
1 23

Journal of Grid Computing
 
ISSN 1570-7873
Volume 9
Number 4
 
J Grid Computing (2011) 9:455-478
DOI 10.1007/s10723-011-9197-9

Adaptive Executions of Multi-Physics
Coupled Applications on Batch Grids

Sivagama Sundari Murugavel, Sathish S
Vadhiyar & Ravi S Nanjundiah



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V.. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



J Grid Computing (2011) 9:455–478
DOI 10.1007/s10723-011-9197-9

Adaptive Executions of Multi-Physics Coupled
Applications on Batch Grids

Sivagama Sundari Murugavel ·
Sathish S Vadhiyar · Ravi S Nanjundiah

Received: 6 May 2011 / Accepted: 22 September 2011 / Published online: 11 October 2011
© Springer Science+Business Media B.V. 2011

Abstract Long running multi-physics coupled
parallel applications have gained prominence in
recent years. The high computational require-
ments and long durations of simulations of
these applications necessitate the use of multiple
systems of a Grid for execution. In this paper,
we have built an adaptive middleware framework
for execution of long running multi-physics cou-
pled applications across multiple batch systems
of a Grid. Our framework, apart from coordi-
nating the executions of the component jobs of
an application on different batch systems, also
automatically resubmits the jobs multiple times
to the batch queues to continue and sustain long
running executions. As the set of active batch sys-

This work is supported partly by Ministry
of Information Technology, India, project
ref. no. DIT/R&D/C-DAC/2(10)/2006 DT.30/04/07
and partly by Department of Science and Technology,
India, project ref no. SR/S3/EECE/59/2005/8.6.06.

S. S. Murugavel (B) · S. S. Vadhiyar
Supercomputer Education and Research Centre,
Indian Institute of Science, Bangalore, India
e-mail: m.shivi84@gmail.com

S. S. Vadhiyar
e-mail: vss@serc.iisc.ernet.in

R. S. Nanjundiah
Centre for Atmospheric & Oceanic Sciences,
Indian Institute of Science, Bangalore, India
e-mail: ravi@caos.iisc.ernet.in

tems available for execution changes, our frame-
work performs migration and rescheduling of
components using a robust rescheduling decision
algorithm. We have used our framework for im-
proving the application throughput of a foremost
long running multi-component application for cli-
mate modeling, the Community Climate System
Model (CCSM). Our real multi-site experiments
with CCSM indicate that Grid executions can lead
to improved application throughput for climate
models.

Keywords Adaptive framework · Batch systems ·
Climate models · Multi-component applications ·
Rescheduling

1 Introduction

Multi-physics coupled MPMD applications are
large scientific applications comprising of inter-
acting component applications. Such applications
have become prevalent since multi-disciplinary
multi-component models are used to accurately
model interacting physical processes or phenom-
ena in the areas of climate, space weather, solid
rockets, fluid structure interaction, heart disease
and cancer studies [1–3]. Many of these ap-
plications, used to model evolution of physical
systems with time, are also long running. For
example, assessment of climate change needs to

Author's personal copy



456 S.S. Murugavel et al.

be done far into the future and requires long
simulations. Such simulations would require com-
putational time running of the order of weeks (if
not months). Such long running executions can
be benefited by the ability to run on a collection
of small scale HPC systems/clusters. Hence it is
essential to execute such long running simulations
on multiple parallel systems of a Grid. Integrating
such applications in Grids is important for large
scale deployment and use of scientific applications
on Grid systems by the scientific community.

Many current large scale Grid frameworks
[4, 5] consist of multiple distributed sites with
each site having one or more batch systems
with corresponding batch scheduling and queu-
ing policies. Executing long running coupled ap-
plications on such Grids with multiple powerful
batch systems is highly essential for providing
high performance for the applications. However,
execution of the components of a long running
coupled multi-component application (MCA) on
different queues of a batch Grid is challenging
due to different factors. One practical challenge
is to coordinate the concurrent executions of the
different components in different batch queues.
Component jobs submitted to different queues
can have different startup times. However, the
coupled nature of the applications necessitates
the components to execute concurrently. Another
challenge is associated with the maximum execu-
tion time limits imposed on individual jobs in most
batch systems. Due to long running characteristics
of the MCAs, the batch jobs will not be able to
complete execution within the execution time lim-
its. Component jobs will have to be checkpointed
before reaching the execution time limits on the
respective batch queues, resubmitted and contin-
ued from the previous executions on possibly a
different set of batch systems. Thus, the set of
active batch systems available for simultaneous
execution of the components of a long running
MCA can vary at different points of execution
due to the different startup times of the compo-
nents and due to jobs reaching the execution time
limits.

We have developed Morco (Middleware frame-
work for long running multi-component applica-
tions), a framework for execution of long running
coupled multi-component applications (MCAs)

on multiple batch systems of a batch Grid. Our
framework effectively addresses the challenges re-
lated to coordinating the executions of the com-
ponents, and sustaining long running executions
using multiple submissions of the component jobs
to the systems. As the number of active batch
systems available for execution can vary during
execution, our framework performs selective mi-
gration and rescheduling of components, and pro-
vides dynamic resource allocation. We have also
developed a robust rescheduling decision algo-
rithm that considers various dynamic parameters
including the availabilities of the batch systems,
and execution rates to decide whether and where
to reschedule when the available set of active
batch systems changes. The rescheduling decisions
involve the use of a genetic algorithm for com-
ponent mapping, performance models for per-
formance estimation of different schedules, and
dynamic predictions of batch queue dynamics.
Climate change studies need studies of a coupled
ocean, atmosphere and biogeophysical system.
The submodules for each of these components
need to evolve in an interactive fashion. CCSM
(Community Climate System Model) [6, 7] is a
foremost long running multi-component climate
model consisting of submodules for the climate
components. Using Morco, we performed execu-
tion of CCSM for 8 days of wallclock time on a
Grid consisting of three parallel systems and four
batch queues and show that multi-site executions
can provide better application throughput with
climate simulations.

The primary unique and novel feature of Morco
is that it is the first Grid middleware framework,
to our knowledge, that supports coordinated ex-
ecution of components of long running cou-
pled multi-component applications using multiple
submissions of batch jobs on multiple indepen-
dently administered batch systems of a Grid.
While the concepts of checkpointing and roll-
back used in our framework are not new
and have been applied for single component
applications and mostly on interactive plat-
forms, ours is the first work that performs co-
ordinated scheduling, rescheduling and migra-
tion of components of multi-component ap-
plications on batch systems considering dy-
namic batch queue events. Our framework is

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 457

intended for long running applications whose
execution times are significantly greater than the
execution time limits associated with the batch
systems.

Section 2 explains the execution model used
for executing different components of a multi-
component application in multiple batch systems.
Section 3 describes in detail the various compo-
nents of our Grid framework and the compo-
nent interactions. In Section 4, we explain our
robust rescheduling decision algorithm. Section 5
describes the genetic algorithm we have used for
component scheduling. Section 6 presents our ex-
periment setup and various results related to long
executions of a coupled climate model on multiple
batch systems and Section 7 discusses applicabil-
ity of our framework to generic multi-component
applications. In Section 8, we briefly compare our
work with other existing efforts for coallocation
on batch systems. Section 9 summarizes our work
and lists our future plans.

2 Execution Model

Coupled multi-physics or multi-component appli-
cations (MCAs) can be executed across multiple

batch systems or queues by submitting a job with
a subset of components to each queue. How-
ever, since the components are coupled, i.e. since
they involve multiple dependencies, they cannot
execute unless they are all allocated resources
simultaneously. Simultaneous start or availabil-
ity of resources on independently administered
batch systems cannot be guaranteed. Moreover,
batch queue systems are associated with limits for
execution time for a job. Hence, we follow an
execution model in which we compose a dynam-
ically reconfiguring job script that can be made
to execute any set of components as demanded
at runtime and submit this to all queues. The
configuration, i.e. mapping of the MCA compo-
nent to processors on multiple systems, is dynam-
ically determined at runtime, depending upon the
set of available/active queues. The job script on
a queue is resubmitted at the end of its active
(execution) time limit on the queue.

The execution model followed for MCA exe-
cution across multiple batch systems is illustrated
in Fig. 1 with an example of a two-component
application executing on three batch sites.

In our execution model, when an MCA is exe-
cuted on B batch systems or queues, B job sub-
missions are made to the queues with different

Pr
oc

es
so

rs
Pr

oc
es

so
rs

Pr
oc

es
so

rs

Wallclock Time

T1 T2

In
te

r 
si

te
 r

un

In
tr

a 
si

te
 r

un

B
at

ch
 q

ue
ue

 1
B

at
ch

 q
ue

ue
 2

In
tr

a 
si

te
 r

un

In
te

r 
si

te
 r

un

B
at

ch
 q

ue
ue

 3

Active

Restart file
transfer

Queue wait
phase

Restart
overheads

Component2

Component 1

unused phase

No Reconfiguration
decision

Resubmission

Fig. 1 Execution model: execution of a two-component application on three queues

Author's personal copy



458 S.S. Murugavel et al.

processor requirements or request sizes. When
some subset of submissions made to the batch
systems, BA ⊆ B, becomes active (when they are
no longer queued and are ready for execution),
the components of MCA are executed on a subset,
BA_running ⊆ BA, of this set of active batch sys-
tems, based on a scheduling/rescheduling strategy.

