
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Future Generation Computer Systems 26 (2010) 217–227

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Grids with multiple batch systems for performance enhancement of
multi-component and parameter sweep parallel applicationsI

Sivagama Sundari M. a, Sathish S. Vadhiyar a,∗, Ravi S. Nanjundiah b
a Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, India
b Centre for Atmospheric & Oceanic Sciences, Indian Institute of Science, Bangalore, India

a r t i c l e i n f o

Article history:
Received 15 August 2008
Received in revised form
6 August 2009
Accepted 7 August 2009
Available online 15 August 2009

Keywords:
Grids
Batch systems
Multi-component applications
Parameter sweep applications
Queue waiting times

a b s t r a c t

In this work, we evaluate the benefits of using Grids with multiple batch systems to improve the
performance of multi-component and parameter sweep parallel applications by reduction in queue
waiting times. Using different job traces of different loads, job distributions and queue waiting times
corresponding to three different queuing policies (FCFS, conservative and EASY backfilling), we conducted
a large number of experiments using simulators of two important classes of applications. The first
simulator models Community Climate SystemModel (CCSM), a prominent multi-component application
and the second simulator models parameter sweep applications. We compare the performance of the
applications when executed on multiple batch systems and on a single batch system for different system
and application configurations. We show that there are a large number of configurations for which
application execution using multiple batch systems can give improved performance over execution on
a single system.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Computational grids have been increasingly used for executing
large scale scientific applications [1–11]. Most of the benefits of
using grids are primarily due to the increase in the number of
processors used for execution. In thiswork,we focus on yet another
potential use of grids where the total processor space used for
application execution is not increased. Specifically, we deal with
grids with multiple batch systems (for brevity, we will refer to
such grids as batch grids) and show that employing multiple batch
systems can improve the response times of parallel applications
than when using a single batch system.
Parallel batch systems provide space sharing of available pro-

cessors among multiple parallel applications or jobs. These batch
systems employ queues in which the incoming parallel applica-
tions are queued before allocation by a batch scheduler to a set of
processors for execution. Thus a batch system is associated with a
set of queues and a scheduling policy that selects a job from the
queue and maps it to a set of processors. An application submitted

I This work is supported partly by Department of Science and Technology, India,
project ref no. SR/S3/EECE/59/2005/8.6.06 and partly by Ministry of Information
Technology, India, project ref no. DIT/R&D/C-DAC/2(10)/2006 DT.30/04/07.
∗ Corresponding author.
E-mail addresses: sundari@rishi.serc.iisc.ernet.in (Sivagama Sundari M.),

vss@serc.iisc.ernet.in (S.S. Vadhiyar), ravi@caos.iisc.ernet.in (R.S. Nanjundiah).

to a batch system incurs additional time for waiting in a queue be-
fore actual execution. The overall response time of an application is
the sum of its queue waiting time and execution time. Application
with small processor requirements can be backfilled to the avail-
able processors and hence incur smaller queue waiting times than
applications with large processor requirements. Thus the queue
waiting times for applications are proportional to their processor
requirements as illustrated in Fig. 1. The figure shows the average
queue wait times for jobs with different processor requirements
on an IBM SP2 system in SDSC (San Diego Supercomputer Center).
The job traces were obtained from the logs maintained by Feitel-
son[12].
Consider a parallel application J needing P processors that con-

sists of or can be decomposed into multiple sub-parallel applica-
tions or components, J1, J2, . . . , Jn with processor requirements,
P1, P2, . . . , Pn, respectively, such that P = P1+P2+· · ·+Pn. In this
case, simultaneous submission of the multiple sub-parallel appli-
cations, J1, J2, . . . , Jn, with small processor requirements to multi-
ple batch systems of a batch grid can result in improved response
times of the application over submitting the entire parallel appli-
cation, J , with a large processor requirement to a single batch sys-
tem. This is because the maximum of the queue waiting times in
the former case can be lesser than the single queue waiting time in
the latter case.
While this advantage of simultaneous submissions of the sub-

applications to multiple batch systems is generally well under-
stood [13], the actual improvements in response times of the
applications depend on various factors, including decomposability

0167-739X/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2009.08.009

Author's personal copy

218 Sivagama Sundari M. et al. / Future Generation Computer Systems 26 (2010) 217–227

Fig. 1. Average queue wait times for jobs on a SDSC system.

of parallel applications, communication characteristics of the ap-
plications, speed of interconnections between the batch systems
and batch queue characteristics. Multi-componentMPMD applica-
tions [14,15] consists of component applicationswhich are parallel
application themselves. In these applications, the components are
loosely synchronized and communications between components
are lighter and less periodic than within components. Thesemulti-
component applications and parameter sweep applications, where
the parallel tasks are independent, are amenable to decomposition
into multiple parallel sub-applications and can potentially benefit
due to submissions of the sub-applications to multiple batch sys-
tems. Batch queue characteristics including queuing and schedul-
ing policies followed in the batch systems, the loads in the queues,
the job distribution in terms of their processor requirements and
maximum execution times associated with the queues impact the
queue waiting times of the jobs in the queues.
In this paper, we study the effects of these different factors on

the potential improvement in performance of a parallel application
due to simultaneous submissions of the parallel sub-applications
to multiple batch systems of a grid over submission of the entire
parallel application to a single batch system. At the application
level, we used two simulators, one that models the most promi-
nent multi-component application, CCSM [14,15], and the other
that models parameter sweep applications. At the network level,
we simulated different interconnection speeds between the batch
systems. At the batch level, we used different job traces produced
from Feitelson’s job models [16] and containing different distribu-
tions of jobswith different processor, execution time requirements
and execution time limits. We then generated the queue waiting
times of the jobs by using three different queuing policies, namely,
FCFS, conservative and easy backfilling. We performed large num-
ber of simulations with different distributions of processors to
components and system configurations with 24 different queues.
We show that there are a large number of configurations for which
performance improvements are obtained for the applications on
batch grids. We further performed real experiments with CCSM by
executing the components of CCSM across two AMD Opteron clus-
ters and show similar benefits.
We assume that sub-components executed on different batch

systems can communicate with each other. For simplicity, we
evaluate the advantages of batch grids using two queues. Thus,
our results show the comparison between executing the entire
parallel application with P processor requirements on a single
batch system and executing two sets of sub-components of the

parallel application with processor requirements, P1 and P2 (P =
P1+ P2), respectively, on two batch systems of a batch grid.
Section 2 motivates the use of batch grids. In Section 3, we

explain in detail our simulation framework and calculations of
probabilities of benefits of multiple batch executions for our two
applications. Section 4 gives the simulation setup we used for our
experiments. In Section 5, we present the results corresponding
to CCSM simulations and real executions and simulations of
parameter sweep applications. Section 6 describes relatedwork on
queue wait times of batch systems and executing applications on
multiple batch grids. Conclusions are presented in Section 7 and
future work is outlined in Section 8.

