International Journal of High Performance
Computing Applications

http://hpc.sagepub.com

Dynamic Component Extension: a Strategy for Performance Improvement in Multicomponent
Applications
Sundari M. Sivagama, Sathish S. Vadhiyar and Ravi S. Nanjundiah
International Journal of High Performance Computing Applications 2009; 23; 84
DOI: 10.1177/1094342008101364

The online version of this article can be found at:
http://hpc.sagepub.com/cgi/content/abstract/23/1/84

Published by:
©SAGE

http://www.sagepublications.com

Additional services and information for International Journal of High Performance Computing Applications can be found at:

Email Alerts: http://hpc.sagepub.com/cgi/alerts

Subscriptions: http://hpc.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.co.uk/journalsPermissions.nav

Citations http://hpc.sagepub.com/cgi/content/refs/23/1/84

Downloaded from http://hpc.sagepub.com at SAGE Publications on March 18, 2009


http://hpc.sagepub.com/cgi/alerts
http://hpc.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.co.uk/journalsPermissions.nav
http://hpc.sagepub.com/cgi/content/refs/23/1/84
http://hpc.sagepub.com

DYNAMIC COMPONENT EXTENSION:
A STRATEGY FOR PERFORMANCE
IMPROVEMENT IN
MULTICOMPONENT APPLICATIONS

Sivagama Sundari M.'
Sathish S. Vadhiyar'
Ravi S. Nanjundiah?

Abstract

Multicomponent application paradigms have gained prom-
inence in many significant multidisciplinary scientific appli-
cations. In this work, we propose a software strategy called
dynamic component extension for multicomponent appli-
cations to improve application performance by minimizing
processor idling. In this strategy, the processor space of a
component is dynamically extended to include the proces-
sors of other components during certain computationally
intensive phases of the component. We demonstrate its
use in improving the performance of one of the most prom-
inent multicomponent applications, the community climate
system model (CCSM). In this application, we dynamically
extend the atmosphere component to minimize the idling
in other components caused by large periodic temporal
load imbalances in the atmosphere component. By means
of experiments on different parallel platforms with different
numbers of processors, we show that using our strategy
can lead to about 15% reduction and savings of several
days in execution times of CCSM for 1000-year simulation
runs.
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1 Introduction

With major advances in high-performance computing,
the scientific community is moving toward multidiscipli-
nary multicomponent models to accurately model inter-
acting physical processes or phenomena. Examples of
such applications include models of climate, space
weather, solid rockets, fluid—structure interaction, heart
disease, cancer, ocean plankton population, and nuclear
energy (Collins et al. 1998; Lefantzi and Ray 2003; Toth
et al. 2003; Coveney et al. 2005; Delgado-Buscalioni et
al. 2005; Larson, Jacob, and Ong 2005). Typically, these
applications involve long-running simulations of constit-
uent model components with periodic communication or
coupling between the components.

While each of the constituent model components is
generally parallel, the two basic software strategies used
to couple these components are sequential and concur-
rent. The sequential strategy, illustrated in Figure 1(a),
involves a driver that for each coupling cycle or time
step, sequentially invokes each of the constituent models
on the same sets of processors. The concurrent strategy,
illustrated in Figure 1(b), typically follows the multiple
program multiple data (MPMD) paradigm and involves
concurrent execution of the models on different sets of
processors with coupling often performed through a ded-
icated coupler. For example, the parallel climate model
(PCM") involving multiple coupled components is a
sequential SPMD version while the community climate
system model (CCSMZ) is a concurrent MPMD version
of coupled climate models.

The strategy used depends on various factors including
amount of exploitable concurrency, target platform,
memory footprint, development plan, model scalability,
and so forth. The sequential strategy is adopted when
there is not much exploitable concurrency among com-
ponents of the application. The concurrent strategy is
favorable for complex multidisciplinary coupled applica-
tions because the models can be built, developed, and
tested as stand-alone applications by independent teams.
Hence, the concurrent strategy is widely used for various
large-scale applications (CCSM,” see Coveney et al.
2005). However, when the model components have com-
plex interacting patterns and dependencies, the concur-
rent strategy can lead to large processor idling. Idling of
processors executing certain components can also be the
result of large temporal load imbalances caused by
highly computationally intensive phases in a component
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Fig. 1 Sequential, concurrent, and hybrid coupling.

within a time step or coupling period. Hybrid strategies
can be used to alleviate the processor idling in concurrent
strategy. In this strategy, a subset of components with
dependencies is executed sequentially as illustrated in Fig-
ure 1(c). An example of such an implementation of the cli-
mate system model is the fast atmosphere—ocean model
(FOAM?). While the hybrid strategy can address the idling
resulting from component dependencies, it cannot address
the idling arising from temporal load imbalances in a com-
ponent.

In this work, we propose a software strategy called
dynamic component extension to minimize idling arising
from temporal load imbalances and improve performance
in concurrent and hybrid versions of multicomponent
applications. In this strategy, the processor space of the
components containing temporal load imbalances is
extended to include the processors executing other com-
ponents during the computationally intensive phases of a
time step or coupling period. The strategy is illustrated in
Figure 2. The extension is dynamic since it takes into
account the ready times of the processors for sharing the
computational loads. The strategy is intended for multi-
component application execution in a cluster of homoge-
neous processors. We demonstrate the potential of the
strategy to minimize idling and improve performance in a
classic and foremost example of a multicomponent appli-
cation, the community climate system model (CCSM).
Our work is directly applicable only for those multicom-
ponent applications where only one component has tem-
poral load imbalance, is irregular, and executes longer
than other components in some coupling intervals. We
have not considered applications where two or more com-

PROCESSORS

=

Fig.2 Component extension.

ponents can have longer execution times than the remain-
ing components.