When a submission on a batch system reaches
the execution time limit of the corresponding
queue, the batch system, sys, becomes unavail-
able for components that were executing on the
system, and is hence removed from BA. If the
MCA is not executing on this system, i.e., sys /∈
BA_running, then the current execution is not
affected and the system is removed from set BA.
However, if some MCA components are execut-
ing on this system, i.e., sys ∈ BA_running, all the
components of MCA are made to create check-
points of their states, remapped or rescheduled1

to the updated set of active batch systems, BA,
and continued execution from the checkpoints of
their previous states. Also, a job submission is
made to sys. When a batch system sys becomes
active, a decision of whether to reschedule or not
is made and if the decision is to reschedule, the
MCA executing on the already active systems is
made to create checkpoints, the set BA is updated
to include the system that became newly active,
components are remapped to new/updated BA

and continued execution from the checkpoints.
For rescheduling and continuing executions on

a new configuration, we use the application level
checkpointing mechanisms supported in MCAs.
Coupled multi-component applications are typi-
cally executed for long durations to model long
term physical phenomena. To support such long
running simulations, an MCA contains restart
facilities where the application can be made to
store its execution state as restart dumps and
simulations for an execution can be continued
from the previous executions using the restart
dumps of the previous executions. For example,
the Community Climate System Model (CCSM)

1In this paper, the terms “rescheduling”, “remapping” and
“reconfiguration” refer to the same event of rescheduling
application components to processors, and hence are used
interchangeably.

[6], a coupled multi-component application con-
sisting of atmosphere, ocean, land and ice and
coupler components, provides application level
checkpointing mechanisms by which values of a
set of primary variables are stored/checkpointed
by the application to stable storage in the form
of restart dumps [8]. During restart, CCSM reads
the variable values from the restart dumps and
continues execution from the previous time step.
The time steps at which CCSM should checkpoint
restart dumps can be specified by the user using
input configuration files.

In summary, a decision of whether to resched-
ule is made, whenever the set BA changes, either
due to some batch systems becoming active or
due to one of the active batch systems becoming
unavailable upon the corresponding submission
reaching its execution time limit on the system.
This process continues until the MCA completes
its required computations. In the case of CCSM,
the process is continued until CCSM completes
simulation of a certain number of simulated years.

In Fig. 1, the job script is submitted to all the
three batch queues. Batch queue 3 becomes active
first, and the two components of the MCA are ex-
ecuted on this batch queue. At T1, batch queue 1
becomes active. However, a decision is made not
to reschedule the MCA components to this queue,
and the application is continued on batch queue 3.
After then, the job on batch queue 3 reaches its
execution time limit, checkpoint/restart files are
transferred from batch queue 3 to the remaining
active queue, batch queue 1, and components are
migrated/rescheduled to batch queue 1. Also, the
job is resubmitted to batch queue 3. At some
point, batch queue 2 becomes active, a scheduling
decision is made, one of the components (marked
yellow) is migrated to batch queue 2, while the
other component (marked red) is made to execute
on larger number of processors on batch queue 1.
This results in an inter-site run involving batch
queues 1 and 2. This process continues until the
application finishes execution.

3 Morco: Grid Middleware Framework

The architecture of our framework is illustrated
in Fig. 2. The following subsections describe the

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 459

Fault Tolerance Coordinator

Global Coordinator

Fault Tolerance Monitor

Job Script
Job Monitor Job Submitter

Queueing System

L
oc

al
 (

P
er

 Q
ue

ue
)

Fig. 2 Morco framework: components and interactions

various components, their primary functions and
the interactions between the components.

3.1 Global Coordinator

The global coordinator daemon is the most sig-
nificant server daemon and is executed on a
location that is accessible from the front end nodes
of all the systems. It contains a record of all
the global static and dynamic information per-
taining to the multi-component executions, and is
informed of any event occurring on any site by
the local job monitors. It also makes important
decisions related to scheduling, rescheduling and
processor allocation for components and instructs
other components of the framework to implement
these decisions. The rescheduling decisions fol-
lowed by the global coordinator are explained in
Section 4.

3.2 Fault Tolerance Coordinator

The fault tolerance coordinator is used for making
fault tolerant decisions for the entire multi-physics
application execution across all batch systems. It
runs on the same location as the global coordina-
tor, and interfaces with the fault tolerance mon-
itors running on the batch systems. On receiving
fault related events from a fault tolerance monitor
of a batch system, the fault tolerance coordinator
coordinates the cleanup of executions on the other
batch systems, and notifies the global coordinator
for relaunching the application components on the
available batch systems and continuation from the
previous execution.

3.3 Job Monitor

The job monitor daemons track the local behavior
of the MCA jobs on the batch systems and inter-
faces with the global coordinator. A job monitor
daemon is started for each queue used in the
framework on the front end node of the respective
system. The monitor notifies the global coordina-
tor of various events including:

(1) sending a START message when the batch
system becomes active due to the start of a
MCA job in the system,

(2) sending a STOP message when a submitted
MCA job nears the execution time limit of
the queue, and

(3) sending a STOPPED message when the
current execution has been stopped or a
TRIGGER is received from the global co-
ordinator, and the MCA job is ready for
reconfiguration. The job monitor also pro-
cesses and communicates the configuration
information to the job scripts.

3.4 Fault Tolerance Monitor

The fault tolerance monitor daemons track the
failures on the individual batch systems and in-
terfaces with the fault tolerance coordinator. A
fault tolerance monitor daemon is started for each
queue on the front end node. It monitors the
application progress on the systems using the out-
put files generated by the application. In case of
discrepancies, the monitor considers the execution
status as a failure and reports the failure of the ex-
ecution on the local system to the fault tolerance
coordinator.

3.5 Job Submitter

Job submitter is another daemon that is started
for each queue and runs on the front end node of
the respective batch system. Its main functionality
is to iteratively submit the MCA job script. It
monitors the status of a submitted job, waiting for
it to complete before submitting the next MCA
job script such that only one MCA job exists in
the system, in the queued or execution state, at a
given time.

Author's personal copy



460 S.S. Murugavel et al.

3.6 MCA Job Script

The MCA job script submitted to each queue sup-
ports dynamic reconfigurations of the application
at runtime. At a given rescheduling event, the
job scripts on the active running batch queues
synchronize using the global coordinator2 and si-
multaneously launch multiple MPI applications,
one for each active queue, that coordinate to form
a single MPI world. Existing middleware mecha-
nisms including PACX-MPI [9] and MPICH-GX
[10] can be used to coordinate the MPI com-
ponents executed on different batch systems to
form a single MPI world. These mechanisms can
be used for communications between application
components started on different batch systems.

After submitting a MPI application with a set
of MCA’s components on a set of processors,
the job script waits for the MPI application to
complete due to rescheduling or reconfiguration
of the multi-component application by the coor-
dinator. Upon completion due to reconfiguration,
it waits for a new configuration from the coordi-
nator and launches the corresponding new MPI
components. The MCA job script exits execution
if the execution time limit is reached for the job.

The general outline of the MCA job script is
shown in Algorithm 1.

Algorithm 1 Outline of submit-script.sh

2For brevity, we refer to the global coordinator simply as
the coordinator for the rest of the paper.

3.7 Component Interactions: States, Transitions
and Lifecycle of Components
and Batch Systems

A batch system primarily has four states:
ACTIVE-RUNNING, ACTIVE-SILENT, INAC-
TIVE, and STOP. A batch system enters an
ACTIVE-RUNNING state if the MCA job sub-
mitted to it has been allocated for execution and
has started executing the MCA components on
the system. An ACTIVE-SILENT state is similar
to an ACTIVE-RUNNING state where the MCA
job submitted to it has been allocated for execu-
tion. However, this active system is not chosen
for execution of components, and hence waits (or
remains silent) till it is chosen for execution. IN-
ACTIVE state is one in which the MCA job that
is either in ACTIVE-RUNNING or ACTIVE-
SILENT state reaches the execution time limit
on the system and hence is aborted from execu-
tion. Finally, a STOP state is a temporary state
in which the MCA job executing in a batch sys-
tem in the ACTIVE-RUNNING state stops and
waits for a new scheduling configuration from the
coordinator.

The coordinator is a persistent daemon and has
four states: LISTENING, SIGNALING, WAIT-
FOR-STOP and DECISION-MAKING. In the
LISTENING state, the coordinator waits for re-
quests from the job monitor daemons running on
the batch systems. Upon receiving a notification
from a job monitor about a batch system en-
tering the ACTIVE-RUNNING state or the IN-
ACTIVE state from an ACTIVE-RUNNING
state, the coordinator enters the SIGNALING
state where it sends signals to the other batch
systems that are in their ACTIVE-RUNNING
states to stop their running MCA jobs. It also
sends signals to the batch systems that are in
their ACTIVE-SILENT states. It then enters the
WAIT-FOR-STOP state. In this state, it waits for
acknowledgment from the job monitors of these
active systems about stopping the MCA jobs.
Upon receiving the acknowledgments, the coor-
dinator enters the DECISION-MAKING state
where it derives a new resource allocation for the
MCA components to the subset of current batch
systems in ACTIVE-RUNNING and ACTIVE-
SILENT states, and sends the schedule to the

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 461

corresponding job monitors. If the new schedule
does not include an active batch system, it informs
the corresponding job monitor, and marks the
batch system as entering the ACTIVE-SILENT
state. The coordinator then goes back to the LIS-
TENING state.