2. Batch grids — motivations and contributions

Application jobs submitted to batch systems incur overheads
associated with the times spent in the batch queues waiting for
resources to become available for execution. These queue waiting
times tend to be higher when greater number of processors are re-
quested. The central idea of this paper is to split the application
into components and execute themondifferent batch systems. The
smaller requests for the components on the different batch sys-
tems are expected to have lower wait times than the single com-
plete request, leading to potential gains in the overall application
execution rates. The focus of this paper is to study the incidence
of this gain and its variation with different application and system
factors. We have developed a simulator framework consisting of
multiple components for studying the potential gains due to mul-
tiple batch executions for different application and system config-
urations.
The primary contributions of our work are:

(1) investigation of the benefits of execution of applications on
batch grids over execution on single batch systems,

(2) development of a simulation framework, including devel-
opment of an event-based batch system simulator, inter-
site application execution model and a trace-based statistics
calculator,

(3) definition of new probability metrics for comparison of batch
grid vs. single batch system executions of long-running appli-
cations, and

(4) large scale analysis of incidence of benefits due to execution on
batch grids for various system and application configurations.

The following section describes in detail our simulation frame-
work.

3. Simulation methodology

We have developed a simulator framework consisting of mul-
tiple components for studying the potential gains due to multiple
batch executions for different application and system configura-
tions. Our simulation framework, shown in Fig. 2, consists of four
components: (i) workload generator, (ii) application simulator, (iii)
batch system simulator and (iv) statistics calculator. The workload
generator is used to generate job traces with job arrival times, ex-
ecution times and processor request sizes. The application simula-
tor estimates the application execution rates for various intra-site
and inter-site distributions of components. This is used in the cal-
culation of our comparison metrics. The batch system simulator is
our event-based simulator that processes the job traces produced
by the workload generator and outputs the queue waiting time for
each job. The new traces with the queue waiting times are used by
the statistics calculator alongwith the application simulator, to es-
timate the probabilities of multiple-site executions outperforming
single-site executions.

Author's personal copy

Sivagama Sundari M. et al. / Future Generation Computer Systems 26 (2010) 217–227 219

Fig. 2. Simulation framework.

The following subsections explain the various components of
the simulation architecture.

3.1. Workload generator

For our simulation studies, we used the workload model de-
veloped by Lublin and Feitelson [16]. This model was developed
by applying rigorous statistical procedures to logs collected from
real batch systems of three different locations and was shown to
be the most representative model available in a general sense.
The workload model generates a job trace consisting of arrival
times, processor requirements and execution times of the jobs. Job
processor requirements, runtimes and arrivals are modeled based
on a two-stage uniform distribution, a hyper-Gamma distribution
and a Gamma distribution, respectively. Themodel parameters are
preset to values representative of real logs of supercomputers. The
workload generator can be used to generate job traceswith a range
of processor requirements, execution times, and specific mean of
inter-arrival times.

3.2. Batch system simulator

The job traces of the workload generator are input to the batch
system simulator component of our simulator architecture. The
batch system simulator uses the job traces along with a batch
queue scheduling policy to generate batch queue traces. The batch
queue traces contain information regarding queue waiting times
of the jobs, namely, the times of submissions of the jobs to the
queues and the start times of executions. We simulated three
queue scheduling policies in the batch system simulator, namely,
FCFS, conservative (CONS) and EASY backfilling [17], for scheduling
jobs in the job traces and to generate the batch queue traces
containing queue waiting times of the jobs. The queue waiting
times in these traces are used by the statistics calculator described
later.

3.3. Application simulator

In order to calculate statistics regarding the amount of work
performed by an application in single and multiple batch systems,
our simulator architecture performs simulations of application
executions to estimate the amount of work for a given execution
time. We have developed application simulators for a multi-
component parallel application and parameter sweep applications.

3.3.1. Multi-component applications
Coupled multi-component applications [18,15,19,20] are an

important class of scientific applications and have gained impor-
tance in recent times due to rapid advancements in computa-
tional science and multi-disciplinary simulations. One classic and
foremost example of this application category is coupled climate
models. In particular, we consider a coupled multi-component
climate simulation application, the Community Climate System
Model (CCSM) [14], an MPMD application developed by NCAR
(National Center for Atmospheric Research). CCSM involves mul-
tiple components, four components corresponding to the four cli-
mate sub-systems: atmosphere, land, ocean and sea-ice, and a fifth
component called coupler for coordinating the periodic communi-
cations between the other components.
For developing a simulator for CCSM, we executed CCSM on a

cluster where the links of the cluster have a certain bandwidth
denoted as base intra-cluster bandwidth. For the distribution of
processors to the different components of CCSM for an execution
on a given number of processors, we followed the general guide-
lines [21,22] and processor restrictions for the components. These
restrictions include even number of processors for atmosphere and
more than one processor for ice component.We observed the com-
ponent computation times between their coupling period (period
between communications with the coupler) and the component
communication times with the coupler for different executions of
CCSMondifferent number of processors anddifferent distributions
of processors to components.
We simulated the execution time of CCSM across two parallel

systems or clusters where the intra-cluster communication net-
works have bandwidths of base intra-cluster bandwidth and the two
clusters are connected by a single link of a specified bandwidth,
denoted as inter-cluster bandwidth. For modeling communications
between two components located at different clusters, we scaled
the component-coupler communication times, that were earlier
observed from real executions on a cluster with base intra-cluster
bandwidth, based on the specified bandwidth of the inter-cluster
link. For example, for simulating CCSM execution on a 1 Mbps
inter-cluster link based on observations of real execution on a clus-
ter with Gigabit Ethernet network, we scaled down the component
communication times with the coupler observed on the Gigabit
network by a factor of 1000.

3.3.2. Parameter sweep applications
Parameter sweep applications (PSA) constitute yet another im-

portant class of scientific applications. Since the individual tasks

Author's personal copy

220 Sivagama Sundari M. et al. / Future Generation Computer Systems 26 (2010) 217–227

of these applications are independent and do not involve commu-
nications, these applications have been widely demonstrated and
deployed on grid systems.
The simulator for parameter sweep applications considers the

execution of an application consisting of P tasks. For simulation of
the application when executed on two queues, we divided P into
different combinations of P1 and P2 tasks such that P1+ P2 = P .
Unlike in CCSM, the execution times of the parameter sweep
application are same when executed on a single batch system
and on multiple batch systems since the tasks in the different
batch systems do not communicate. The bandwidth of the link
connecting the two systems does not affect the execution times of
the applications. Hencewe do notmodel the execution times of the
applications in our simulator. The difference between single batch
andmultiple batch executions of the parameter sweep applications
is only in terms of the queue waiting times.

