-
ity of parallel application [12], the current work
proposes algorithms for deriving rescheduling
plans for adaptive execution of multi-phase par-
allel applications on single and multiple clusters.

Using large number of simulations of large-
scale applications on multi-cluster Grids, it is
shown that the rescheduling plans can greatly re-
duce the application execution times when com-
pared to executions on a single schedule. The

genetic algorithm, by exploring diverse reschedul-
ing plans, yielded the most efficient reschedul-
ing plans with 9–12% smaller average execution
times than the other algorithms. It is planned to
develop a practical rescheduling framework that
uses the rescheduling decisions for improving the
efficiency of tightly coupled applications on multi-
cluster Grids.

References

1. Beaumont, O., Carter, L., Ferrante, J., Legrand, A.,
Marchal, L., Robert, Y.: Centralized versus distributed
schedulers for multiple bag-of-task applications. In:
20th International Parallel and Distributed Processing
Symposium (2006)

2. Allen, G., Dramlitsch, T., Foster, I., Karonis, N.,
Ripeanu, M., Seidel, E., Toonen, B. Supporting
efficient execution in heterogeneous distributed com-
puting environments with cactus and globus. In: Su-
percomputing ’01: Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM) (2001)

3. Sudarsan, R., Ribbens, C.: ReSHAPE: a framework
for dynamic resizing and scheduling of homogeneous
applications in a parallel environment. In: ICPP ’07:
Proceedings of the 2007 International Conference on
Parallel Processing, p. 44 (2007)

4. Vadhiyar, S., Dongarra, J.: A performance oriented mi-
gration framework for the Grid. In: CCGRID ’03: Pro-
ceedings of the 3st International Symposium on Cluster
Computing and the Grid, p. 130 (2003)

5. Huang, C., Zheng, G., Kalé, L., Kumar, S.: Perfor-
mance evaluation of adaptive MPI. In: PPoPP ’06: Pro-
ceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pp. 12–21 (2006)

6. Maghraoui, K., Desell, T., Szymanski, B., Varela, C.:
The Internet operating system: middleware for adap-
tive distributed computing. Int. J. High Perform. Com-
put. Appl. 20(4), 467–480 (2006)

7. Wrzesinska, G., Maassen, J., Bal, H.: Self-adaptive ap-
plications on the Grid. In: PPoPP ’07: Proceedings of
the 12th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 121–129 (2007)

8. Hussein, M., Mayes, K., Luján, M., Gurd, J.: Adaptive
performance control for distributed scientific coupled
models. In: ICS ’07: Proceedings of the 21st Annual
International Conference on Supercomputing, pp. 274–
283 (2007)

9. Desell, T., Maghraoui, K., Varela, C.: Malleable appli-
cations for scalable high performance computing. Clus-
ter Comput. 10(3), pp. 323–337 (2007)

10. Sanjay, H.A., Vadhiyar, S.: Performance modeling of
parallel applications for Grid scheduling. J. Parallel
Distrib. Comput. 68(8), 1135–1145 (2008)

Author's personal copy

402 H.A. Sanjay, S.S. Vadhiyar

11. Sanjay, H., Vadhiyar, S.: Strategies for scheduling
tightly-coupled parallel applications on clusters and
Grids. Concurr. Comput. 21(18), 2491–2517 (2009)

12. Vadhiyar, S., Dongarra, J.: SRS–a framework for de-
veloping malleable and migratable parallel applications
for distributed systems. Parallel Process. Lett. 13(2),
291–312 (2003)

13. Fernandes, R., Pingali, K., Stodghill, P.: Mobile MPI
programs in computational Grids. In: PPoPP ’06: Pro-
ceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pp. 22–31 (2006)

14. Zhang, Y., Koelbel, C., Cooper, K.: Hybrid re-
scheduling mechanisms for workflow applications on
multi-cluster Grid. In: CCGRID ’09: Proceedings of
the 2009 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid, pp. 116–123
(2009)

15. Gong, Y., Pierce, M., Fox, G.: Dynamic resource-
critical workflow scheduling in heterogeneous envi-
ronments. In: Job Scheduling Strategies for Parallel
Processing: 14th International Workshop, JSSPP 2009,
Rome, Italy, 29 May 2009. Revised Papers, pp. 1–15
(2009)