The job monitor daemon is also a persistent
daemon running on a batch system and consists
of MONITOR, NOTIFY-START, NOTIFY-
INACTIVE, NOTIFY-STOPPED, and WAIT-
FOR-RESPONSE states. It has a MONITOR
state that monitors the status of the MCA job
that is submitted and queued. It also monitors
the execution progress of the MCA job that
has been executing. If the executing MCA job
reaches the INACTIVE state, it enters the
NOTIFY-INACTIVE state, where it notifies the
coordinator about the system entering the IN-
ACTIVE state, and goes back to the MONITOR
state where it monitors the status of the new
MCA job that been submitted to the system.
When the batch system has allocated resources
for MCA job execution, the job monitor enters
the NOTIFY-START state where it notifies the
coordinator of the system becoming active, and
enters the WAIT-FOR-RESPONSE state. In this
state, it waits for a new configuration from the
coordinator. If the configuration contains this
batch system, the monitor marks the batch system
as ACTIVE-RUNNING, communicates with the
job script to use the configuration and then goes
back to the MONITOR state, where it tracks the
progress of the MCA job. If the configuration
does not contain this batch system, the monitor
marks this batch system as entering the ACTIVE-
SILENT state. When the batch system enters
a STOP state due to the executing MCA job
stopped by the coordinator to make a scheduling
decision, the job monitor enters the NOTIFY-
STOPPED state to inform the coordinator about
the STOP status of the batch system.

The job submitter is a continuously-running
service in a batch system and has SUBMIT and
WAIT states. In the SUBMIT state, it submits
a MCA job with a request size and component
configuration specified in the configuration file
sent by the coordinator. When the batch system
enters the ACTIVE-RUNNING state, the job
submitter enters the WAIT state where it waits for

the batch system to enter the INACTIVE state.
When the batch system enters the INACTIVE
state, the submitter goes back to the SUBMIT
state. The states and transitions of the job script
are illustrated in the pseudocode of Algorithm 1.

A multi-component application (MCA) job
script is submitted to each of the batch systems
with a request for a specific number of processors
by the job submitter. When a job on a batch
system is active, its job monitor sends START to
the coordinator. The coordinator decides whether
to reschedule; if the decision is to not resched-
ule, it marks the system as ACTIVE-SILENT,
informs the job monitor to not execute, and con-
tinues listening for the next event. If decision is
to reschedule, it stops existing run (sends TRIG-
GER to job monitors of ACTIVE-SILENT batch
systems), waits for NOTIFY-STOPPED from all
active job monitors, determines new schedule,
performs the restart file transfers and sends the
new configuration information to all active job
monitors. The job monitors, upon receiving this
information, communicate with the job script to
launch the next MPI execution. When a job on
the batch system is close to time out, its job
monitor sends NOTIFY-INACTIVE to the co-
ordinator. The subsequent steps are the same
as above, except that if this leaving system is
an ACTIVE-SILENT system, a reconfiguration
is not needed. If it is an ACTIVE-RUNNING
system, a reconfiguration is mandatory with the
new configuration not involving this system. The
rescheduling decisions are described in detail in
the next section.

4 Rescheduling Decisions

In this section, we first describe the types of
rescheduling and their impact on the states of the
components and the queues. We then give the
motivations of rescheduling, and our rescheduling
algorithm.

4.1 Mandatory and Optional Rescheduling

Rescheduling is of two types: mandatory and op-
tional. Rescheduling becomes mandatory when
a MCA job executing on a batch system, sys,

Author's personal copy



462 S.S. Murugavel et al.

reaches the execution time limit on the system/
queue. In this case, the coordinator has to derive
a new schedule not taking into account the batch
system, sys. The batch queue enters the INAC-
TIVE state, the job monitor enters the NOTIFY-
INACTIVE state, notifying the coordinator, and
the coordinator subsequently enters the SIG-
NALING, WAIT-FOR-STOP and DECISION-
MAKING states as described in Section 3.7.

When a MCA job submitted to a batch sys-
tem, sys, or queue becomes ready for execution,
rescheduling becomes optional. During this event,
a new best schedule is determined by the coor-
dinator. If the new schedule contains this batch
system, sys, the batch queue enters the ACTIVE-
RUNNING state, and the MCA application ex-
ecuting on other active batch systems, i.e., other
batch systems in ACTIVE-RUNNING states, is
rescheduled to a new configuration containing the
batch system, sys. The new schedule may not
contain some of the other ACTIVE-RUNNING
batch systems. Those systems enter the ACTIVE-
SILENT states. If the new best schedule is the
same as the old schedule and does not contain
this batch system, sys, the batch system enters the
ACTIVE-SILENT state. In both cases of the new
schedule containing and not containing the batch
system, sys, the job monitor on the batch system,
sys, enters the NOTIFY-START, notifying the
coordinator about the system, sys, becoming ac-
tive, and subsequently enters the WAIT-FOR-
RESPONSE state. The coordinator in turn enters
the SIGNALING, WAIT-FOR-STOP and DECI-
SION-MAKING states as described in Section 3.7.

4.2 Motivations for Rescheduling

As described in the earlier sections, the number
of active batch systems available for execution
of MCA jobs can change during execution. At a
given point of execution, when the available set
of active systems changes, the coordinator has to
decide whether to continue the MCA with the
current set of active systems used for execution
or to reschedule to a new set. If the coordinator
decides to reschedule, it has to determine the best
schedule or set of active systems for execution.

To make the rescheduling decisions, the coor-
dinator has to compare different candidate sched-

ules with the current configuration. The most
important parameter for comparison between two
sets of active systems is the execution rates of
the application on the two sets. The execution
rate denotes the rate of simulations of a long run-
ning MCA. For CCSM, it is the simulated climate
time per unit wallclock time. For a total of M
available active systems or queues, we construct
a lookup table with 2M − 1 entries correspond-
ing to all possible subsets of queues (except the
null set). For each subset, the table contains the
best configuration and the corresponding execu-
tion rate. A configuration for a subset of queues
specifies the mapping of the MCA components
to the queues in the subsets, and the processor
allocation for each component.

We use a combination of the genetic algorithm
described in Section 5 and real profiling runs
to construct the lookup table. We first use the
genetic algorithm that uses application perfor-
mance models to determine the best estimated
configuration and resource allocation for each
subset of active systems. For each of these config-
urations, we perform real application profiling
runs and obtain the actual execution rates. The
actual execution rates of the configurations are
stored in the lookup table and used for com-
parisons between different configurations. Thus,
while the estimated execution rates by the per-
formance models are used in the genetic algo-
rithm to obtain relative rankings between the
configurations, the actual execution rates ob-
tained by the profiling runs are used in our
rescheduling decisions, leading to overall accuracy
of the rescheduling policies. The profiling experi-
ments were MCA runs executed for short dura-
tions (for CCSM, 4 days of climate simulations)
on each configuration with the same experimental
setup as for the longer runs. The 4-day CCSM
simulation was timestamped and execution times
were measured to estimate the execution rate, in
terms of number of climate days simulated per
wallclock day, as well as the initialization and
restart overheads. Note that we had constructed
and used a lookup table as above to improve upon
the results of the application performance model
by performing a reasonable number of real exper-
iments. For small number of queues and processor
configurations, the size of the lookup table and

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 463

the resulting time to construct the lookup table
are manageable. For larger number of queues,
it becomes imperative to use the results of the
application performance model directly.

In addition to the execution rates, the co-
ordinator has to also consider other factors or
parameters for comparison of configurations. A
configuration with the best execution rate may
contain a queue that can become inactive soon, i.e.
the MCA job on the queue can near its execution
time limit. Rescheduling to this configuration will
lead to a situation where the application will have
to be rescheduled again after very little progress
in execution. Frequent rescheduling can result in
high rescheduling overheads and cause overall
loss in application performance. The coordinator
also has to consider the times to next events on the
configurations for its rescheduling decisions. The
next event on a configuration of active queues can
either be one of the queues in the configuration
becoming inactive or an inactive queue outside
the configuration becoming active.

Our rescheduling algorithm considers all these
different factors and has a two-fold objective,
(a) to minimize number of rescheduling events
to minimize overheads, and (b) to use the best
possible configuration across the set of available
queues. It is based on a single-step look-ahead
strategy, i.e., the current decision is based on se-
lecting the option with best execution progress
until the next reconfiguration event.

4.3 Rescheduling Algorithm

The algorithm is invoked by the coordinator when
the set of active batch systems changes. The input
to the algorithm is the set of active systems, S. The
algorithm first obtains a list of best configurations
on all subsets of S and sorts these configurations
in the decreasing order of execution rates. It then
initializes a base conf iguration, b . The base con-
figuration is initialized to the current configura-
tion of active systems used for execution if
rescheduling is not mandatory. Rescheduling is
mandatory when one of the active systems in
the current configuration becomes inactive due to
the MCA job reaching the execution time limit
on the queue. In such cases, the base configuration
is initialized to the configuration on top of the

sorted list. Next, the algorithm compares each
configuration, c, in the list with the current base
configuration, b , and updates the base configura-
tion, b , to c if c is evaluated to be better. After
all configurations in the list have been thus
evaluated, the base configuration gives the best
configuration. If this configuration is the same as
the current configuration used for execution, the
coordinator decides to not reschedule. Else, the
coordinator decides to reschedule the executing
application to the best configuration. The base
conf iguration in our algorithm is compared with
not only the top configuration in the lookup table
with the best execution rate, but with the set of
good configurations in the table, since a config-
uration with a lower execution rate can be a bet-
ter choice if its time to next event is higher, as
illustrated later with sample cases (Figs. 4 and 5).
The pseudo code of the algorithm is given in
Algorithm 2.