The community climate system model (CCSM') is a
global climate system model from the National Center for
Atmospheric Research (NCAR4). The CCSM climate
model consists of five components, namely, atmosphere,
ocean, land, ice, and a coupler component which trans-
forms data and coordinates the exchange of information
across the other model components. The CCSM is imple-
mented as a multiple program multiple data (MPMD)
programming model where each component is a separate
parallel application by itself. Of the five components,
atmosphere is the most computationally intensive and is
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allocated the highest number of processors (Carr 2005;
Carr et al. 2005). The atmosphere model consists of cal-
culations for dynamics and physics. The physics includes
calculations corresponding to shortwave (visible and
ultraviolet radiation received from the sun) and longwave
radiation. The longwave radiation calculations deal with
calculations of radiation emitted by the earth—atmosphere
system. The most computationally intensive part of these
longwave radiation calculations is the estimation of emis-
sivity and absorptivity of various constituents of the atmos-
phere. Because these coefficients change very slowly with
time they are not computed at every time step but once
every few simulated hours (typically between 3 and 12
hours). Thus the atmosphere component involves large
periodic temporal load imbalances resulting from the
computationally intensive emissivity and absorptivity
components of longwave radiation calculations (for
brevity, we will refer to calculations related to emissiv-
ity and absorptivity as longwave radiation calculations
even though longwave radiation calculations also con-
sist of other calculations). The temporal load imbalances
result in idling of the processors executing non-atmos-
phere components during the longwave radiation calcu-
lations in the atmosphere component.

We apply our strategy to CCSM by dynamically extend-
ing the processor space of the atmosphere component
(atmosphere processors) to include the idling proces-
sors executing the non-atmosphere components during
the longwave radiation calculations in the atmosphere.
The extension characteristics, including the amount and
points of extension, and the processors of other compo-
nents to include during the extension, are dynamically
determined based on the times when the non-atmosphere
processors are ready to share work and the different times
taken by the different atmosphere processors to start their
long-wave radiation calculations. By means of experi-
ments with different processor configurations for two
different modeling resolutions on five multiprocessor
systems, we show that our dynamic component extension
strategy can lead to about 15% reduction and savings of
up to 50 days in execution times of CCSM for 1000-year
simulation runs.

Section 2 discusses the effect of temporal load imbal-
ance on performance of a coupled application and explains
the benefits of the dynamic component extension strategy
to improve the performance. In Section 3, we discuss
related work on coupled multicomponent applications and
load-balancing approaches in climate modeling systems.
Section 4 identifies the challenges in load balancing long-
wave radiation calculations in CCSM. In Section 5, we
describe our dynamic component extension (DCE) strat-
egy applied to long-wave radiation calculations in the
atmosphere component of CCSM. Section 6 describes the
experiments and presents results that illustrate the bene-

fits of using our approach over the existing code for
CCSM. Conclusions are presented in Section 7 and future
efforts are listed in Section 8.

2 Temporal Load Imbalance and
Dynamic Component Extension

Temporal load imbalance or variation in computing load
of a component across time steps can have a significant
effect on the performance of a concurrent multicompo-
nent system. We illustrate temporal load imbalance and
dynamic component extension with a simple multicom-
ponent application consisting of four components exe-
cuting three time steps as shown in Figure 3(a). We assume
that the components couple or synchronize at the end of
each time step. The figure shows that the components are
perfectly load balanced in the first and the third time steps.
The figure also shows that component C2 performs more
computations in the second time step than in the other
time steps. Let AW represent these additional computa-
tions. This temporal load imbalance resulting from AW in
C2 causes large idling and low utilization of the proces-
sors executing the other components in the second time
step. The time taken for the AW computations in C2 and
the corresponding idling times in other component proc-
essors are denoted as AT in the figure. Using a dynamic
component extension scheme, C2 can be extended to also
execute in other component processors during the AW com-
putations in the second time step as shown in Figure 3(b).

PROCESSORS PROCESSORS
[ ) [0 o)
C2 C2 C4
m
= 2 2 c4
a AT )
_
ey
I gain
Cc2

(a) (b)

Fig. 3 Effect of (a) temporal load imbalance and (b)
component extension on coupled application execu-
tion.
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Assuming ideal speedup for the computations, the figure
shows complete elimination of the processor idling and
the resulting decrease in the overall completion time,
denoted as gain. The time taken for the AW computations
with the dynamic component extension is denoted as AT".