16. Huedo, E., Montero, R., Llorente, I.: A modular meta-
scheduling architecture for interfacing with pre-WS
and WS Grid resource management services. Future
Gener. Comput. Syst. 23(2), 252–261 (2007)

17. Vadhiyar, S., Dongarra, J.: GrADSolve: a Grid-based
RPC system for parallel computing with application-
level scheduling. J. Parallel Distrib. Comput. 64(6),
774–783 (2004)

18. Zhang, Y., Koelbel, C., Kennedy, K.: Relative perfor-
mance of scheduling algorithms in Grid environments.
In: CCGRID ’07: Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and
the Grid, pp. 521–528 (2007)

19. Zhang, Y., Koelbel, C., Cooper, K.: Cluster-based hy-
brid scheduling mechanisms for workflow applications
on the Grid. In: IEEE Fourth International Conference
on eScience, pp. 390–391 (2008)

20. Sakellariou, R., Zhao, H.: A low-cost rescheduling pol-
icy for efficient mapping of workflows on Grid systems.
Sci. Program. 12(4), 253–262 (2004)

21. Elmroth, E., Tordsson, J.: A standards-based Grid
resource brokering service supporting advance reser-
vations, coallocation, and cross-Grid interoperability.
Concurr. Comput. 21(18), 2298–2335 (2009)

22. Dumitrescu, C., Raicu, I., Foster, I.: The design, usage,
and performance of GRUBER: a Grid usage service
level agreement based BrokERing infrastructure. J.
Grid Computing 5(1), 99–126 (2007)

23. Moltó, G., Hernández, V., Alonso, J.: A service-
oriented WSRF-based architecture for metascheduling
on computational Grids. Future Gener. Comput. Syst.
24(4), 317–328 (2008)

24. Adzigogov, L., Soldatos, J., Polymenakos, L.: EM-
PEROR: an OGSA Grid meta-scheduler based on dy-
namic resource predictions. J. Grid Computing 3(1–2),
19–37 (2005)

25. Foster, I.: Globus toolkit version 4: software for
service-oriented systems. In: IFIP International Con-
ference on Network and Parallel Computing. LNCS,
vol. 3779, pp. 2–13. Springer, Berlin (2006)

26. WS Resource Framework. http://www.globus.org/wsrf
27. Czajkowski, K., Foster, I., Kesselman, C.: Agreement-

based resource management. Proc. IEEE 93(3), 631–
643 (2005)

28. Zhang, X., Freschl, J., Schopf, J.: A performance study
of monitoring and information services for distributed
systems. In: HPDC ’03: Proceedings of the 12th IEEE
International Symposiumon High Performance Dis-
tributed Computing, p. 270 (2003)

29. Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M.,
Dumitrescu, C., Raicu, I., Foster, I.: The globus striped
GridFTP framework and server. In: Proceedings of
Super Computing 2005 (SC05) (2005)

30. Welch, V., Siebenlist, F., Foster, I., Bresnahan, J.,
Czajkowski, K., Gawor, J., Kesselman, C., Meder, S.,
Pearlman, L., Tuecke, S.: Security for Grid services.
In: HPDC ’03: Proceedings of the 12th IEEE Inter-
national Symposium on High Performance Distributed
Computing, p. 48 (2003)

31. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y.,
Kesselman, C., Mehta, G., Vahi, K., Berriman, G.,
Good, J., Laity, A., Jacob, J., Katz, D.: Pegasus: a
framework for mapping complex scientific workflows
onto distributed systems. Sci. Program. 13(3), 219–237
(2005)

32. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E.,
Demmel, J., Dhillon, I., Dongarra, J., Hammarling,
S., Henry, G., Petitet, A., Stanley, K., Walker, D.,
Whaley, R.C.: ScaLAPACK Users’ Guide. Society
for Industrial and Applied Mathematics, Philadelphia
(1997)

33. Wolski, R., Spring, N., Hayes, J.: The network weather
service: a distributed resource performance forecast-
ing service for metacomputing. Future Gener. Comput.
Syst. 15(5–6), 757–768 (1999)

34. Shen, X., Zhong, Y., Ding, C.: Predicting locality
phases for dynamic memory optimization. J. Parallel
Distrib. Comput. 67(7), 783–796 (2007)

35. Shen, X., Scott, M., Zhang, C., Dwarkadas, S., Ding,
C., Ogihara, M: Analysis of input-dependent program
behavior using active profiling. In: ExpCS ’07: Proceed-
ings of the 2007 Workshop on Experimental Computer
Science, p. 5 (2007)