Algorithm 2 Rescheduling decision algorithm

Author's personal copy



464 S.S. Murugavel et al.

An important step in the algorithm is the
comparison of a base configuration, b , with a
new configuration, c. This comparison is based
on the following conditionalities: (1) when b is
the current configuration (i.e. default with no
rescheduling) and (2) when the b is not the cur-
rent configuration and is one of the schedules
from the set S. These two kinds of comparisons are
made by invoking the functions, compBaseNoRes
and compBaseRes, in Algorithm 2.

If the base configuration, b , is the current
configuration, and its execution rate is higher than
the other configuration c, the coordinator con-
tinues executing the application with the current
configuration. In other cases, following are the
different parameters used for the comparison of
b and c configurations:

1. T is the time to crossover point beyond which
execution on the new configuration c will re-
sult in higher execution or simulation progress
than execution on the base configuration. It
can be observed that this crossover point
exists only when the base configuration is
the current configuration of execution, i.e. in
compBaseNoRes.

2. tb and tc are the times to next events on b and
c configurations respectively. The next event
can be one the active queues in the configura-
tions becoming inactive or an inactive queue
outside the configurations becoming active.

3. tcb is the time that will be taken by the ap-
plication when executed on configuration c
to achieve the same simulation or execution
progress that can be achieved if executed on
configuration b in time tb , i.e. before the
next event happens on configuration b . This
is important for cases when the next event on
b configuration happens earlier than the next
event on c configuration. In such cases, the
coordinator has to decide if executing appli-
cation initially on b configuration and then
rescheduling to c configuration after the next
event happens with b at time tb will give
an overall advantage to the application. Sim-
ilarly, tbc is the time that will be taken by the
application when executed on configuration b
to achieve the same simulation or execution
progress that can be achieved if executed on

configuration c in time tc, i.e. before the next
event happens on configuration c.

4. OH is the rescheduling overhead.

The parameter T is determined using the ex-
ecution rates of configurations b and c. tbc and
tcb are determined using the execution rates and
the times to next events, tc and tb . Determination
of tb and tc depends on the next event on the
corresponding configurations. The next event on
a configuration is either one of the active queues
becoming inactive or one of the inactive queues
becoming active. The time to the former event
can be estimated by the coordinator at any point
since it maintains a record of the time at which
each queue last became active, and the execution
time limit for a batch queue is anyway known a
priori. For determining the time for an inactive
queue becoming active event, the queue waiting
time of the MCA job has to be estimated for the
queue. For our current work, we predict the queue
waiting time of an MCA job as the mean waiting
time of jobs with similar request sizes from the
queue history. This strategy can give only crude
approximations and at best can only differentiate
configurations with very low and very high queue
waiting times. Predicting queue waiting time is
challenging and accurate point predictions cannot
be made [11, 12]. In future, we plan to use bounds
on queue waiting times instead of point predic-
tions, like the QBETS effort by Brevik et al. [12],
in which upper bounds of queue waiting times are
predicted. We then plan to use the lower and up-
per bounds of queue waiting time estimates for the
two configurations b and c for MCA execution.
This will result in a four-way comparison (e.g.,
MCA execution on configuration b with lower
bound queue waiting time and on configuration
c with upper bound queue waiting time) leading
to four decisions. We can then analyze the four
decisions by obtaining the worst case loss in per-
formance due to wrong decisions, and make the
most conservative decision.

All possible comparison cases and the resulting
decisions are shown using a decision tree in Fig. 3.
There are a total of fifteen cases of comparisons
corresponding to the fifteen leaf nodes of the
decision tree. The color of each leaf node indicates
the decision applicable in that particular case.

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 465

No Rescheduling Rescheduling

tb < tc < T
tb < T < tc

T < tb < tc

tb < tc
tc < tb

tbc < tc + OH
tbc > tc + OH

tbc < tc + OH

tbc > tc + OH

6
5 7

tbc > tb
tbc < tb

T < tc < tb tc < tb < T

tc < T < tb

tb >= tc
tb < tc

tcb < tb + OH

tcb > tc

tcb > tb + OH

tcb < tc

tcb > tc
tcb < tc

Base Configuration Base Configuration

tc < tcb
tcb < tc1

3

2

4

8

9 10

11

12
13

15
14

Choice is c

DECISION TREE: Compare Configuration c with Base Configuration b

Choice is b

Fig. 3 Rescheduling decision tree

In the following, we describe two representa-
tive cases of comparisons. Similar reasoning be-
hind the decisions can be applied for the other
cases. P is a point in execution where rescheduling
decision is made.

Case 5 This is a case, shown in Fig. 4, where
continuation of the application execution with-
out rescheduling on the current configuration,
b , is compared with rescheduling to a new
configuration, c. The rescheduling decision for this
case primarily depends on the duration for which
each configuration can last. In this case, T < tc <

tb , i.e., time to next event with configuration
b is greater than the time to next event on
configuration c, and both are greater than the
crossover point T, beyond which c gives higher
application progress than b . Also tb is greater
than tbc (tbc < tb), the time when the application
when executed on configuration b can achieve the
same progress that can be achieved if executed

Wallclock Time

tb

Si
m

ul
at

io
n 

Pr
og

re
ss

Base Configuration (b)

Rescheduled Configuration (c)

T

tc

tbc < tc + OH and tbc < tb
T < tc < tb

Choice: b

P

OH

tbc

OH

Fig. 4 Rescheduling decision case 5

Author's personal copy



466 S.S. Murugavel et al.

on configuration c in time tc. Thus, at some point
tbc before tb , choice b makes as much progress
as choice c makes by tc. Also, in this case, tbc <

tc + OH. This means that though at tc, choice c
performs better than choice b , rescheduling at tc
would result in a progress made at tc + OH to
be equal to the progress made by b at an earlier
point, tbc (< tc + OH). Thus the application will
make better progress if continued on the cur-
rent configuration, b , than to reschedule on the
configuration c, execute till tc, and then resched-
ule back to b , incurring a rescheduling overhead
of OH, and continue execution after tc + OH, as
shown by the dotted line in the figure. Hence, the
choice for this case is b , i.e. continue execution on
the current configuration.

Case 12 This is a case, shown in Fig. 5, where both
configurations b and c involve rescheduling and
hence rescheduling overheads. In this case, though
configuration c gives lower execution rate than b ,
it has a higher time to next event, i.e., tc > tb .
tc is also greater than tcb , the time when the
application if executed on c will achieve the same
progress that can be achieved if executed on b in
time tb . Moreover, in this case, tcb < tb + OH.
Beyond tcb , choice c outperforms choice b as indi-
cated by the dotted line showing progress beyond
tb with choice b . Thus, the application will make
better progress if rescheduled to configuration
c than rescheduling to configuration b , execute

Wallclock Time

tc

tcbRescheduled Base
 Configuration (b)

Rescheduled Test Configuration (c)

tcb < tb + OH and tcb < tc

Choice: c

Si
m

ul
at

io
n 

Pr
og

re
ss

P

tb
OH

OH

Fig. 5 Rescheduling decision case 12

till tb , then reschedule to c and continue execu-
tion after tb + OH. Hence, the choice for this
case is c.

5 Scheduling of Components

We have developed a genetic algorithm for
scheduling of components to available queues.
The sizes and locations of the active queues are
inputs to the algorithm. Each chromosome is mod-
eled as a string of length equal to the number
of components, with each value indicating the
processor sizes for each component. We then eval-
uate a chromosome for scheduling on a given set
of active systems. For evaluating a chromosome
that specifies the component sizes, we explore
all possible distributions of the components, with
the specific sizes, on the set of active systems.
Thus, we try all possible component mappings to
the active queues for a given processor allocation
specified by the chromosome. For each mapping,
we use an application specif ic f itness function to
calculate a f itness value for the mapping. The max-
imum fitness value for all component mappings
for a given chromosome is used as the f itness value
of the chromosome. For example, for CCSM, we
calculated the fitness value for a component map-
ping as the expected number of climate days that
can be simulated within the maximum execution
time limit of the batch systems.

The application specif ic f itness function used
by the genetic algorithm is a multi-site execu-
tion performance model function that simulates
the execution of the multi-component applica-
tion on a set of active batch systems. Various
application characteristics including amount of
computations in components, pattern and amount
of communications between the components etc.
are embedded completely in the performance
model and are not known to the components
of our Morco framework, namely the scheduler
and coordinator. Using this design, the Morco
middleware is made generic to integration of any
multi-component application.

For CCSM, to estimate the number of climate
days, we use a multi-site execution performance
model of CCSM that considers intra and inter site
bandwidths and processor speeds to model the

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 467

times for initialization, component computation
and communication and restart transfers. These
times along with the workflow pattern of the
component execution are used in an event based
simulator to compute the number of climate days
that can be simulated within the maximum exe-
cution time limit. The workflow pattern of com-
ponent execution in CCSM is as follows. Each
component communicates the data processed by
it to the coupler at periodic intervals. This interval
of communication, coupling period (CP), can be
different for different components. Within each
CP, a component performs some computations
of its local data, receives data from the other
components through the coupler, performs some
computations of this received data and sends its
processed data to the other components through
the coupler. These phases are denoted as send-
to-recv computations (S-R), recv communications
(Re), recv-to-send computations (R-S) and send
communications (Se), respectively.