3.4. Statistics calculator

The statistics calculator uses the batch queue traces along with
the estimates from the application simulator to calculate statistics
for the applications. The calculations of the statistics depend on the
kind of the application. In the following subsections, we explain
the calculations for multi-component and parameter sweep appli-
cations.

3.4.1. Statistics for multi-component applications
CCSM is typically executed for long periods to simulate climate

systems for multiple centuries. The execution times for such runs
can be several weeks. However, batch queue systems have exe-
cution time limits of few days for job executions. CCSM provides
restart facilities where simulations for an execution can be contin-
ued from the previous executions. Hence, for multi-century simu-
lations, CCSM is submitted to a batch system and resubmitted to
the system after the previous batch execution. In order to compare
the execution of such long-running CCSMwhen executing all com-
ponents in a single batch system and when executing the compo-
nents in multiple batch systems, response time is not a suitable
metric for evaluation since it is used for jobs that can complete ex-
ecutionwithin themaximumexecution limit of a batch system.We
use simulated time per wall clock time, SPW , as a metric for com-
parison. For CCSM, SPW is the number of simulated days for a par-
ticular batch submission and is obtained by dividing the number
of days, simulatedDays, that can be simulated by CCSM within the
maximumexecution time limit for a CCSM job in a queuing system,
by the sum of queue waiting time for the job, qwait , and the maxi-
mum execution time limit for the jobs in the queue, execTimeLimit .

SPW =
simulatedDays

(qwait + execTimeLimit)
. (1)

Thus, the SPW metric accounts for the amount of effective work
performed in CCSM by considering the queue waiting time and the
communication costs for multiple batch executions.
We used different configurations of CCSM and different queue

traces for comparing single andmultiple batch executions of CCSM.
Each CCSM configuration corresponds to a total number of pro-
cessors, P , for CCSM execution and distribution of the P proces-
sors to the components. For each queue trace, we used a single
queue with the queue trace characteristics for a single batch ex-
ecution and two queues with the same queue trace characteristics
for multiple batch executions of different components of CCSM.
For each CCSM configuration with P total number of processors
and for each queue trace, we determine the best decomposition
of the application with P processor requirements into two sub-
applications with processor requirements, P1best and P2best , such
that P1best + P2best = P . We then calculate the probabilities that

multiple batch executions for the best decomposition with P1best
and P2best processor requirements, will provide benefits over sin-
gle batch executionswith P processor requirements. For determin-
ing the best decomposition for multiple batch execution with P
total number of processors, we use SPW values as follows.
We first calculate SPW for the single batch execution, SSPW ,

using Eq. (1). The maximum execution time limit for the queue,
execTimeLimit , used in the equation is the input to the work-
load generator of our simulator framework. The number of days,
simulatedDays, that can be simulated by CCSM within the max-
imum execution time limit in the equation is estimated for P
processors using the CCSM application simulator described in Sec-
tion 3.3.1. For obtaining the queue waiting time, qwait , in Eq. (1)
for a submission with P processor requirements, we used the av-
erage of queue waiting times in the queue trace for jobs using P
processors.
For multiple batch executions with a given CCSM configuration

of P total number of processors, and a given queue trace, we
evaluate different combinations of locations of the components
in the two queues. A particular combination of locations of
CCSM components in the two queues corresponds to a particular
decomposition of total number of processors, P , into processor
requirements, P1 and P2, for the two queues, based on the
number of processors allocated to each component in the CCSM
configuration. For this particular decomposition with P1 and P2
processor requirements, we calculate SPW for the multiple batch
execution,MSPW , using Eq. (1). Similar to the calculation of SSPW ,
the execTimeLimit , used in the equation is the input to ourworkload
generator and simulatedDays in the equation is estimated for
multiple batch execution with P1 and P2 processor requirements
on the two queues using the CCSM application simulator described
in Section 3.3.1. For obtaining the queue waiting time, qwait , in
Eq. (1) for multiple batch submissions on the two queues, with
processor requirements, P1 and P2 (P = P1 + P2), we obtained
the average of queuewaiting times for the jobs using P1 processors
and the average of queue waiting times for the jobs using P2
processors in the queue trace and used the maximum of the two
averages. The maximum of the two average queue waiting times
is considered because the application can start execution only
after both the sub-applications are dequeued from their respective
queues and allocated processors for execution by their respective
batch schedulers. We then obtained the gain, MGAIN , due to
multiple batch submissions for the particular decomposition, (P =
P1 + P2), as the difference between MSPW and SSPW values. For
a given CCSM configuration with P processors, we experimented
with different decompositions, and chose the decomposition, P =
P1best + P2best , for whichMGAIN is maximum.
For a given CCSM configuration requiring P total number of pro-

cessors, a given queue trace and the best decompositionwith P1best
and P2best processor requirements on the two queues for multiple
batch executions, we calculate the probability for multiple batch
executions to provide improvements over single batch executions.
We obtain the probability instead of an average measure because
queuewaiting times do not follow a strict non-decreasing relation-
ship with the number of processor requirements. In some cases,
jobs with smaller processor requirements can incur higher queue
waiting times than jobs with larger processor requirements. The
probability is calculated as follows. We divided the queue waiting
times of the jobs with P processor requirements in the queue trace
into 10 intervals, [L1,U1], [L2,U2], . . . , [L10,U10]. For each inter-
val, i, we calculate two probabilities, p1(i) and p2(i), correspond-
ing to single and multiple batch executions, respectively. p1(i) is
the probability that the queue waiting time of a job with P pro-
cessor requirements is in the interval [Li,Ui]. p2(i) is the proba-
bility that the queue waiting time of the jobs with requirements
of P1best or P2best processors is less than L′i . L

′

i is the queue wait-
ing time for the multiple batch execution that will result inMSPW

Author's personal copy

Sivagama Sundari M. et al. / Future Generation Computer Systems 26 (2010) 217–227 221

value equal to the SSPW value calculatedusing Li as the queuewait-
ing time for single batch execution.We calculate the joint probabil-
ity, p(i) = p1(i)× p2(i), for multiple batch submissions to provide
benefits over single batch submissions if the queue waiting time
of the single batch submission with P processor requirements is in
the interval [Li,Ui]. We then obtain the total probability for a mul-
tiple batch submission to provide benefits over single batch sub-
mission by adding the probabilities p(i) for all intervals. In these
calculations, to obtain the probability that a queue waiting time
for a job with a given processor requirement, N , is in an interval or
less than the lower bound of the interval, we used the queue trace
and divided the number of jobswithN processor requirements and
whose queue waiting times satisfy the condition by the total num-
ber of jobs with N processor requirements.