Generalizing the above example, we consider a multi-
component application consisting of n components, C1,
C2, ..., Cn with component Ci executing on n(Ci) proc-
essors. Component Cj has periodic temporal load imbal-
ance because of additional computations, AW, in certain
time steps. Assuming that the computations in Cj have
ideal speedup and that the components are perfectly load
balanced in other time steps, the time taken for the AW
computations, AT”, and the overall reduction in execution
time of the application, gain, due to dynamic component
extension are given by

AT" = ATxn(Cj)/ Y n(Ci) )

gain = AT X Zn(Ci)/Zn(Ci) )

i#j i

In general, the gain resulting from dynamic component
extension in a multicomponent application is application
dependent and depends on various factors including number
of processors, distribution of processors to components,
scalability of components, extensibility of additional com-
putations in components, component coupling frequency
and pattern, impact of the components with temporal load
imbalances on the overall execution time and so forth. We
demonstrate our strategy with CCSM, an important multi-
component application, and present our experiences in
dealing with these factors and our solutions to the generic
and application-specific challenges encountered.

3 Related Work

In this section, we first mention some of the work related
to software coupling strategies for multicomponent appli-
cations. We then describe related efforts on coupled cli-
mate models.

3.1 Coupling Strategies in Multicomponent
Applications

Chow and Addison (1999) present an overview of the soft-
ware strategies and the tools and libraries available for mul-
tiphysics parallel applications. The work mentions the
importance of dynamic load-balancing strategies for con-
current multicomponent applications. Lawrence (1997),
in an overview of multidisciplinary aeropropulsion simu-
lations, describes three approaches based on the nature of

multidisciplinary coupling: loosely coupled, coupled proc-
ess, and multiphysics. Our work in this paper applies to the
second strategy. Lermusiaux et al. (2004) consider sequen-
tial, concurrent, and hybrid strategies to perform coupled
physical and biogeochemical ocean simulations. Larson
(2006) presents a heuristic set of definitions and organizing
principles for coupled models. The work also describes
the complexities involved in coupling a multicomponent
application using the case study of CCSM. In our work,
we also consider the execution time profile of the coupled
applications. Larson et al. (2005) have developed MCT, a
toolkit that allows construction of coupled multiphysics
systems using parallel constituent models and has been
used for coupling in a few multicomponent applications
(CCSMz; Michalakes et al. 2004; Collins et al. 2005). MCT
supports several static component frameworks including
single and multiple executables, and sequential, parallel,
and hybrid component executions (Larson et al. 2005).

However, none of the existing work on multicomponent
applications deal with dynamic optimization strategies
involving multiple components. Our work deals with
dynamic load balancing across multiple components
using component extensions. Although there is a huge
amount of literature relating to dynamic load balancing in
single component parallel applications and dynamic intra-
component load balancing (e.g. Dorneles et al. 2003) in
multicomponent applications, we are not aware of any
work related to multicomponent applications that addresses
temporal load imbalances in components and the resultant
inter-component load imbalances.

3.2 Load Balancing Coupled Climate Models

Various efforts have dealt with load balancing in climate
models (Michalakes 1991; Foster and Toonen 1994; Micha-
lakes and Nanjundiah 1994; Michalakes et al. 1994; Drake
et al. 1995; Ford and Burton 1998; Nanjundiah 1998, 2000;
Muszala et al. 2004, 2006). Although all these efforts
show improvements in execution times of a single com-
ponent, they do not address problems related to a coupled
climate system model involving load imbalances between
multiple components. Efforts that involve the other com-
ponents in load balancing are based on determining the
optimum static allocation of processors to components.
These do not involve any algorithmic modifications for
load balancing. For instance, the CCSM Load Balancing
Workshop document (Carr 2005) outlines the general
methodology to be followed for such load balancing. The
technique suggested is a trial-and-error method. The larg-
est possible number of processors are allocated to the
atmosphere and the remaining processors are allocated to
the other components such that the atmosphere compo-
nent is not delayed. Carr et al. (2005) suggest general
strategies for processor mapping of the highest resolution
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models based on experiments with CCSM3 on the Cray
X1. These static processor allocations only aim at pre-
venting idling of the atmosphere component, while the
non-atmosphere component processors will still have
large idling times. Further, as the model evolves, the com-
ponent characteristics can change significantly and hence
the static configuration may not remain optimal.

Our work tries to address several of the drawbacks
discussed above by dynamically offloading columns of
radiation calculations to other components and thereby
minimizing component idling and also reducing the total
execution time. While we have applied dynamic compo-
nent extension to reduce temporal load imbalance resulting
from longwave radiation calculations in the atmosphere
component of CCSM in this work, our strategy is generic
and can be applied for any huge temporal load imbalances
in a component. Mirin and Worley (2007) have recently
studied the scalability of a single component application,
the community atmosphere model (CAM’) which is the
atmosphere component of CCSM. Because of the differ-
ent parallelization limits of the two phases of CAM, phys-
ics and dynamics, the authors use auxiliary processes to
support larger parallelism for the physics phase. Thus, in
the context of the multicomponent CCSM, using suitable
processor distribution to the components, our strategy can
be used to support the large parallelism of the physics
phase by extending the physics phase of CAM to the
idling processors executing other components instead of, or
in addition to, the auxiliary processors. While the extension
scheme of Mirin and Worley for the single-component

CAM application needs the dynamic process manage-
ment features of MPI-2,° our strategy for the multicompo-
nent CCSM employs simple load balancing of the
existing processors used for application execution.

4 Load Balancing Challenges in CCSM

There are two sources of load imbalance in CCSM: (i)
load imbalance across components (inter-component load
imbalance), and (ii) load imbalance across processes of
each component (intra-component load imbalance).