The performance model of CCSM takes as in-
put, the total wall-clock time for CCSM execution,
the CPs for the four components, the number
of clusters, the inter-cluster bandwidth, and the
allocation of processors in the clusters for the
components. The model then models the execu-
tion workflow of CCSM to obtain the total num-
ber of simulated days or application throughput
for the total wall-clock time available for CCSM
execution. In order to model the execution flow
and predict the number of simulated days for a
given execution time (simulation rate), the perfor-
mance model uses models for the different phases,
namely, S-R, Re, R-S, and Se for each component.
These phase models predict the execution times
for the phases for a given number of processors.
To construct these phase models, we conducted
many experiments by executing CCSM with a
medium resolution. The experiments were con-
ducted across two AMD Opteron clusters, one
with 16 cores and another with 8 cores, with
different application and system configurations.
For each experiment, the head nodes of the two
clusters were connected to each other by one of
10 Mbps, 100 Mbps and 1 Gbps switched Ethernet.
CCSM was then executed with a given distribution
of the components to the processors and with a
given allocation of processors to each component,

and the times for the different phases were ob-
served.

We used a simple equation, computeTime =
a + b/componentSize, for modeling each of the
computation phases of a component. component-
Size is the number of processors allocated for
the component and computeTime is the execution
time corresponding to the computation phase. a
and b denote the model coefficients and were
obtained by linear regression using the observed
execution times corresponding to the actual ex-
periments across the two clusters. For modeling
a communication phase for a given inter-cluster
bandwidth, we used the average of the observed
communication times for the phase corresponding
to the actual experiments across the two clusters.
Thus the phase models for a given inter-cluster
bandwidth can be used for predicting the simula-
tion rate of CCSM for any number of processors
allocated to the components for an inter-cluster
bandwidth of 10 Mbps, 100 Mbps or 1 Gbps.

The four standard steps of any genetic algo-
rithm are initialization, selection, mutation and
crossover. We use a population size of 200 chro-
mosomes and initialize each chromosome with
random valid component sizes. The chromosomes
are evaluated based on the fitness functions and
are arranged in the descending order of fitness
values. We use elitism where the first half of the
chromosomes in this order with high fitness values
are retained for the next generation. Of these se-
lected chromosomes, we use a normalized fitness
function as the probability distribution function to
select candidate pairs for single point crossover.
Each child chromosome is mutated at a random
point of mutation with a probability of 0.2. The
algorithm is continued until the fitness value of the
fittest chromosome does not change for 20 gener-
ations, or until a maximum of 1,000 generations.

We evaluated the genetic algorithm by compar-
ing the schedules generated by the genetic algo-
rithm with the schedules by an exhaustive search
approach that evaluates all possible schedules
to determine the best schedule. Figure 6 shows
the times taken for determining the schedules
and the predicted execution times for simulat-
ing a climate day in CCSM using the schedules
generated by the genetic algorithm and the ex-
haustive search approach. The graphs show the

Author's personal copy



468 S.S. Murugavel et al.

(a) Performance of Genetic Algorithm (Speed). Times
taken by the algorithms shown in log-scale.

(b) Performance of Genetic Algorithm (Accuracy). Cost
of Best Configurations.

Fig. 6 Performance of genetic algorithm

results for 20 different CCSM and batch system
configurations arranged in the order of the sum
of the queue sizes. As the figures show, with the
increase in sizes of the queues, the time taken by
the exhaustive search method increases by large
amounts while the genetic algorithm almost takes
constant time to generate the best schedule. The
second graph in the figure shows that the sched-
ules generated by the genetic algorithm are com-

petitive when compared to the optimal schedules
by the exhaustive search method. The mean per-
centage difference in predicted execution times of
the schedules generated by the exhaustive search
method and the genetic algorithm is only 0.065%,
with the standard deviation of 0.1237.

6 Experiments and Results

We have used our framework for execution of
a foremost long running multi-component paral-
lel application, CCSM (Community Climate Sys-
tem Model) [6], a global climate system model
from National Center for Atmospheric Research
(NCAR) [13]. CCSM is a MPMD application con-
sisting of five components, namely, atmosphere,
ocean, land and ice and a coupler component
which transforms data and coordinates the ex-
change of information across the other model
components. Intra component communications in
CCSM involve ten times larger amount of data
and are three times more frequent than inter
component communications. In our work, we use
only one processor for executing coupler since
parallelization of coupler does not significantly
improve performance. Hence, we consider a max-
imum of four batch systems or queues for ex-
ecuting the non-coupler components. Since our
framework is intended for long running multi-
component applications, we focused on three
main experiments corresponding to one single-
site and two multi-site runs, each with execution
duration of about 6–8 days, thus totaling more
than 3 weeks of experiments. One multi-site run
was performed with the adaptive rescheduling
policy discussed in this paper and another run was
performed with a greedy “use all” rescheduling
policy, described later in this section. The greedy
rescheduling run was performed to gauge the
efficacy of our rescheduling policy.

For the single-site experiment, the largest
queue, queue-64 was used. For this case, a job
corresponding to MCA is submitted requesting
for 64 processors. When the job nears the execu-
tion time limit, the restart dumps of the execution
are created in the application, and the application
is exited. The job submitter submits a new 64-
processor job to the system. Once the job becomes

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 469

active, the job continues its execution from the
previous restart dumps, and continues execution.
Thus MCA jobs with request sizes of 64 processors
are submitted successively one after the other to
queue-64 after the execution time limits corre-
sponding to previous job executions.

The multi-site runs involved execution of
CCSM across four batch queues in three clus-
ters, namely, f ire-16, a AMD Opteron cluster
with 8 dual core 2.21 GHz processors, f ire-48,
another AMD Opteron cluster with 12x2 dual
core 2.64 GHz processors, and varun, an Intel
Xeon cluster with 13 8-core 2.66 GHz processors.
Four queues were configured on these systems
with OpenPBS: one queue, queue-14, of size 14 on
f ire-16, one queue, queue-48, of size 48 on f ire-
48, two queues, queue-32 and queue-64, of sizes 32
and 64, respectively, on varun. The AMD clusters
are located at the Supercomputer Education and
Research Centre and the Intel Xeon cluster is lo-
cated at the Centre for Atmospheric and Oceanic
Sciences, and are connected through a campus
network with a bandwidth of around 500 Kbps.
The AMD clusters are connected to each other
with Gigabit ethernet switches. The connections
within the three clusters are using switched Giga-
bit Ethernet.

External loads were simulated by submitting
synthetic MPI jobs to the queuing systems based
on the workload model developed by Lublin and
Feitelson [14]. The same synthetic external work-
load trace was used for the single-site and multi-
site runs. The maximum execution time limit for
all jobs on all queues was set to 12 hours. The
execution time limits on the queues of our depart-
ment range from 8 h to 256 h in multiples of 2. Our
choice of 12 h is close to the least limit. Larger
limits will reduce the number of rescheduling
events occurring in a simulation period, reduce the
overheads, and thus increase the benefits due to
multi-site executions with our framework. Thus,
by using a small limit of 12 h, the migration capa-
bility of the framework can be adequately tested,
and benefits due to multi-site executions can be
analyzed in a scenario with frequent reschedul-
ing. The CCSM MPMD application was submitted
with MPICH2 using the “-configfile” option. The
coordinator was started on the front end node
on f ire-16. A job monitor and a job submitter

corresponding to each queue were started on the
front end of its cluster.

While the 8-day single-site run on queue-64 per-
formed climate simulations of 6 years, 10 months
and 21 days, the 8-day multi-site run with adap-
tive rescheduling performed climate simulations
of 7 years, 1 month and 24 days. This involved
187,848 computational time steps with multiple
inter process communications involved in each
time step. As the jobs on each of the four queues
became active and inactive, the CCSM runs were
automatically reconfigured and restarted by our
framework. The execution profile of CCSM on the
various queues during this multi-site execution is
shown in Fig. 7.

The figure shows the location of execution of
various CCSM components along the execution
timeline as the configurations change. The figure
comprises of four subplots corresponding to the
four queues in our experiment, as indicated by
the labels at their top right corners. The x axis
shows the experiment timeline in hours, while the
y axis has the total number of processors available
in each queue. The colored regions correspond to
the execution of CCSM, while the white regions
correspond to processor periods that are either
unused or used by other jobs in the queue. Each
color in the figure corresponds to a single compo-
nent. For any given x axis value corresponding to
a given time instant, the components executing in
each queue and the number of processes used by
each component are indicated by the component
colors and the height of each color, respectively.

For example, during the 12th–18th hour of exe-
cution, the ocean component, represented by the
light blue bar, is executed on queue-32 and the
atmosphere component, represented by the dark
blue bar, executed on queue-64. The execution
begins on the first queue that begins active, queue-
14. However, within an hour, when queue-48 be-
comes active, all components migrate to the larger
queue-48 and continue execution. At the 7th hour,
queue-32 becomes active and all components mi-
grate from queue-48 to queue-32. Note that the
migration happens from a larger (and hence
faster) configuration to a smaller configuration.
At the 12th hour, when queue-64 becomes active,
the rescheduler decides to use both active queues,
with ocean continuing on queue-32 with a larger

Author's personal copy



470 S.S. Murugavel et al.

0 20 40 60 80 100 120 140 160 180 200
0

5

10
N

um
be

r 
of

 
pr

oc
es

so
rs

 in
 Q

ue
ue

−1
4 

(f
ire

)

Adaptive Multi−Site Execution

0 20 40 60 80 100 120 140 160 180 200
0

20

40

N
um

be
r 

of
pr

oc
es

so
rs

 in
Q

ue
ue

−4
8 

(f
ire

)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

N
um

be
r 

of
 

pr
oc

es
so

rs
 in

 
Q

ue
ue

−6
4 

(v
ar

un
)

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

Wallclock Time (in hours)

N
um

be
r 

of
 

pr
oc

es
so

rs
 in

 
Q

ue
ue

−3
2 

(v
ar

un
)

Atmosphere
Ocean
Land
Ice
Coupler

Fig. 7 Execution profile of the application components on multiple sites

number of processors and other components mi-
grating to queue-64. Thus, a variety of decisions,
migrations and executions were observed during
the 8-day run.