36. Ding, C., Dwarkadas, S., Huang, M., Shen, K., Carter,
J.: Program phase detection and exploitation. In: 20th
International Parallel and Distributed Processing Sym-
posium (2006)

37. ChaNGa (Charm N-body GrAvity Solver).
http://librarian.phys.washington.edu/astro/index.php/
Research:ChaNGa

38. Athena Code Home Page. http://www.astro.princeton.
edu/ jstone/athena.html

39. LAMMPS Molecular Dynamics Simulator. http://
lammps.sandia.gov

40. MIT Photonic-Bands (MPB). http://ab-initio.mit.edu/
wiki/index.php/MIT_Photonic_Bands

Author's personal copy

http://www.globus.org/wsrf
http://librarian.phys.washington.edu/astro/index.php/Research:ChaNGa
http://librarian.phys.washington.edu/astro/index.php/Research:ChaNGa
http://www.astro.princeton.edu/~jstone/athena.html
http://www.astro.princeton.edu/~jstone/athena.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands
http://ab-initio.mit.edu/wiki/index.php/MIT_Photonic_Bands

Rescheduling Strategies for Multi-Cluster Grids 403

41. Dinda, P., O’Hallaron, D.: Host load prediction using
linear models. Cluster Comput. 3(4), 265–280 (2000)

42. Dinda, P.: Online prediction of the running time of
tasks. Cluster Comput. 5(3), 225–236 (2002)

43. Mandal, A., Kennedy, K., Koelbel, C., Marin, G.,
Mellor-Crummey, J., Liu, B., Johnsson, L.: Schedul-
ing strategies for mapping application workflows onto
the Grid. In: HPDC ’05: Proceedings of the High
Performance Distributed Computing, 2005. HPDC-
14. Proceedings. 14th IEEE International Symposium,
pp. 125–134 (2005)

44. Fox, G., Gannon, D.: Workflow in Grid systems. Con-
curr. Comput. 18(10), 1009–1019 (2006)

45. Montagnat, J., Glatard, T., Plasencia, I., Castejn, F.,
Pennec, X., Taffoni, G., Voznesensky, V., Vuerli,
C.: Workflow-based data parallel applications on the

EGEE production Grid infrastructure. J. Grid Com-
puting 6(4), 369–383 (2008)

46. Ramakrishnan, L., Koelbel, C., Kee, Y.-S., Wolski, R.,
Nurmi, D., Gannon, D., Obertelli, G., YarKhan, A.,
Mandal, A., Huang, T., Thyagaraja, K., Zagorodnov,
D.: VGrADS: enabling e-science workflows on Grids
and clouds with fault tolerance. In: SC ’09: Proceedings
of the Conference on High Performance Computing
Networking, Storage and Analysis, pp. 1–12 (2009)

47. Deelman, E., Gannon, D., Shields, M., Taylor, I.:
Workflows and e-science: an overview of workflow sys-
tem features and capabilities. Future Gener. Comput.
Syst. 25(5), 528–540 (2009)

48. Yu, J., Buyya, R.: A taxonomy of workflow manage-
ment systems for Grid computing. J. Grid Computing
3(3–4), 171–200 (2005)

Author's personal copy

	Strategies for Rescheduling Tightly-Coupled Parallel Applications in Multi-Cluster Grids
	Abstract
	Introduction
	Related Work
	Rescheduling Tightly-Coupled Parallel Applications
	Scheduling and Rescheduling Workflows
	Integration with Realistic Schedulers

	Background
	Grid and Application Models
	Performance Models for Single-Phase Applications
	Performance Models for Multi-Phase Applications
	Scheduling Strategies

	Problem Statement
	Complexity

	Algorithms for Generating Rescheduling Plans in a Single Cluster
	Incremental Algorithm
	Complexity

	Division Heuristic
	Complexity

	Genetic Algorithm
	Complexity

	Rescheduling Plans for Multi-Cluster Grids
	Problem Formulation
	Algorithm
	Complexity

	Experiments and Results
	Details of Simulator
	Results
	Prediction Accuracy due to Cumulative Performance Models
	Evaluation of Single-Cluster Rescheduling Plans
	Rescheduling Plans for Multi-Cluster Grids
	Impact of Cluster Heterogeneity on Efficiency of Rescheduling Plans

	Discussion: Application to Workflows
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