3.4.2. Statistics for parameter sweep applications (PSA)
To obtain probabilities for the parameter sweep applications

(PSA), we experimented with different configurations of the ap-
plication corresponding to different number of tasks. For each
configuration with P number of tasks and a given queue trace, we
decomposed the P tasks into the best decomposition with P1best
and P2best (P1best+P2best = P) tasks for multiple batch executions
on two queues, such that the difference between the queuewaiting
times for the single batch and multiple batch submissions is mini-
mum for the best decomposition.We then calculate the probability
that decomposing the P tasks into P1best and P2best tasks using the
best decomposition and submitting to multiple batch systems will
give benefit over submitting the entire applicationwith P tasks to a
single batch system using similar probability calculations used for
CCSM application.We divided the queuewaiting timeswith P pro-
cessor requirements into 10 intervals, and calculated probabilities
p1(i) and p2(i), corresponding to single and multiple batch execu-
tions, respectively, for an interval i. For PSA, p2(i) is the probability
that the queue waiting time of the jobs with requirements of P1 or
P2 processors is less than the lower bound, Li, of the queue wait-
ing time for the interval. We then calculate the joint probability,
p(i) = p1(i) × p2(i), for interval, i, and obtain the total probabil-
ity, across all intervals, for a multiple batch submission to provide
benefits over single batch submission.
For CCSM application, as described in the previous section, the

probability of multiple batch executions providing benefits de-
pends on both the difference in queuewaiting times betweenmul-
tiple and single batch submissions, and the cost of communica-
tions between the two queues. However, for PSA, the probability
depends only on the difference in queue waiting times between
multiple and single batch submissions since PSA does not involve
communications between the tasks. Thus a reduction in queue
waiting times will lead to reduced response time in multiple batch
executions for any parameter sweep application.

4. Simulation setup

In this section, we describe the specific parameters we used for
our simulations using the simulator architecture.
In our workload generator, we specified the maximum proces-

sor requirement of the jobs as 128 processors and maximum ex-
ecution time of 2 days. In order to generate job traces of different
job characteristics, we categorize the jobs in terms of their execu-
tion times and processor requirements.We call jobs with small ex-
ecution times (mean execution time of 3–4 min) as short jobs (S),
and those with large execution times (mean execution time of 6 h)
as long jobs (L). Similarly, jobs with small processor requirements
(<10 processors) are called narrow jobs (N) and those with large
processor requirements (>10 processors) as wide jobs (W). We
then tuned the input parameters of the workload model to gener-
ate job traces consisting of predominant number of jobs belonging

to one of the 8 job categories, namely, S, L, N, W, SN, SW, LN, and
LW. The mean inter-arrival times of the jobs in our queue traces
were 3000 s. We thus generated 24 different queue traces corre-
sponding to 8 job characteristics and 3 scheduling policies. For all
the queue traces, we fixed the maximum execution time limit of
the jobs as 2 days.
For CCSM application simulator, we executed CCSM with

2X2.5_gx1v3 resolution and finite-volume (FV) dynamical core
for atmosphere component on a 48-core AMD Opteron cluster
consisting of 12 2-way dual-core AMD Opteron 2218 based 2.64
GHz Sun Fire servers with CentOS 4.3 operating system, 4 GB
RAM, 250 GB Hard Drive and connected by Gigabit Ethernet. For
our simulations of CCSM using two batch submissions, we used
bandwidths of 700 Kbps, 10 Mbps, 100 Mbps and 1 Gbps on the
links connecting the two submissions. The first three bandwidths
are commonly observed on the links connecting two clusters
located at two different sites in many grid systems. The last
bandwidth is seen on the links connecting two batch systems in
a single site and on the links connecting two different submissions
in a single batch system. Simulating this scenario is important since
we claim that submitting multiple sub-applications of a single
application to the same batch queue can also lead to benefits.
For obtaining statistics for CCSM, we used 50 configurations of

CCSM corresponding to different total number of processors and
different distribution of processors to components. For obtaining
statistics for parameter sweep applications, we experimented
with different configurations of the application corresponding to
different number of tasks (2 to 128).

5. Results

In this section, we show results corresponding to simulations of
CCSM and parameter sweep applications for different queue traces
and bandwidths between two batch systems.We also show results
for a real inter-cluster configuration where we obtained actual
execution times of CCSM on a real configuration and used these
times with our queue traces. All the results show probabilities
for benefits with executing on two batch systems over executing
on a single system. The probabilities were obtained using the
calculations described in Section 3.

5.1. Simulations of multi-component applications

Fig. 3 shows the fraction of configurations corresponding to
different probabilities of benefits with multiple batch executions
for the four bandwidths. The total number of configurations
were 1200 corresponding to 50 CCSM configurations and 24
queue traces for the four different bandwidths. The inter-cluster
bandwidths are 1 Gbps, 100 Mbps, 10 Mbps and 700 Kbps, and are
typical of links connecting two submissions to a single batch queue,
two clusters in a single site, twodifferent sites in a country, and two
different sites located in two different continents, respectively.
We find that there are large percentage of configurations with

significant probabilities of benefits with multiple batch execu-
tions. 50% of the total configurations have about 58% probability of
obtaining benefits when executed across two batch queues for
inter-cluster connection bandwidth of 100Mbps. About 48% of the
total configurations have about 50% probability for inter-cluster
connection bandwidth of 10 Mbps. These two bandwidths corre-
spond to queues located in different locations of a country.We also
find that even for batch grids with 700 Kbps interconnection band-
width corresponding to the two batch queues located in different
continents, 20% of the configurations have up to 38% probability of
obtaining benefits with multiple batch executions. For 10 Mbps,
100 Mbps, and 1 Gbps interconnection bandwidths, significant

Author's personal copy

222 Sivagama Sundari M. et al. / Future Generation Computer Systems 26 (2010) 217–227

Fig. 3. Fraction of configurations with probabilities of benefits for CCSM
simulations.