Note that the queue-14 was not involved in
the executions because of the very small num-
ber of processors it contributes which do not
sufficiently offset the inter site communication
overheads or the rescheduling overheads. Most
of the rescheduling decisions corresponding to
events in queue-14 resulted in no-rescheduling de-
cisions. This is indicated by the blue bars in Fig. 8.

Figure 8 shows the points during the multi-site ex-
ecution where events resulted in reconfigurations
(red bars) and no reconfigurations (blue bars).
The experiment involved a total number of 34
rescheduling decisions and 20 reconfigurations
of CCSM components performed automatically
by our framework, involving non trivial complex
coordinations.

Thus, whenever new batch systems become
active or active systems reach execution time
limit, our Morco framework automatically decides
whether to reschedule, (if yes) stops the execution

Fig. 8 Rescheduling and
no-rescheduling decision
points

0 20 40 60 80 100 120 140 160 180 200

Spread of Reconfiguration and No−Reconfiguration Decisions

No−Reconfiguration Decision
Reconfiguration Decision

Wallclock time (in
hours)

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 471

on the current configuration, calculates a new
configuration with different component sizes and
different locations, reconfigures the CCSM com-
ponents to the new configuration and continues
the execution.

Figure 9 compares the execution progress of
CCSM on three different runs: multi-site run
with adaptive rescheduling as discussed above,
single-site run and a multi-site run with greedy
rescheduling. Each point in the figure corresponds
to a restart point in the experiments. The flat
regions of the single-site execution curve corre-
spond to the longer queue waiting times of the
CCSM batch jobs. Comparing the first two curves,
i.e., multi-site run with adaptive rescheduling and
the single-site run, we note that the non execut-
ing (flat) periods total around 118 hours for the
single-site run and only 53 h for the multi-site run
with adaptive rescheduling. However, this large
benefit in active duration is not translated into
large gains in the execution progress of multi-
site run mainly because of the limited scalability
of CCSM to processor sizes beyond that of the
largest queue, which was also the queue used in
the single-site run. The gain is further dampened
by other factors such as the uneven load distribu-
tion across the CCSM components and non linear
relationship between progress and the different
component sizes. In the figure, we find that the

multi-site Grid execution gives comparable and
even better overall progress of executions than the
single-site executions, in spite of the above factors
and various implementation overheads related to
multi-site executions including restart overheads,
multiple rescheduling, inter site communication,
reconfiguration and rebuilding overheads.

While the application related factors discussed
above are unavoidable, the rescheduling related
overheads can be minimized by better policies
such as the one presented in this paper. The third
curve shows multi-site execution without using
our adaptive rescheduling algorithm. This greedy
policy involves rescheduling at “every” event to
the best configuration involving “all” the active
queues. As can be seen in the figure, the run with
adaptive rescheduling significantly outperforms
the one with the greedy approach. The average
throughput improvement using the adaptive pol-
icy over the greedy policy is 18%.

Figure 10 shows the percentage of time spent
with different number of active queues during the
multi-site runs.

While the multi-site run with the greedy pol-
icy had a large percentage of time spent in
configurations comprising of processors from all
the four queues, the multi-site run with adaptive
rescheduling had only spanned a maximum of two
queues, namely, queue-64 and queue-32, located

Fig. 9 Comparison of
application progress with
single-site execution

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

Wallclock Time (in hours)

N
um

be
r 

of
 C

C
S

M
 D

ay
s 

S
im

ul
at

ed

 

 

Multi−site progress with adaptive rescheduling
Single−site progress
Multi−site progress with greedy rescheduling

Author's personal copy



472 S.S. Murugavel et al.

Fig. 10 Percentage of
time spent in different
number of active queues
in the multi-site
executions with greedy
rescheduling and adaptive
rescheduling

11%

25%

18%

46%

Percentage of Time 
Spent with Different Number of Active Queues 

with Greedy Rescheduling

 

One
Two
Three
Four

83%

17%
< 1%

Percentage of Time 
Spent with Different Number of Active Queues

with Adaptive Rescheduling
 

One
Two
Three
Four

in a single department. Application execution on
more than two queues will involve the use of
slow and shared campus network connecting the
machines of two departments. Hence the appli-
cation execution rate does not increase substan-
tially when involving processors of more than two
queues as shown in Fig. 11. Our rescheduling al-
gorithm does not involve execution on more than
two queues since the gains in execution rates will
be offset by the rescheduling overheads.

Although the adaptive rescheduling run mostly
did not involve simultaneous use of multiple

Q−64 Q−64&32 Q−64,32&48 Q−64,32,48&14
0

100

200

300

400

500

600

700
Best CCSM Execution Rates for some sets of Active Queues

Set of Active Queues

B
es

t C
C

S
M

 E
xe

cu
tio

n 
R

at
e 

in
 S

im
ul

at
ed

 d
ay

s 
pe

r 
W

al
lc

lo
ck

 d
ay

Fig. 11 Best execution rates for CCSM when executed
across certain sets of active queues

queues as described above, it did span across
the different queues at different points of time
ensuring a smooth and continuous progress.
Figure 12 shows the percentage of time spent
in various queues during the multi-site execution
with adaptive rescheduling. We note that almost
40% of the execution time is spent on queues with
fewer processors than that used for the single-site
execution. These results indicate that for CCSM,
the benefit of multi-site execution is mostly due to
the increased duration of availability (as shown by
the smaller flat periods for adaptive rescheduling
curve in Fig. 9) than due to the use of larger num-
ber of processors. Thus our results demonstrate

2%

15%

45%

22%

17%

Percentage of Active Time Spent in Various Queues with Adaptive Rescheduling

 

 

Queue−14
Queue−48
Queue−64
Queue−32
Queues−64&32

Fig. 12 Percentage of time spent in different queues in the
multi-site execution with adaptive rescheduling

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 473

the use of Grids for performance improvement
of a significant scientific application like CCSM
mostly without increasing the number processors
used for single cluster executions, while most of
the existing work on Grid employs larger num-
ber of processors for performance improvement.
Hence Grids can be powerful paradigms even for
applications with low to moderate scalability.

Multi-site executions will provide greater
benefits for CCSM on batch Grids where the
average queue wait times are much higher than
the job execution time limits, i.e. when the queues
are heavily loaded with other external jobs. In
such cases, the effect of continuous progress will
be more substantial. Applications with significant
better scalability than CCSM will obtain larger
benefits with multi-site executions.

Within the coordinator, the overhead due to
reconfiguration was around 7 to 8 min when a de-
cision to reconfigure was made, of which 5 to 6 min
were spent in restart file transfers and backups
for fault tolerance. A no-reconfiguration decision
was generally arrived at in less than a minute with
no loss of execution progress since the current
application run is not stopped. Figure 13 gives the
times consumed by various phases of the single
and multi-site executions including the overheads.
Idle time refers to the time when the CCSM
jobs were not executing and were waiting in the
queues. The remaining times correspond to exe-

cutions of CCSM jobs when some of the systems
become active. Some fraction of this active time is
consumed by the multi-site execution overheads,
while the remaining time is spent for useful CCSM
computations. The most significant overhead is
in the startup which includes MPI initializations
across CCSM components, restart file reads, and
initialization of various CCSM components. There
are also noticeable overheads involved in compi-
lation and preprocessing of components, as well
as in writing and packing of restart files. A small
overhead is also incurred by the transfer of restart
files.

As the figure indicates, the multi-site execu-
tions have lower percentages of idle time than the
single-site execution. The single-site executions as
expected have very low overheads. The percent-
age of time spent in overheads decreases from
6% in multi-site executions with greedy reschedul-
ing to 4% in multi-site executions with adaptive
rescheduling. This is due to the fewer number
of reconfigurations performed with the adaptive
rescheduling. There is also an increase in percent-
age of idle time and decrease in percentage of use-
ful computation time with multi-site executions
with adaptive rescheduling. This is expected be-
cause the greedy rescheduling policy makes use of
all available resources while adaptive reschedul-
ing policy uses available resources only when it is
expected to improve the performance.

Fig. 13 Percentage of
time spent in idling,
computing and overheads

Author's personal copy



474 S.S. Murugavel et al.

Although useful computations are performed
for 71% of the total time in the adaptive run
and 38% of the total time in the single-site run
as shown in Fig. 13, the speedup due to multi-
site executions is not as huge when compared to
single-site executions as shown in Fig. 9. This is
because the percentage of total time when the
optimal number of processors (64 processors) is
active/available in multi-site runs is only slightly
higher than in single-site runs. As shown in Fig. 12,
percentage of active time spent in 64-processor
queue is 62% (45 + 17). Hence the percentage
of total time when 64-processor queue is active is
only 44% (62% of 71%) in multi-site runs, and
38% in single-site runs leading to lesser benefits
with multi-site runs. About 27% of the total time
is used in computations on fewer than 64 proces-
sors in multi-site runs.