4.1 Inter-Component Load Imbalance resulting
from Temporal Load Imbalance in the Atmosphere
Component

A major percentage of atmosphere calculations are the
longwave radiation calculations. For instance, in an exper-
iment with eight processors for atmosphere, four for ocean,
two for ice and one each for land and coupler, calcula-
tions of absorptivities in longwave radiation consumed
35% of the time for atmosphere calculations. Figure 4(a)
shows the times spent by an atmosphere processor per-
forming calculations between receive and send communi-
cations with the coupler at different time steps. While the
coupler communications have a period of 1 simulated hour,
the periodicity of the absorptivity calculations is set to 3
simulated hours for this experiment. The huge spikes in
the graph occurring at every third simulated hour corre-
spond to these computations. Thus, these long-wave radi-

Atmosphere calculations between receive and send communications with coupler
9

IS o ~
T
. . .

Execution time (in seconds)
w
-
L

N
—
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-
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o

10 20 30 40 50
Simulation hours

o

(a) Computations in atmosphere

Land communication times (recv from coupler)
9 T T T T

Execution time (in seconds)

0 10 20 30 40 50
Simulation hours

(b) Idling in land

Fig. 4 Computation intensive absorptivity calculations in atmosphere and the corresponding idling in land.
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ation calculations cause temporal load imbalance in the
atmosphere.

In these time steps, there is a large load imbalance
among the components and hence large idling of the
processors executing non-atmospheric components. This
is reflected as peaks in the times for communications
with the coupler for the non-atmospheric model com-
ponents since they are forced to wait until the coupler
finishes its communications with the atmosphere. The
coupler in turn is idle waiting to communicate with the
atmosphere. Figure 4(b) shows the times spent by the
land processor receiving communications from the cou-
pler. We find that corresponding to large computations in
the atmosphere processor shown in Figure 4(a), there are
large communication times in the land processor as seen
in Figure 4(b).

For atmospheric physics calculations, the atmospheric
grid, consisting of latitudes on one axis and longitude on
another, is divided into chunks, where each chunk is a
collection of a fixed number of columns. A column rep-
resents all the vertical levels corresponding to a latitude—
longitude pair. Each atmosphere processor performs the
physics calculations corresponding to a set of chunks.
The chunk formation and assignment to processors are
based on a load-balancing option set at compile time. For
each chunk, as part of physics calculations, a call is made

to the computationally intensive absorptivity calculating
function, radabs, the source of temporal load imbalance.
Inside radabs, the long-wave radiation calculations are
performed for the columns that constitute the chunk.
There are no dependencies between the calculations cor-
responding to any two columns.

4.2 Intra-Component Load Imbalance Resulting
from Shortwave Radiation Calculations

The physics calculations for each chunk has a call to a
fairly computation intensive short-wave radiation calcula-
tion function radcswmx before the call to radabs. This
function, performing calculations only for the grid points
in the day region, is a cause of very high intra-component
load imbalance between the atmosphere processors.
Although the standard 1-D decomposition of the grid
along the longitudes results in the processors with lati-
tudes close to the equator getting equal number of day and
night grid points, those at the poles may have all grid
points corresponding to day (or night) depending upon the
season. This is illustrated by the graph in Figure 5 that
shows the times spent by the atmosphere processors in rad-
cswmyx at different time steps. The graph also shows that the
load imbalance between the atmosphere processors varies
over time.

Atmospheric shortwave radiation calculations

0.03 \ ‘
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0.02

0.015

0.01f

Execution time (in seconds)

0.005

0 50 100
Time-step

—PO
——P1

P2
——P3

150 200 250

Fig. 5 Load imbalance resulting from radcswmx.
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1 Algorithm:Pseudo-code for radiation calculations

2 for each time-step do

3 :

4 for 1 to nchunks do

5

6 if radcswmaz time-step then

7 :

8 call radecswmx /* Shortwave radiation calculations. Source of

intra-component load imbalance */

9 :

10 if radabs time-step then

11 for 1 to ncol do

12 call radabs /* Longwave radiation calculations. Source of
temporal load imbalance in atmosphere and inter-component
load imbalance x/

13 end

14 end

15

16 end

17

18 end

19 end

Fig. 6 Pseudo-code for radiation calculations.

CCSM allows a “load balanced” chunk formation
scheme which addresses the load imbalance in the short-
wave radiation calculations. However, the use of this
scheme results in an increase in the time taken for remap-
ping the dynamic grid to the physics grid at every time
step. The pseudo-code involving short- and longwave
radiation calculations is given in Figure 6. By default, the
radcswmx time step is every 3 hours and the radabs time
step is every 12 hours. However, the work by Pauluis and
Emanuel (2004) describes the numerical instabilities that
result from infrequent radiation calculations. In our cal-
culations, we perform radabs calculations every 3 simu-
lated hours without loss of generality.

5 Dynamic Extension of the Atmosphere
Component

Our component extension method tries to address both
the above imbalances without introducing delays in any
of the components. We reduce the inter-component load
imbalance by offloading the absorptivity calculations of

atmosphere to idling processors of other components.
The amount of offloading by each atmosphere processor
is in turn determined from the amount of intra-compo-
nent imbalance in shortwave radiation calculations. In
our scheme, each atmosphere processor offloads or sends
some columns of each chunk to processors of other com-
ponents. Then, each processor of each component, includ-
ing atmosphere, performs absorptivity calculations on the
columns it possesses. After calculations, the atmosphere
processors receive the results corresponding to the col-
umns it offloaded to other components.