percentage of configurations (about 15%) have close to 100% prob-
ability and hence have definite chance of obtaining benefits with
executions on batch grids.
In order to understand the effects of the system parameters

including queue scheduling policies and job types, we show the
probabilities for all 1200 application and system configurations for
100 Mbps inter-cluster bandwidth in Fig. 4. This figure gives an
indication of the most frequent probabilities for each of the two
systemparameters. Fig. 5 shows the average probabilities obtained

for the 50 application configurations for each of the 24 system
configurations.
In general, we find that the probability of benefits increases

when the queues have predominantly short and narrow (SN) jobs.
This is because in such queues, at any given time, most of the
available processor space will be occupied by the narrow jobs. The
remaining processor space will not be sufficient for accommodat-
ing the larger processor requirements for single batch executions
leading to large queue waiting times. However multiple batch ex-
ecutions with smaller processor requirements incur small queue
waiting times in these cases since jobs with smaller processor re-
quirements have better chances of finding the required processors
on completion of other short and narrow jobs than the jobs with
larger processor requirements. However, the probabilities of bene-
fits with multiple batch executions on queues with predominantly
long wide jobs (LW) are small since these wide jobs delay the ex-
ecutions of CCSM for long durations equally on both single and
multiple batch queues in spite of decompositions inmultiple batch
executions. The extra cost of inter-cluster communications inmul-
tiple batch executions result in less benefits for the application.
We also find that for queues with backfilling policies, the proba-
bilities of benefits with multiple batch executions are higher. This
is because the sub-applications in multiple batch executions with
small processor requirements have better chances of backfilling
in these queues than the single application with total processor
requirements.

5.2. Real executions of multi-component applications

We also executed CCSM on real experiment testbed with 28
configurations and obtained real execution times. We then used
these 28 real application execution times with the queue waiting
times of the 24 queue traces to calculate probabilities. Our real

Fig. 4. Probability of benefits with multiple batch submissions for all application and system configurations for CCSM Simulations. The x-axis shows different application
configurations and different job characteristics.

Author's personal copy

Sivagama Sundari M. et al. / Future Generation Computer Systems 26 (2010) 217–227 223

Fig. 5. Averageprobability of benefitswithmultiple batch submissions for different
system configurations for CCSM simulations.

experiment testbed consists of a 16-core cluster called fire-16 and
a 48-core cluster called fire-48. The fire-16 cluster consists of 8
dual-core AMD Opteron 1214 based 2.21 GHz Sun Fire servers,
CentOS release 4.3, 2 GB RAM, 250 GB Hard Drive and connected
by Gigabit Ethernet.The fire-48 cluster consists of 12x2 dual-core
AMD Opteron 2218 based 2.64 GHz Sun Fire servers, CentOS
release 4.3, 4 GB RAM, 250 GBHard Drive and connected by Gigabit
Ethernet. The Gigabit clusters are connected to each other by a
100 Mbps Ethernet connection through a 100 Mbps switch. For
the single batch execution, we executed the 28 configurations on
the fire-48 cluster. For multiple batch executions, we randomly
distributed the different components of CCSM to the two clusters.
Figs. 6–8 show the results obtained for the real executions of

CCSM. The results obtained with real executions of CCSM are sim-
ilar to the simulation results shown in Figs. 3–5. The real results
also show large number of application and system configurations
with significant probabilities of benefits with multiple batch sub-
missions. The relationship between the fraction of the configura-
tions and the gain probabilities follows the same trend as that of
the simulated experiments with the same bandwidth.We also find
in real experiments that the probabilities improve when backfill-
ing scheduling policies are used. Similar to the simulation results,
the probabilities are generally high for short narrow (SN) jobs and
generally low for short wide (LW) jobs for FCFS and CONS schedul-
ing policies.

5.3. Simulations of parameter sweep applications

Figs. 9–11 show the results obtained for the simulations of dif-
ferent configurations of parameter sweep application correspond-
ing to different total number of tasks of the application. The total
number of tasks were varied from 2 to 128.
Similar to earlier results,we find large number of configurations

where significant benefits were obtained with multiple batch
submissions. We also find that backfilling scheduling policies lead
to increase in probabilities of benefits since the decomposed tasks
with small processor requirements in multiple batch executions
are able to backfill more than the application with large processor
requirements in single batch executions. Unlike in CCSM, multiple
batch executions gave high probabilities of benefits for queues
containing predominantly wide jobs (LW, SW and W) for PSA.

Fig. 6. Percentage of configurations with probabilities of benefits for CCSM real
executions.

In most of the PSA configurations, the total number of tasks
were divided equally across the two batch systems. Hence the
processor requirements in a single batch system formultiple batch
submissions are larger in PSA than in CCSM. The larger processor
requirements in PSA can be frequently met by the completion of
wide jobs than by the completion of narrow jobs. Hence higher
benefits with multiple batch submissions were obtained in queues
with large number of wide jobs than in the queues with large
number of narrow jobs where the processor space is mostly occu-
pied by the narrow jobs.
Our primary focus in our experiments is on the incidence of

benefits due to multiple batch executions rather than on the
measure of benefits. This is because the benefits are spread over
a wide range of both positive and negative values due to the
randomness involved in the queuewaiting times. Thus,metrics like
mean or median of the reductions in total response times are non-
representative and over-approximate the overall benefits due to
multiple batch executions. The magnitude of gains due to multiple
batch executions is of the order of a few hours. For many CCSM
and PSA configurations, the average reduction in queue waiting
times due to multiple batch execution is around 20 h while the
maximum gain is around 40 h. These gains are significant when
compared with the maximum execution time limit of 48 h for a
job submission. These results show the huge benefits that can be
obtained due to reduced queue waiting times without increase
in the number of processors used for execution in multiple batch
executions.

5.4. Summary of results

The use of large number of processors available in grids with
distributed sites to provide performance benefits, especially for
loosely-coupled applications, is well studied and understood. We
have shown in our results that grids can also provide benefits
when the number of processors used for application execution
is not increased from non-grid, single-site systems and for both
loosely-coupled and coupled multi-component applications with
periodic communications between the sites. The benefits are due
to decompositions of the applications into multiple sub-jobs with
smaller processor requirements for executions on multiple batch
systems of a grid and the corresponding reduction in queuewaiting
times incurred by the sub-jobs. Our results show that there are
large number of application and system configurations for which
grid executions can provide benefits even when the distributed

Author's personal copy

224 Sivagama Sundari M. et al. / Future Generation Computer Systems 26 (2010) 217–227

Fig. 7. Probability of benefits with multiple batch submissions for all application and system configurations for CCSM real executions.

sites are located in different continents. While the probability
of benefits due to multiple batch executions are about 50% for
about 50% of the configurations in general, there is a significant
fraction of configurations for which the probabilities are close to
100%. The presence of large number of short narrow jobs (SN)
for CCSM leads to higher probabilities of benefits due to multiple
batch executions. This is because the occupation of the processor
space by SN jobs will lead to inadequate number of processors
for execution of a large job in single batch execution while the
remaining processor space will be sufficient for accommodating
sub-jobs with small processor requirements in multiple batch
executions. In general, our simulation results for CCSM correspond
with the real executions. We found that backfilling scheduling
policies, that are commonly used in many batch systems, will
lead to large probabilities of benefits for both CCSM and PSA
applications. This is because the sub-jobs with small processor
requirements are able to backfillmore inmultiple batch executions
than the jobs in single batch executions.