Thus, multi-site executions of CCSM using
our Morco framework ensure continuous progress
and regular updates of long running climate sim-
ulations, with our adaptive rescheduling process
outperforming the greedy rescheduling approach.
Multi-site executions also provide the added
benefits of using the available systems and not
relying on a single system, as is the case with
single-site executions.

7 Discussion

While we have demonstrated the Morco frame-
work with CCSM, the framework is generic and
can support any long running multi-component
MPMD application with very few modifications.
The various daemons of our framework, including
the coordinator, job monitor and submitter, and
the job script respond to generic events including
components starts, stops and restarts, and can be
used without modifications for other applications.
The primary application specific components are
the performance model used by the genetic algo-
rithm to evaluate the fitness of the schedules, and
the restart facilities in the application to dump the
restart files during application reconfigurations by
the coordinator. Performance modeling is a com-
mon approach for predicting the execution times
of parallel applications and many performance

modeling strategies exist for characterizing exe-
cutions of parallel applications on heterogeneous
clusters and networks [15, 16]. In the absence of
the performance models, sample profiling runs
of the MCAs can be used to approximate the
execution times on multiple batch systems.

Most of the multi-component applications are
long running and have inbuilt checkpoint and
restart facilities developed by the model devel-
opers in anticipation of system failures and for
execution on supercomputing sites with limits on
the wallclock time per job submission. Many cli-
mate and weather forecasting models [17, 18], and
long running applications in CFD and molecular
dynamics [19, 20] perform application specific
checkpointing and restarting for fault tolerant
simulations. These applications can be made to
create checkpoints during the reconfigurations by
the coordinator. For other applications, the check-
point dumps can be created dynamically on the
occurrence of an event by using a checkpoint
library [21, 22].

In our current framework, we use CCSM
specific inputs, namely, the names and locations
of the components and restart files, the scripts for
building CCSM, and macros for executions, to our
framework components. However, we can triv-
ially generalize these using the standard naming
schemes as in WSRF [23] and XML.

Our framework requires execution of daemons
including coordinator, job submitter and job mon-
itor on the front end nodes of the batch system.
The coordinator daemon should be executed on
one of the front end nodes or an external node
that is accessible by all the front end nodes. Ex-
ecuting daemons on front end nodes to coordi-
nate executions across batch system is a common
approach in many Grid middleware frameworks
[24, 25]. Typically, the front end nodes of batch
systems have public IPs and are accessible by front
end nodes of other batch systems.

The adaptive rescheduling policy as currently
implemented leads to resource wastage by idling
allocated resources. This can be addressed by dy-
namically releasing idling processors back to the
resource pool if they are unlikely to be used in a
preset future time window or the execution time
limit of their queue. Also, queues like queue-14
which are almost never used can be identified

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 475

based on event history and submission to such
queues can be stopped without any performance
deterioration.

8 Related Work

Most of the existing efforts deal with rescheduling
and migration of single component applications
on interactive systems. Sarkar et al. [26] pro-
posed an integrated multi-agent system (MAS)
with autonomous agents and an adaptive exe-
cution scheme for achieving guaranteed perfor-
mance on the basis of the SLAs. They consider
adaptive execution of a batch of independent jobs
on a Grid with interactive systems. The work pro-
poses algorithms for migration of executing tasks
based on dynamic resource characteristics and ap-
plication performance properties. Luccheze et al.
[27] have developed generational scheduling with
task replication (GSTR) algorithm for adaptive
load balancing and rescheduling executing tasks
by replication. The algorithm considers both the
tasks ready for execution and the tasks currently
executing. They applied the algorithm for parallel
application with task graphs.

There has been increasing interest in coallo-
cating parallel applications across multiple clus-
ters [28–31]. Casanova analyzed the impact of
redundant submissions on the other jobs in the
system [30]. In this work, a job submitted to a
system is redundantly submitted to other batch
systems. When the job starts execution in one
of the systems, the redundant jobs submitted to
the other systems are canceled. The author con-
cluded that while redundant tasks decrease av-
erage turnaround times of jobs and helps load
balancing across clusters, they can cause heavy
load in the systems and unfairness to the users
who do not use such redundant jobs. In our work,
we do not replicate jobs on multiple batch queues.
We decompose a single job into multiple sub-jobs
and submit these sub-jobs to many batch queues.
There have been few efforts related to adaptivity
for workflow applications. Yu and Buyya [32]
present taxonomy of workflow scheduling based
on various categories including workflow design,
structure, composition system, QoS constraints,
information retrieval, workflow scheduling, plan-

ning scheme, performance estimation, fault tol-
erance and data movement. The work by Nurmi
et al. [33] deals with execution of workflow ap-
plications on different batch systems of a Grid.
In their work, they schedule different tasks of a
workflow application to different batch systems of
a Grid based on predictions of execution times of
the tasks on the systems and the queue waiting
times in the systems [12]. In our work, we con-
sider multi-component applications that contain
periodic communications between different batch
systems unlike the workflow applications.

Bucur and Epema have extensively studied
the benefits of coallocation of processors from
different clusters in a Grid for job executions [28].
In their work, they analyze the impact of using
different scheduling policies, component sizes and
number of components on coallocation. Our work
is complementary to their efforts since we ana-
lyze the benefits of coscheduling multiple compo-
nents of a specific application on multiple clusters
of a Grid. However, the efforts by Bucur and
Epema consider execution of short jobs where the
different components of a job are submitted to the
different batch queues only once and the compo-
nents complete executions within the execution
time limits associated with the batch queues. In
some of their scheduling policies, they assume
the existence of a global queue for submission of
multi-component jobs and also assume the use of
the same job execution policy (FCFS) on all the
local queues of the clusters. They also assume that
all clusters become simultaneously available for
execution of components.

Buisson et al. [29] in their work on schedul-
ing malleable applications in multi-cluster sys-
tems, have developed a middleware framework
called DYNACO for their application runner,
MRunner, to execute malleable applications.
Our framework, though similar, is designed for
multi-submission executions on generic batch
scheduling systems. Markatchev et al. [25] have
developed a middleware framework for check-
pointing, migration and reconfiguration for ex-
ecution of traditional long running applications.
While they consider batch systems and execution
time limits of the systems, and perform migra-
tion of batch jobs before reaching the time lim-
its, unlike us, they do not perform simultaneous

Author's personal copy



476 S.S. Murugavel et al.

execution of an application across jobs on multiple
queues.

Ko et al. [31] have presented a solution for
coupled multiphysics applications across multiple
queues. Their solution also includes initial co-
scheduling, dynamic resource allocation, load bal-
ancing and handling different queue wait times.
They investigate their solution with a coupled
Computational Fluid Dynamics (CFD) and Mole-
cular Dynamics (MD) code. Their strategy uses
the PilotJob/BigJob framework based on the Sim-
ple API for Grid Applications (SAGA). BigJob
is a container job consisting of a number of sub-
tasks. They explore the problem of load imbalance
across the two components in the times to reach
their synchronization steps. They perform load
balancing for efficient utilization of resources by
dynamic readjustment of allocated resources to
each component. They iteratively apply their load
balancing solution until the resource allocation for
the components reach the steady state solution.
They compare different scenarios including allo-
cation of a single big job for the entire coupled
code, allocating two big jobs for each component
on a single machine and two machines. Their
work however does not handle continuous execu-
tion of long running applications. Our framework
also solves problems due to different execution
time limits and queues becoming inactive dur-
ing execution, and includes robust rescheduling
policies.

The work by Kim et al. [34] has built a pro-
gramming and runtime framework for manage-
ment of application workflows. The framework
includes dynamic resource provisioning and man-
agement including adapting to application and
resource dynamics satisfying deadline and budget
constraints. The primary objectives they con-
sider are application acceleration or time to com-
pletion, resource conservation or using minimal
amount of resources, and resilience to failures.
Their work is based on performance model of
application for initial allocation and dynamically
updating the performance model based on dy-
namics. Their framework uses CometCloud com-
puting engine for cloud computing. They demon-
strate their work on a workflow for modeling oil
reservoir on hybrid infrastructure consisting of
TeraGrid resources and Amazon EC2 resources.

Our rescheduling strategies are confined to tra-
ditional HPC environments due to batch queue
dynamics.

9 Conclusions and Future Work

In this work, we have developed Morco, mid-
dleware for execution of multi-component ap-
plications on independently administered batch
Grids consisting of multiple batch systems. The
framework, which is generic and non intrusive,
requires no special administrative privileges or
coallocated global scheduling. The framework,
with robust adaptive rescheduling decisions,
dynamic resource allocation and fault tolerance,
supports continuing execution across multiple
time-distributed submissions on each queue. With
an experiment involving 8 day execution of a
complex multi-component application, CCSM, on
a batch Grid with four batch queues on three sys-
tems, we have shown that our framework enables
multi-site executions yielding better application
throughput.

While our framework currently does not use
Grid specific details, our execution model and
middleware framework is practical for deploy-
ment, use and obtaining benefits for long run-
ning multi-component applications like CCSM on
multiple batch systems. The framework is generic,
non intrusive and does not require special admin-
istrative privileges, coallocated global scheduling,
or batch queues with fixed queuing policies. In
future, we plan to deploy our framework on prac-
tical Grid infrastructures, particularly, integrating
our components with Grid information service
like WebMDS for monitoring and discovery [35]
and for obtaining dynamic resource properties.
The information service will have to be aug-
mented with aggregate statistics on batch queues
including queue waiting times, performance char-
acteristics of the application, and periodic up-
dates on the availability and failures of the batch
systems. The coordinator in our framework will
use these information from the Grid information
service to make scheduling and rescheduling deci-
sions.