The first step of communication that involves sending
radabs input from atmosphere to other components is
performed before shortwave radiation calculations. By
placing the sends before radcswmx, the radabs calcula-
tions in non-atmosphere components can be overlapped
with the shortwave radiation calculations in atmosphere
and part of the intra-component load imbalance can also
be reduced. In order to determine the amount of exten-
sion or the amount of sharing of radabs calculations of
the atmosphere processor with each non-atmosphere proc-
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essor, we periodically execute CCSM without modifica-
tions for a simulated day and collect the times when each
processor of each component is ready to share radabs
calculations. These ready times are then used for atmos-
phere extension or load balancing in other simulated
days. Thus the extension is performed dynamically based
on the ready times collected periodically. Three primary
issues have to be addressed for extending longwave radi-
ation calculations:

1. At what time steps should atmosphere offload
radiation calculations to a non-atmosphere com-
ponent?

2. In a given time step, should the radabs calcula-
tions of all the chunks be offloaded?

3. How many columns of a chunk should an atmos-
phere processor offload to each of the other non-
atmosphere processors?

We perform a three-level extension strategy to address
the above issues.

5.1 Time Step Level

At this level, the time steps (one time step = 20 simulated
minutes) at which atmosphere radiation calculations can
be extended to non-atmospheric processors have to be
decided. Atmosphere radiation calculations cannot be
offloaded from atmosphere to non-atmosphere proces-
sors at all time steps since the non-atmosphere processors
may be performing their own calculations at certain time
steps when the atmosphere processors are performing
radiation calculations. This typically happens when the
coupling frequency of non-atmosphere components is
lower than the frequency of radiation calculations as in
the case of ocean. Ocean communicates with coupler
only once in 24 simulated hours whereas radiation calcu-
lations resulting from radabs occur every 3 simulated
hours. Ocean processors may be busy with their own cal-
culations for the first 12 simulated hours of the simulated
day and may become idle only from the 13th simulated
hour. In this case, the atmosphere processors will not be
able to offload radabs calculations to ocean processors
during simulated hours 3, 6, 9, and 12 and will be able to
offload or share only from the 15th simulated hour.
While the coupling and radiation calculation frequen-
cies are static, the time step at which a component is ready
depends upon the number of processors allocated to the
component and can vary dynamically. Hence, the ready
time step has to be determined at run-time and updated
periodically. As explained earlier, corresponding to each
radabs call there is a send-ready time in the atmosphere
and a recv-ready time in each non-atmosphere compo-
nent. These ready times are determined by periodically

executing unmodified CCSM for a simulated day and
observing the times for various phases of execution. Our
objective at this level is to determine the first time step of
a simulated day for which some of the radabs calls can
be offloaded to a non-atmosphere component without the
atmosphere being delayed. This time step is the one
immediately before the time step for which the send-
ready time of atmosphere, corresponding to the first rad-
abs call in the time step, is greater than the recv-ready
time of the component, and is calculated by each non-
atmosphere component.

The radabs time step after which offloading can take
place is noted as the component’s time step sharing index
and is broadcast to all the processors. At every radabs
time step of each simulated day of the simulation with
offloading, the atmosphere includes in its destination
processor set, all the processors of every component that
has (a) a lower coupling frequency than atmospheric rad-
abs frequency, and (b) a time step sharing index less than
the current radabs time step.

5.2 Chunk Level

When the coupling frequency of a component is greater
than or equal to the radabs frequency, the idling of the
component occurs at every time step of atmospheric rad-
abs calculation. Thus, the offloading of atmosphere to
this component can occur at all radabs time steps. How-
ever, as seen in Figure 6, for a given time step, the rad-
abs function is invoked for every chunk. Thus, for a
given time step, the non-atmosphere component may
become idle and may be able to share radabs with the
atmosphere processors calculations only after the atmos-
phere processors have finished processing some chunks
in the time step. Thus, the chunk at which radabs calcu-
lations can be shared for a given time step has to be pre-
cisely calculated.

For each time step, all processors maintain another
array of send-ready times and recv-ready times, where
each array element corresponds to a chunk within the time
step. The array index where the send-ready time exceeds
the recv-ready time determines the number of chunks for
which radiation calculations can be offloaded at that time
step. We calculate the maximum of these numbers, across
the time steps, as the component’s chunk-sharing index.
Thus the chunk-sharing index is the starting chunk number
from which the atmosphere can offload radiation calcula-
tions to processors of a particular component.

After the component root processor calculates its
chunk-sharing index as outlined above, it broadcasts it to
all processors. In the following simulated days, the atmos-
phere, when processing each chunk, includes in its desti-
nation processor set, all the processors of the component
that has (a) a higher coupling frequency than the radabs
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frequency, and (b) a chunk-sharing index less than the
index of the current chunk in the current time step. Thus
the points of extension to the coupler, land, and ice com-
ponents are dynamically determined.