6. Related work

Multiple batch queues have been used for improving the
response times of the jobs submitted to a system in the work by
Subramani et al. [23]. In this effort, a job submitted to a system is
redundantly submitted to other batch systems.When the job starts
execution in one of the systems, the redundant jobs submitted to
the other systems are aborted. Casanova analyzed the impact of
such redundant submissions on the other jobs in the system [13].
The work concluded that such redundant tasks cause heavy load
in the systems and unfairness to the users who do not use such
redundant jobs. In our work, we do not replicate jobs on multiple
batch queues. We decompose a single job into multiple sub-jobs
and submit these sub-jobs to many batch queues.
Bucur and Epema have extensively studied the benefits of co-

allocation of processors from different clusters in a grid for job ex-
ecutions [24–26]. They analyzed the benefits of such co-allocation

Fig. 8. Averageprobability of benefitswithmultiple batch submissions for different
system configurations for CCSM real executions.

for variousworkload logs, application characteristics, interconnec-
tions between multiple clusters and different scheduling policies.
Using large number of simulations, they show that in spite of the
high cost ofWAN communications, execution of multi-component
jobs across multiple clusters can reduce mean response times of
jobs and improve processor utilization and that scheduling poli-
cies with only local queues perform better than those that con-
sider global queues. They also conclude that restrictions on the
number of components and component sizes help improve theper-
formance of co-allocation. Our work is complementary to their ef-
forts since we study the benefits obtained for two specific classes
of applications. While they develop scheduling policies for co-
allocation, our work deals with the queue waiting times corre-
sponding to the existing scheduling policies on the clusters.
The work by Nurmi et al. [27] deals with execution of work-

flowapplications on different batch systems of a grid. In theirwork,

Author's personal copy

Sivagama Sundari M. et al. / Future Generation Computer Systems 26 (2010) 217–227 225

Fig. 9. Percentage of configurations with probabilities of benefits for PSA
simulations.

they schedule different tasks of a workflow application to different
batch systems of a grid based on predictions of execution times of
the tasks on the systems and the queue waiting times in the sys-
tems [28]. They show that consideringpredictions of queuewaiting
times leads to efficient schedules. In our work, we consider multi-
component applications that contain periodic communications be-
tween different batch systems unlike the workflow applications.
For distributed applications to make use of resources at dif-

ferent sites with heterogeneous characteristics and site auton-
omy, several middleware tools and services have been developed
[29–34]. While most of them are limited to specific projects,
resource types and middleware environments, or do not sup-
port co-allocation, the MetaScheduling Service (MSS) developed
by Waldrich et al. [35] overcomes these limitations using the
metacomputing-enabledMPI-implementationMetaMPICH [36]. In
some recent works like the Grid Interoperability Project [37] and

Fig. 11. Average probability of benefits with multiple batch submissions for
different system configurations for PSA simulations.

Gridbus Grid Service Broker [38], solutions have been developed
for accessing resources from different grids. Kertesz et al. [39] have
developed ameta-brokering architecture that enables the interop-
erability of various grids through their own resource brokers.
The work by Grimme and Papaspyrou [40] has built a service-

oriented grid infrastructure to support workflow-based scientific
applications for climate science. The framework performs schedul-
ing and data management of loosely-coupled workflow tasks
executed on distributed sites. The primary aim of the work is
to provide coherent access to distributed data. Our work focuses
on execution of multi-component applications on grids where
the communications between the components are more frequent
and intensive than the workflow applications. Elmroth and Tords-
son [41] have developed a grid resource manager for perform-
ing resource brokering and job scheduling. The objective of job
scheduling is to use the job and resource characteristics to min-
imize the response time that includes the times for file staging,

Fig. 10. Probability of benefits with multiple batch submissions for all application and system configurations for PSA simulations.

Author's personal copy

226 Sivagama Sundari M. et al. / Future Generation Computer Systems 26 (2010) 217–227

batch queuing and job execution. The work uses advanced reser-
vations for co-allocation of resources. In our execution model, the
components are co-allocated dynamically without reservations.
Moltó et al. [42] have developed generic multi-user resource bro-
kering andmetascheduling techniques for remote execution of sci-
entific applications. Themetascheduling in ourwork is targeted for
the specific application domain of climate modeling.
To our knowledge, our work is the first effort in quantitatively

showing the benefits of executing a parallel application across
multiple batch systems over executing the application on a single
batch system without increasing the number of processors.

7. Conclusions

In this work, we have developed a simulator framework to an-
alyze the potential benefits due to multiple batch executions on
batch grids for multi-component and parameter sweep applica-
tions. The potential benefits are due to reduced queue waiting
times on multiple batch executions. By performing simulated and
real executions with large number of application and system con-
figurations, we have shown that even without an increase in the
number of processors, applications can gain from execution on
multiple batch grids due to lower queuewaiting times correspond-
ing to the lower processor requirements on individual sites of the
batch grid. Specifically, there are large percentages of configura-
tions with significant probabilities of benefits with multiple batch
executions for both multi-component CCSM simulations and pa-
rameter sweep applications. While the CCSM simulations showed
higher benefits on queues with predominantly narrow jobs, the
PSA simulations showed higher benefits on queues with predom-
inantly wide jobs. We also found that for queues with backfilling
policies, the probabilities of benefits with multiple batch execu-
tions are higher.

8. Future work

As part of our future work, we plan to develop robust models
for queue waiting times. We also intend to extend our studies to
include larger number of batches instead of two batches and con-
sider various possibilities of heterogeneity of queues across the re-
sultant batch grid. While MPI (Message Passing Interface) commu-
nication libraries including PACX-MPI [43] and MPICH-GX [44,45]
support communications between MPI applications executed on
different batch systems by means of special communication pro-
cesses or proxies executed on the front-end nodes of the batch
systems, coordinated execution of an application across two batch
systemswith different startup timeswould require additionalmid-
dleware infrastructure. We plan to build such middleware infras-
tructure for real executions of CCSM across two batch systems.