While our current work involves over provi-
sioning of resources, as future work we plan to

Author's personal copy



Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids 477

incorporate some additional features in Morco
such as variable request sizes and dynamic release
of resources to improve the system resource uti-
lization. We also plan to use our framework for
performing very long duration runs for multi-
century climate simulations with CCSM and inves-
tigate long term climate phenomena.

References

1. Coveney, P., Fabritiis, G.D., Harvey, M., Pickles, S.,
Porter, A.: On steering coupled models. In: e-Science
All Hands Meeting (2005)

2. Larson, J., Jacob, R., Ong, E.: The model coupling
toolkit: a new Fortran90 toolkit for building multi-
physics parallel coupled models. Int. J. High Perform.
Comput. Appl. 19, 277–292 (2005)

3. Delgado-Buscalioni, R., Coveney, P., Riley, G.,
Ford, R.: Hybrid molecular-continuum fluid models:
implementation within a general coupling framework.
Philos. Trans. R. Soc. Lond. A 363, 1833 (2005)

4. TeraGrid: http://www.teragrid.org. Accessed Sept 2011
5. UK e-Science: http://www.rcuk.ac.uk/escience/default.

htm. Accessed Sept 2011
6. Community Climate System Model (CCSM): http://

www.ccsm.ucar.edu. Accessed Sept 2011
7. Collins, W., Bitz, C., Blackmon, L., Bonan, G.,

Bretherton, C., Carton, J., Chang, P., Doney, S.,
Hack, J., Henderson, T., Kiehl, J., Large, W.,
McKenna, D., Santer, B., Smith, R.: The community
climate system model version 3: CCSM3. J. Climate
19(11), 2122–2143 (2006)

8. Ccsm user guide: http://www.cesm.ucar.edu/models/
ccsm3.0/ccsm/doc/UsersGuide/UsersGuide.pdf.
Accessed Sept 2011

9. Gabriel, E., Resch, M., Beisel, T., Keller, R.: Distrib-
uted computing in a heterogenous computing environ-
ment. In: EuroPVMMPI’98 (1998)

10. Park, K., Park, S., Kwon, O., Park, H.: MPICH-GP:
a private-IP-enabled MPI over Grid environments. In:
Proc. of Second International Symposium on Parallel
and Distributed Processing and Applications, ISPA04,
Hong Kong, China, pp. 469–473 (2004)

11. Smith, W., Taylor, V., Foster, I.: Using run-time pre-
dictions to estimate queue wait times and improve
scheduler performance. In: Job Scheduling Strate-
gies for Parallel Processing (JSSPP), pp. 202–219
(1999)

12. Brevik, J., Nurmi, D., Wolski, R.: Predicting bounds on
queuing delay for batch-scheduled parallel machines.
In: PPoPP ’06: Proceedings of the Eleventh ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 110–118 (2006)

13. The National Center for Atmospheric Research
(NCAR): http://www.ncar.ucar.edu. Accessed Sept
2011

14. Lublin, U., Feitelson, D.: The workload on parallel
supercomputers: modeling the characteristics of rigid
jobs. J. Parallel Distrib. Comput. 63(11), 1105–1122
(2003)

15. Lee, B., Brooks, D., de Supinski, B., Schulz, M.,
Singh, K., McKee, S.: Methods of inference and learn-
ing for performance modeling of parallel applica-
tions. In: ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, San Jose, CA
(2007)

16. Yang, L., Ma, X., Mueller, F.: Cross-platform perfor-
mance prediction of parallel applications using par-
tial execution. In: SC ’05: Proceedings of the 2005
ACM/IEEE Conference on Supercomputing, p. 40
(2005)

17. Parallel Climate Model (PCM): http://www.cgd.ucar.
edu/pcm. Accessed Sept 2011

18. Skamarock, W., Klemp, J., Dudhia, J., Gill, D.,
Barker, D., Wang, W., Powers, J.: A description of the
advanced research WRF version 2. NCAR, Tech. Rep.
Technical Note (2005)

19. Lefantzi, S., Ray, J.: A component-based scientific
toolkit for reacting flows. In: Proc. Second MIT Con-
ference on Computational Fluid and Solid Mechanics,
pp. 1401–1405 (2003)

20. ANSYS FLUENT: http://www.ansys.com/products/
fluid-dynamics/fluent/default.asp. Accessed Sept 2011

21. Vadhiyar, S., Dongarra, J.: SRS—a framework for de-
veloping malleable and migratableparallel applications
for distributed systems. Parallel Process. Lett. 13(2),
291–312 (2003)

22. Fernandes, R., Pingali, K., Stodghill, P.: Mobile MPI
programs in computational Grids. In: PPoPP ’06: Pro-
ceedings of the Eleventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pp. 22–31 (2006)

23. WS Resource Framework: http://www.globus.org/wsrf.
Accessed Sept 2011

24. Czajkowski, K., Foster, I., Kesselman, C.: Agreement-
based resource management. Proc. IEEE 93(3), 631–
643 (2005)

25. Markatchev, N., Kiddle, C., Simmonds, R.: A frame-
work for executing long running jobs in Grid en-
vironments. In: HPCS ’08: Proceedings of the 22nd
International Symposium on High Performance Com-
puting Systems and Applications, pp. 69–75 (2008)

26. Sarkar, A.D., Roy, S., Ghosh, D., Mukhopadhyay, R.,
Mukherjee, N.: An adaptive execution scheme for
achieving guaranteed performance in computational
Grids. J. Grid Computing 8(1), 109–131 (2010)

27. de O. Lucchese, F., Yero, E., Sambatti, F., Henriques,
M.: An adaptive scheduler for Grids. J. Grid Comput-
ing 4(1), 1–17 (2006)

28. Bucur, A., Epema, D.: Scheduling policies for proces-
sor coallocation in multicluster systems. IEEE Trans.
Parallel Distrib. Syst. 18(7), 958–972 (2007)

29. Buisson, J., Sonmez, O., Mohamed, H., Lammers, W.,
Epema, D.: Scheduling malleable applications in mul-
ticluster systems. In: CLUSTER ’07: Proceedings of
the 2007 IEEE International Conference on Cluster
Computing, pp. 372–381 (2007)

Author's personal copy

http://www.teragrid.org
http://www.rcuk.ac.uk/escience/default.htm
http://www.rcuk.ac.uk/escience/default.htm
http://www.ccsm.ucar.edu
http://www.ccsm.ucar.edu
http://www.cesm.ucar.edu/models/ccsm3.0/ccsm/doc/UsersGuide/UsersGuide.pdf
http://www.cesm.ucar.edu/models/ccsm3.0/ccsm/doc/UsersGuide/UsersGuide.pdf
http://www.ncar.ucar.edu
http://www.cgd.ucar.edu/pcm
http://www.cgd.ucar.edu/pcm
http://www.ansys.com/products/fluid-dynamics/fluent/default.asp
http://www.ansys.com/products/fluid-dynamics/fluent/default.asp
http://www.globus.org/wsrf


478 S.S. Murugavel et al.

30. Casanova, H.: Benefits and drawbacks of redundant
batch requests. J. Grid Computing 5(2), 235–250 (2007)

31. Ko, S.-H., Kim, N., Kim, J., Thota, A., Jha, S.: Efficient
runtime environment for coupled multi-physics
simulations: dynamic resource allocation and load-
balancing. In: CCGRID 2010: Proceedings of the 2010
10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, pp. 349–358 (2010)

32. Yu, J., Buyya, R.: A taxonomy of workflow manage-
ment systems for Grid computing. J. Grid Computing
3(3–4), 171–200 (2005)

33. Nurmi, D., Mandal, A., Brevik, J., Koelbel, C.,
Wolski, R., Kennedy, K.: Evaluation of a workflow

scheduler using integrated performance modelling and
batch queue wait time prediction. In: SC ’06: Proceed-
ings of the 2006 ACM/IEEE Conference on Supercom-
puting, p. 119 (2006)

34. Kim, H., el-Khamra, Y., Rodero, I., Jha, S., Parashar,
M.: Autonomic management of application workflows
on hybrid computing infrastructure. Sci. Program.
19(2–3), 75–89 (2011)

35. Zhang, X., Freschl, J., Schopf, J.: A performance study
of monitoring and information services for distributed
systems. In: HPDC ’03: Proceedings of the 12th IEEE
International Symposiumon High Performance Dis-
tributed Computing, p. 270 (2003)

Author's personal copy


	Adaptive Executions of Multi-Physics Coupled Applications on Batch Grids
	Abstract
	Introduction
	Execution Model
	Morco: Grid Middleware Framework
	Global Coordinator
	Fault Tolerance Coordinator
	Job Monitor
	Fault Tolerance Monitor
	Job Submitter
	MCA Job Script
	Component Interactions: States, Transitions and Lifecycle of Components and Batch Systems

	Rescheduling Decisions
	Mandatory and Optional Rescheduling
	Motivations for Rescheduling
	Rescheduling Algorithm

	Scheduling of Components
	Experiments and Results
	Discussion
	Related Work
	Conclusions and Future Work
	References