5.3 Column Level

This step involves the finest level of decision making. For
a given time step and chunk, a set of non-atmosphere
processors may be ready to share radabs calculations.
However, the number of columns within the chunk that
will be shared by each atmosphere processor with each
non-atmosphere processor has to be calculated. As men-
tioned earlier, the times at which each atmosphere proces-
sor enters radabs calculation can vary between atmosphere
processors because of differences in times taken by the
processors for shortwave radiation calculations. Thus, the
shortwave radiation calculation time of each processor
should be taken into account to calculate the number of
columns that each atmosphere processor can offload to
each of its destination non-atmosphere processor, so that
all atmosphere and non-atmosphere processors finish the
radabs calculations at about the same time.

Since the input data for radabs is sent before the short-
wave radiation calculations, the time taken for the short-
wave radiation calculations by each atmospheric processor
in the previous time step is used to determine the availabil-
ity times of the processor for performing radabs calcula-
tions. In each radabs time step consisting of multiple
radabs calls as shown in Figure 6, these values are sent to
a non-atmosphere component by an atmosphere processor
just before the first radabs call for which the component
processors are included in the atmosphere processor’s des-
tination processor set. Based on these availability times, a
component processor determines the number of columns
in the current chunk that it will process and the source
atmosphere processors containing these columns.

Each processor that is involved in the extension for the
current radabs time step calls a column-processor map-
ping algorithm, with the array of availability times, the
number of atmosphere processors, and the number of other
processors as inputs, and obtains as results the details of the
communications it has to perform during the extension.
The mapping is determined in two steps. The first step
determines the number of columns to be given to each
processor. For each column of the total available columns,
we determine the processor which will complete process-
ing it in the minimum time and assign the column to the
processor. The availability time of this processor is now
updated to its expected completion time. In the first step,
we had assumed that all the columns are available as a sin-
gle pool. However, some of the participating processors
(atmosphere processors) already possess some columns.
Therefore, in the second step, a mapping for senders to

receivers has to be determined. The number of columns a
processor has to send or receive is the difference between
the number of columns it originally possesses and the
number of columns assigned to it in the first step. A sim-
ple greedy technique is followed to determine the proces-
sor communications. While there are senders or receivers,
we transfer the maximum number of columns from the
current sender to the current receiver, update the sender’s
and receiver’s remaining number of columns to be com-
municated, and if the sender and/or receiver meets its tar-
get number of columns, we move to a new sender and/or
receiver. Note that the maximum number of columns in a
transfer is the minimum of the number of columns that a
sender can send and the number of columns a receiver
can receive. Using this strategy, each processor deter-
mines the number of columns (amount of extension) and
the processors (targets of extension) with which it has to
communicate. For each chunk, it then involves in input
communications, radabs computations, and output com-
munications, using the same mapping until the number of
sharing processors changes.

The pseudo-codes of the modified algorithm described
in this section are given in Figures 7 and 8, and can be com-
pared with the pseudo-code of the original version given
in Figure 6.

5.4 Summary of Dynamic Component Extension
in CCSM

We dealt with several key aspects of the dynamic compo-
nent extension strategy while extending the atmosphere
component of CCSM to reduce the temporal load imbal-
ance in the atmosphere component resulting from compu-
tationally intensive longwave radiation calculations. We
first identified atmosphere as the component containing
temporal load imbalance by conducting profiling runs. We
then modified the codes of the atmosphere and other com-
ponents to share parts of the heavy computations in atmos-
phere. By using a three-level load-balancing strategy, we
dynamically determined various parameters of extension
at different granularities. By periodically executing the
CCSM application without our load balancing and obtain-
ing the times spent by the different components in differ-
ent phases, we automatically and dynamically identified
the idling periods in processors of other components and
the times when the component containing temporal load
imbalance is ready to extend its heavy computations to
other component processors. At periodic intervals, we
turn off (using a conditional-if statement) the load balanc-
ing part of the code and turn on the profiling part of the
code. After executing in this phase for one simulated day,
we turn off the profiling and turn on the load balancing
parts of the code. The load-balancing strategy will then be
using the profiled information for all simulated days until
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1 Algorithm:Modified algorithm
2 for each time-step do
3 atmosphere model execution
4 for each chunk do
5 if radabs time-step then
6 determine/update destination processor set
7 if change in destination processor set or in time-step then
8 | send availability times to new component(s); calculate column mapping.
9 end
10 send radabs input data
11 availability timer start
12 end
13 if radcswmaz time-step then
14 ‘ call radeswmx
15 end
16 if radabs time-step then
17 availability timer stop
18 call radabs with own column range; receive radabs output data
19 end
20 end
21 compute average availability time
22 atmosphere model execution
23 end

Fig. 7 Pseudo-code for modified atmosphere component.

1 Algorithm:Modified algorithm for components

2 for each time-step do

3 component model execution

4 if radabs time-step then

5 recv availability times from atmosphere

6 determine number of chunks using chunk sharing index

7 for each chunk do

8 determine/update destination processor set

9 if change in destination processor set or in time-step then

10 | calculate column mapping.

11 end

12 recv radabs input data; call radabs with own column range; send radabs output data
13 end

14 end

15 commumnication with coupler

16 component model execution

17 end

Fig. 8 Pseudo-code for modified non-atmosphere component.
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Table 1
Platform specifications.

Platform Number of I
Specifications

name procs.