References

[1] W. Chrabakh, R. Wolski, GridSAT: A chaff-based distributed SAT solver for
the grid, in: SC ’03: Proceedings of the 2003 ACM/IEEE Conference on
Supercomputing, 2003.

[2] C. Mueller, M. Dalkilic, A. Lumsdaine, High-performance direct pairwise
comparison of large genomic sequences, IEEE Transactions on Parallel and
Distributed Systems 17 (8) (2006) 764–772.

[3] S. Dong, N. Karonis, G. Karniadakis, Grid solutions for biological and physical
cross-site simulations on the teragrid, in: 20th International Parallel and
Distributed Processing Symposium, IPDPS 2006, 2006.

[4] X. Espinal, D. Barberis, K. Bos, S. Campana, L. Goossens, J. Kennedy, G. Negri, S.
Padhi, L. Perini, G. Poulard, D. Rebatto, S. Resconi, A. de Salvo, R.Walker, Large-
scale ATLAS simulated production on EGEE, in: E-SCIENCE ’07: Proceedings
of the Third IEEE International Conference on e-Science and Grid Computing,
2007.

[5] L. Pearlman, C. Kesselman, S. Gullapalli, B.S. Jr., J. Futrelle, K. Ricker, I.
Foster, P. Hubbard, C. Severance, Distributed hybrid earthquake engineering
experiments: Experiences with a ground-shaking grid application, in: 13th
IEEE International Symposium on High performance Distributed Computing,
2004.

[6] H. Takemiya, Y. Tanaka, S. Sekiguchi, S. Ogata, R. Kalia, A. Nakano, P.
Vashishta, Sustainable adaptive grid supercomputing: Multiscale simulation
of semiconductor processing across the Pacific, in: Proceedings of the
ACM/IEEE Supercomputing Conference, SC 2006, 2006.

[7] C. An, M. Taufer, A. Kerstens, C.B. III, Predictor@Home: A p̈rotein structure
prediction supercomputer’ based on global computing, IEEE Transactions on
Parallel and Distributed Systems 17 (8) (2006) 786–796.

[8] M. Gardner, W. chun Feng, J. Archuleta, H. Lin, X. Mal, Parallel genomic
sequence-searching on an ad-hoc grid: Experiences, lessons learned, and
implications, in: SC ’06: Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing, 2006.

[9] M. Jayawardena, S. Holmgren, Grid-enabling an efficient algorithm for
demanding global optimization problems in genetic analysis, in: E-SCIENCE
’07: Proceedings of the Third IEEE International Conference on e-Science and
Grid Computing, 2007.

[10] C. Stewart, R. Keller, R. Repasky, M. Hess, D. Hart, M. Muller, R. Sheppard, U.
Wossner, M. Aumuller, H. Li, D. Berry, J. Colbourne, A global grid for analysis
of arthropod evolution, in: GRID ’04: Proceedings of the Fifth IEEE/ACM
International Workshop on Grid Computing, 2004.

[11] L. Han, A. Asenov, D. Berry, C. Millar, G. Roy, S. Roy, R. Sinnott, G. Stewart,
Towards a grid-enabled simulation framework for nano-CMOS electronics, in:
E-SCIENCE ’07: Proceedings of the Third IEEE International Conference on e-
Science and Grid Computing, 2007.

[12] Logs of real parallel workloads from production systems. http://http://www.
cs.huji.ac.il/labs/parallel/workload/logs.html.

[13] H. Casanova, On the harmfulness of redundant batch requests, in: 15th IEEE
International Symposium on High performance Distributed Computing, 2006.

[14] Community Climate System Model (CCSM). http://www.ccsm.ucar.edu.
[15] W. Collins, C. Bitz, M. Blackmon, G. Bonan, C. Bretherton, J. Carton, P. Chang, S.

Doney, J. Hack, T. Henderson, J. Kiehl,W. Large, D.McKenna, B. Santer, R. Smith,
The community climate system model: Ccsm3.

[16] U. Lublin, D. Feitelson, The workload on parallel supercomputers: Modeling
the characteristics of rigid jobs, Journal of Parallel and Distributed Computing
63 (11) (2003) 1105–1122.

[17] D. Feitelson, A. Weil, Utilization and predictability in scheduling the IBM SP2
with backfilling, in: 12th Intl. Parallel Processing Symposium, IPPS, 1998.

[18] R. Delgado-Buscalioni, P. Coveney, G. Riley, R. Ford, Hybrid molecular-
continuum fluid models: Implementation within a general coupling frame-
work, Philosophical Transactions of the Royal Society London, Series A 363
(2005).

[19] G. Toth, O. Volberg, A. Ridley, T. Gombosi, D. DeZeeuw, K. Hanson, D. Chesney,
Q. Stout, K. Powell, K. Kane, R. Oehmke, A physics-based software framework
for sun–earth connection modeling, in: Multiscale Coupling of Sun–Earth
Processes, Proceedings of the Conference on the Sun–Earth Connection.

[20] S. Lefantzi, J. Ray, A Component-based scientific toolkit for reacting flows, in:
In Proc. Second MIT Conference on Computational Fluid and Solid Mechanics,
2003.

[21] G. Carr, An introduction to load balancing CCSM3 components, in: Proceedings
of Software Engineering Working Group (SEWG) Meeting, CCSM Workshop,
NCAR, 2005.

[22] G. Carr, M. Cordery, J. Drake, M. Ham, F. Hoffman, P. Worley, Porting and
performance of the community climate system model (CCSM3) on the cray
X1, in: Proceedings of the 2005CrayUsersGroup (CUG)Meeting, Albuquerque,
New Mexico, May.

[23] V. Subramani, R. Kettimuthu, S. Srinivasan, P. Sadayappan, Distributed job
scheduling on computational grids using multiple simultaneous requests, in:
HPDC ’02: Proceedings of the 11th IEEE International Symposium on High
Performance Distributed Computing, 2002.

[24] A. Bucur, D. Epema, Scheduling policies for processor coallocation in
multicluster systems, IEEE Transactions on Parallel and Distributed Systems
18 (7) (2007) 958–972.

[25] A. Bucur, D. Epema, Trace-based simulations of processor co-allocationpolicies
in multiclusters, in: HPDC ’03: Proceedings of the 12th IEEE International
Symposium on High Performance Distributed Computing, 2003, p. 70.

[26] A. Bucur, D. Epema, The maximal utilization of processor co-allocation in
multicluster systems, in: IPDPS ’03: Proceedings of the 17th International
Symposium on Parallel and Distributed Processing, 2003; 60.1.