Fire-16 16 8 dual-core AMD Opteron 1214 based 2.21 GHz Sun Fire servers, CentOS release 4.3, 2
GB RAM, 250 GB hard drive and connected by Gigabit Ethernet

Fire-48 48 12 x 2 dual-core AMD Opteron 2218 based 2.64 GHz Sun Fire servers, CentOS release
4.3, 4 GB RAM, 250 GB hard drive and connected by Gigabit Ethernet

Regatta 16 AlX, 16-way SMP IBM pSeries 690 node with 16 POWER4 CPUs running at 1.3 GHz and
160 GB memory with IBM AIX

Regatta 32 32-way SMP IBM pSeries 690 node with 34 POWER4 CPUs running at 1.1 GHz and 64 GB
memory with IBM AIX

Param 216 AlX, 54 4-way SMP IBM pSeries 630 nodes, each having 4 POWER4 CPUs running at 1

GHz and 8 GB memory with IBM AIX

the next profiling phase. Thus we dynamically determine
the load imbalances across components and the source of
the imbalances using profiling phases of unmodified
CCSM at periodic intervals. The idling periods and ready
times were then used to determine the points, amounts and
target processors of extension. Similar steps can be fol-
lowed when applying our dynamic component extension
strategy to other multicomponent applications to improve
the application performance.

6 Experiments and Results

We used five different platforms to evaluate our strategy
and compare its performance with that of the original
version of CCSM. The specifications of these platforms
are given in Table 1. The first three systems are located
in the Indian Institute of Science (IISc) while the last two
systems are located in the Centre for Development of
Advanced Computing (CDAC), Bangalore, India. On
CDAC Param, out of the 54 systems, we used 16 systems
of 64 processors for our experiments.

Table 2
Results on various platforms.

All the experiments were conducted with NCAR’s most
recent release of CCSM, CCSM3.0.1betal4. We have
ensured that our modifications do not affect the scientific
validity of the results, and verified that the results of the
modified version and those of the original version match
bit-by-bit. CCSM has an option for the users to enable a
load-sharing mechanism for the shortwave radiation calcu-
lations. On each platform, we executed four versions of
CCSM on various numbers of processors. The four ver-
sions are: (a) the original version which by default has
the shortwave load balancing turned off, (b) the original
version with shortwave load balancing turned on, (c) our
modified version with the shortwave load balancing turned
off, and (d) our modified version with shortwave load bal-
ancing turned on. Each of our experiments corresponded
to a 30-day climate simulation. For each experiment, exe-
cution times were noted for each of the four versions. We
mostly show results for versions (a) and (c). Similar results
were obtained for versions (b) and (d).

Table 2 shows the percentage reduction in execution
time of radabs as a result of dynamic component exten-

Original radabs time (s)

DCE radabs time

Gainin radabs  Savings fora 1000-year

Platform Procs. [version (a)] (s) [version (c)] due to DCE simulated run
Fire-16 16 355.06 268.68 24% 13.63 days
Fire-48 48 144.598 102.676 29% 4.37 days
lISc 16 515.71 360.82 30% 19.3 days
Regatta

CDAC 32 307.94 250.28 19% 3.02 days
Regatta

CDAC 32 338.62 274.69 19% 4.36 days

Param
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Table 3

Results for the 16-processor configuration (Atmosphere-8,0cean-4,Ice-2,Land-1,Coupler-1) on

various platforms.

Original execution DCE execution time Percentage Savings for a 1000-year
Platform : . . . :

time [version (a)] [version (c)] gain simulated run
Fire-16 1315.426 1112.820 15% 28.14 days
Fire-48 1129.155 964.375 15% 22.89 days
IISc Regatta 1750.586 1459.620 17% 40.41 days
CDAC 2056.061 1704.762 17% 48.79 days
Regatta
CDAC Param 2477.55 2095.74 15% 53 days

sion (DCE) for different platforms and different numbers
of processors.7 The last column denotes the savings in
execution time of CCSM for a 1000-year simulated run
and is calculated by multiplying the savings obtained for
a 30-day simulated run by 12,000. The results in the last
column are significant because CCSM is commonly exe-
cuted for such multi-century runs. We find that using our
strategy can lead up to 30% reduction in execution time
of radabs and result in savings of 3—19 days in execution
time of CCSM for a 1000-year simulations.

In order to compare the gain resulting from DCE gain
across all platforms, we executed CCSM on 16 proces-
sors, the largest number of processors available on all
platforms. The results on various platforms for execu-
tions on 16 processors are shown in Table 3.% The results
show that the percentage gains are almost constant across
all platforms.

As mentioned earlier, the frequency of radiation com-
putations is once every 3—12 hours of simulation. Latest
studies (Pauluis and Emanuel 2004) show that radiation
computations should be done as frequently as possible,
preferably at the same frequency as the rest of the
model. Figure 9 shows the effect of increasing radiation
frequency on various execution times for a 30-day sim-
ulation obtained on the Fire-16 cluster with the same
configuration as in Table 3. As can be seen in the fig-
ure, dynamic component extension results in decrease
of radabs, physics, and total execution times in all cases.
Another interesting observation was that while the DCE
execution times are better than the original execution
times for all frequencies, the gain is significantly higher
for the highest frequency. Our investigations showed that
this is because more radiation calculations were extended
to other component processors for large radiation fre-
quencies.

Figure 10(a) illustrates the gain obtained with dynamic
component extension in CCSM. The result was obtained
with 30-day runs on the IISc Regatta cluster with the
same configuration as in Table 3. The figure shows that

With different Radabs frequencies
1400 T T T T

1200 -

1000 [

800

600 -

30-day simulation times (in seconds)
N
o
o

2001

1/(12hrs) 1/(8hrs) 1/(6 hrs) 1/(3 hrs)
Radabs frequency

I Total Original
I Total Ours
[ Physics Original
[ TPhysics Ours
I Radabs Original
I Radabs Ours

Fig. 9 Effect of radiation frequency on DCE gain. Fire-
16 cluster.

the dynamic component extension during the radabs
(absorptivity) calculations reduces the execution time
of radabs calculations by 17%. The figure also shows
that the overheads resulting from dynamic component
extension are negligible. These overheads include com-
munication of columns and availability times from the
atmosphere to component processors, time stamping,
computation of availability times, and mapping columns
to processors.
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Fig. 10 Overheads and gain resulting from DCE. 1ISc Regatta cluster.

Figure 10(b) compares the actual gain obtained as a
result of dynamic component extension to the maximum
gain for the same configuration and processors. This
maximum gain is obtained using simplistic assump-
tions for extending radabs calculations, namely, the entire
radabs calculations in the atmosphere processor can be
extended to the other components and there are zero over-
heads for extension. The maximum gain is obtained
using equation (2) in Section 2. The figure shows that our
implementation of dynamic component extension in
CCSM is efficient and achieves about 74% of the maxi-
mum achievable gain. We also find that the primary rea-
son for not achieving the maximum gain is the non-
availability of all components for extension at all radabs
points.

Based on experimental timings and scalability of vari-
ous components, we have built an execution model for
CCSM. Using this model, we performed simulations to
find the execution times for the original and the DCE ver-
sion and compute the percentage gain resulting from DCE
for various application configurations. As mentioned ear-
lier, the CCSM application consists of a dynamics and a
physics phase in each time step. Our DCE strategy in this
work was applied to the physics phase. Current efforts by
the CCSM community (Mirin and Sawyer 2005; Mirin
and Worley 2007) are to increase the scalability of dynam-
ics phase. As dynamics becomes more scalable, the per-
centage execution time of the physics phase increases.
Thus our DCE strategy that optimizes the physics execu-
tion time will lead to increasing reduction in overall exe-
cution time of CCSM. This is illustrated in Figure 11
where the overall gain for the application is shown for 64

Simulation showing effect of parallel fraction of atmospheric dynamics on Gain%
T T T T

—%— 64 processors

16} ——#— 128 processors |
¥
141 %/ 1
12r . 5F ]
¥
® 100 o .
< 4
e
3 *****
o 8r ¥ ]

E okl

0 . . . .
0 0.2 0.4 0.6 0.8 1

Parallel fraction of Dynamics

Fig. 11 Simulation results showing effect of scalabil-
ity in dynamical core on DCE gain.

and 128 processors for increasing scalability of dynam-
ics.

7 Conclusions

In this work, we proposed a software strategy for multi-
component applications called dynamic component
extension for minimizing processor idling and improving
application performance. We demonstrated the potential
of this strategy by applying it to improve the perform-
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ance of the most prominent multicomponent application,
CCSM. By automatic identification of idling points and
dynamic determination of points and amounts of exten-
sion, we extended the computation intensive longwave
radiation calculations of the atmosphere component to
the processors executing other components. By evaluat-
ing our strategy on five different parallel platforms for
different number of processors, we showed that our strat-
egy can reduce CSSM execution times by about 15% and
save several days of execution for 1000-year simulation
runs. We also showed that the overheads arising from our
strategy are negligible and that our strategy can give
increasing benefits with increasing frequency of radiation
calculations and increasing scalability of dynamics phase
of CCSM. Our strategy can enable climate researchers to
conduct multi-century climate runs in a reasonable time
even on the moderately sized clusters common in aca-
demic institutions.

8 Future Work

The CCSM community has been advocating and working
toward increasing the frequency of radiation calculations,
adopting highly scalable dynamic cores, and using larger
resolutions. These will lead to larger percentages of exe-
cution times for longwave radiation calculations and
increased significance of our dynamic component exten-
sion strategy in optimizing the radiation calculations. We
plan to empirically evaluate our strategy for these various
scenarios as they become available. We also plan to
devise methodologies for efficient execution of CCSM
on heterogeneous systems, namely, grid systems.
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Notes

1 http://www.cgd.ucar.edu/pcm
http://www.ccsm.ucar.edu
www.mcs.anl.gov/foamA
http://www.ncar.ucar.edu
http://www.ccsm.ucar.edu/models/atm-cam/

Message Passing Interface 2, www.mpi-forum.org
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CCSM does not scale well for larger numbers of processors
since the maximum number of processors on which the
atmosphere model can execute is limited by the number of lat-
itudes (48 for low resolution).

8 Results for 16 processors for Fire-16 and 1ISc Regatta are differ-
ent in Table 2 and 3 because of the different CCSM configura-
tions used. CCSM configuration of (Atmosphere-10,0Ocean-2,
Ice-2,Land-1,Coupler-1) was used for the corresponding results
in Table 2.
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