[27] D. Nurmi, A.Mandal, J. Brevik, C. Koelbel, R.Wolski, K. Kennedy, Evaluation of a
workflow scheduler using integrated performancemodelling and batch queue
wait time prediction, in: SC ’06: Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, 2006.

[28] J. Brevik, D. Nurmi, R. Wolski, Predicting bounds on queuing delay for batch-
scheduled parallel machines, in: PPoPP ’06: Proceedings of the Eleventh ACM
SIGPLANSymposiumonPrinciples andPractice of Parallel Programming, 2006.

[29] Load Sharing Facility, Resource Management and Job Scheduling System.Web
site, http://www.platform.com/Products/Platform.LSF.Family/.

[30] A. Bose, B. Wickman, C. Wood, MARS: A metascheduler for distributed
resources in campus grids, in: 5th InternationalWorkshop onGrid Computing,
GRID 2004, IEEE Computer Society, 2004.

[31] J. Weinberg, A. Jagatheesan, A. Ding, M. Faerman, Y. Hu, Gridflow: Description,
query, and execution at SCECusing the SDSCmatrix, in: 13th IEEE International
Symposium on High Performance Distributed Computing, HPDC’04, IEEE
Computer Society, 2004.

[32] D. Thain, M. Livny, Building reliable clients and servers, in: I. Foster,
C. Kesselman (Eds.), The Grid: Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, 2003.

Author's personal copy

Sivagama Sundari M. et al. / Future Generation Computer Systems 26 (2010) 217–227 227

[33] D. Katramatos, M. Humphrey, A.S. Grimshaw, S.J. Chapin, JobQueue: A
computational grid-wide queueing system, in: Grid Computing — GRID 2001,
Second International Workshop, in: Lecture Notes in Computer Science, vol.
2242, Springer, 2001.

[34] I. Foster, A. Roy, V. Sander, A quality of service architecture that combines
resource reservation and application adaptation, in: 8th International
Workshop on Quality of Service, IWQOS 2000, June 2000, pp. 181–188.

[35] O.Waldrich, Ph.Wider,W. Ziegler, Ameta-scheduling service for co-allocating
arbitrary types of resources, in: Proc. of the Second Resource Management
Workshop (GRMWS’05) in conjunction with the Sixth International Confer-
ence on Parallel Processing and Applied Mathematics, PPAM 2005, Poznan,
Poland, September 11–14, in: Lecture Notes in Computer Science, vol. 3911,
Springer, 2006, pp. 782–791.

[36] M. Poppe, S. Schuch, T. Bemmerl, A message passing interface library for
inhomogeneous coupled clusters, In Proc. of CACWorkshop at IPDPS’03, 2003.

[37] J. Brooke, D. Fellow, K. Garwood, C. Goble, SemanticMatching of Grid Resource
Descriptions, in: Lecture Notes in Computer Science, vol. 3165, January 2004,
pp. 240–249.

[38] S. Venugopal, R. Buyya, L. Winton, A grid service broker for scheduling
e-science applications on global data grids, Journal of Concurrency and
Computation: Practice and Experience 18 (2006) 599–685.

[39] A. Kertesz, P. Kacsuk, Gridmeta-broker architecture: Towards an interoperable
grid resource brokering service, in: CoreGRID Workshop on Grid Middleware
in Conjunction with EuroPar’06, Dresden, 2006.

[40] C. Grimme, A. Papaspyrou, Cooperative negotiation and scheduling of scientific
workflows in the collaborative climate community data and processing grid,
Future Generation Computer Systems 25 (3) (2009) 301–307.

[41] E. Elmroth, J. Tordsson, Grid resource brokering algorithms enabling advance
reservations and resource selection based on performance predictions, Future
Generation Computer Systems 24 (6) (2008) 585–593.

[42] G. Moltó, V. Hernández, J. Alonso, A service-orientedWSRF-based architecture
for metascheduling on computational grids, Future Generation Computer
Systems 24 (4) (2008) 317–328.

[43] E. Gabriel, M. Resch, T. Beisel, R. Keller, Distributed computing in a
heterogenous computing environment, in: EuroPVMMPI’98, 1998.

[44] K. Park, S. Park, O. Kwon, H. Park, MPICH-GP: A private-IP-enabled MPI over
grid environments, in: in Proc. of Second International Symposium on Parallel
and Distributed Processing and Applications, ISPA04, Hong Kong, China, Dec.
2004.

[45] S. Choi, K. Park, S. Han, S. Park, O.-Y. Kwon, Y. Kim, H.-W. Park, An NAT-
based communication relay scheme for private-IP-enabled MPI over grid
environments, in: in Proc. of International Conference on Computational
Science, 2004.

Sivagama SundariM. received her BE(Hons) in Electronics
and Instrumentation Engineering from the Birla Institute
of Technology and Science, Pilani in 2005. She is now
pursuing a Ph.D. at the Supercomputer Education and
Research Centre at the Indian Institute of Science,
Bangalore. Her current research interests include software
architectures and performance of scientific applications,
grid computing and high performance computing.

Sathish S. Vadhiyar is an Assistant Professor in Supercom-
puter Education and Research Centre, Indian Institute of
Science. He obtained his B.E. degree from the Department
of Computer Science and Engineering at Thiagarajar Col-
lege of Engineering, India in 1997 and received his Mas-
ters degree from Computer Science at Clemson University,
USA in 1999. He graduated with a Ph.D. from the Com-
puter Science Department at University of Tennessee, USA
in 2003. His research areas are in parallel and grid comput-
ing with primary focus on performancemodeling of paral-
lel applications, scheduling and rescheduling methodolo-

gies for grid systems, and grid applications. Dr. Vadhiyar is amember of IEEE andhas
published papers in peer-reviewed journals and conferences. Hewas a tutorial chair
and session chair of escience 2007 and served on the program committees of con-
ferences related to parallel and grid computing including IPDPS, CCGrid, eScience
and HiPC.

Ravi S. Nanjundiah is a Professor at Centre for Atmo-
spheric & Oceanic Sciences (CAOS), Indian Institute of Sci-
ence (IISc). He obtained his B.E. degree in Mechanical En-
gineering from Rani Durgavati University (Jabalpur, India)
in 1984, M.E. in Mechanical Engineering from IISc in 1986
and Ph.D. in Atmospheric Science from IISc in 1992. His re-
search areas are study of study of monsoons – its variabil-
ity and change using climate system models, and applica-
tion of HPC/grid computing to climate system modelling.
He has published papers in peer-reviewed journals and
conferences. He is an associate editor of Journal of Earth

System Science.

