
Morco: Middleware Framework for Long-running
Multi-component Applications on Batch Grids ∗

Sivagama Sundari M
Supercomputer Education and

Research Centre
Indian Institute of Science,

Bangalore, India
sundari@rishi.serc.iisc.ernet.in

Sathish S Vadhiyar
Supercomputer Education and

Research Centre
Indian Institute of Science,

Bangalore, India
vss@serc.iisc.ernet.in

Ravi S Nanjundiah
Centre for Atmospheric &

Oceanic Sciences
Indian Institute of Science,

Bangalore, India
ravi@caos.iisc.ernet.in

ABSTRACT
While computational grids with multiple batch systems (batch grids)
have been used for efficient executions of loosely-coupled and
workflow-based parallel applications, they can also be powerful in-
frastructures for executing long-running multi-component parallel
applications. In this paper, we have constructed a generic middle-
ware framework for executing long-running multi-component ap-
plications with execution times much greater than execution time
limits of batch queues. Our framework coordinates the distribu-
tion, execution, migration and restart of the components of the ap-
plication on the multiple queues, where the component jobs of the
different queues can have different queue waiting and startup times.
We have used our framework with a foremost long-running multi-
component application for climate modeling, the Community Cli-
mate System Model (CCSM). We have performed real multiple-site
CCSM runs for 6.5 days of wallclock time spanning three sites with
four queues and emulated external workloads. Our experiments
indicate that multi-site executions can lead to good throughput of
application execution.

Categories and Subject Descriptors
C.2.4 [COMPUTER-COMMUNICATION NETWORKS]: Dis-
tributed Systems—Distributed applications; D.2.11 [SOFTWARE-
ENGINEERING]: Software Architectures; J.2 [PHYSICAL SCI-
ENCES AND ENGINEERING]: Computer Applications—Earth
and atmospheric sciences

General Terms
Design,Documentation,Performance

Keywords
∗This work is supported partly by Ministry of Information Tech-
nology, India, project ref no. DIT/R&D/C-DAC/2(10)/2006
DT.30/04/07 and partly by Department of Science and Technology,
India. project ref no. SR/S3/EECE/59/2005/8.6.06

multi-component applications, climate models, batch systems, check-
pointing, migration, rescheduling

1. INTRODUCTION
Computational grids have been used over the years for efficient exe-
cution of different kinds of parallel applications, including loosely-
coupled, workflow-based and in some cases tightly-coupled appli-
cations [1, 5, 6]. Various robust grid middleware frameworks have
been developed for supporting grid executions of these kinds of
applications [7, 10]. However, grids have not been sufficiently em-
ployed for executions of long-running multi-component applica-
tions (MCAs).

In this paper, we have developed Morco (Middleware framework
for long-running multi-component applications), a framework for
execution of long-running multi-component applications (MCAs)
on multiple batch systems of a batch grid. The long-running ap-
plications span multiple execution time limits of the batch queues
and hence span multiple submissions of the individual components
to the queues of the systems. Morco automatically coordinates the
execution of the components on the different queues. We have em-
ployed a novel execution model in which the set of active batch sys-
tems available for execution is dynamically shrunk and expanded,
and the components are rescheduled on possibly different batch
systems. This is illustrated in Figure 1 with an example of a two-
component application executing on two batch queues. We have
used our framework for execution of a foremost long-running multi-
component parallel application, CCSM (Community Climate Sys-
tem Model) [3, 4] with four components across four queues.

2. MORCO - GRID MIDDLEWARE FRAME-
WORK

Our Morco middleware framework consists of three primary com-
ponents to synchronize the executions of the components of a multi-
component application (MCA) on multiple batch systems: a coor-
dinator that determines mapping of components, and schedules and
reschedules the component executions on the systems, a job mon-
itor on each front end node of the batch systems that interfaces
with the coordinator, and a job submitter on the front end node that
repeatedly submits a MCA job upon completion of the previous
MCA job. Our framework also consists of a MCA job script which
executes and re-executes the MPI multi-component application on
a system corresponding to specified mappings of components to
processors at various points of time within a MCA job submitted
by the job submitter. In addition to these components, our frame-
work also includes some components to ensure fault-tolerance. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC'10, June 20–25, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-60558-942-8/10/06 ...$10.00.

328

Processors Processors

���������
���������
�������
�������

����������������
���������
���������
�������
�������

���������
���������
�������
������� 	�	�	�	�	

	�	�	�	�	

�
�
�

�
�
�

����������������

Resubmit
request

Request
size

Request
size

Ti
m

e

Batch queue 1 Batch queue 2

Restart file
transfer

Queue wait
phase

Active
phase

Intra site run

Intra site run

Inter site run

Restart
overheads

Component2

Component 1

Figure 1: Execution of a long-running two-component applica-
tion on two sites

Fault Tolerance
Monitor

Fault Tolerance
Monitor

Fault Tolerance
Monitor Fault Tolerance

Monitor

Coordinator

Monitor
Job

Job
Script

Queuing System

Job
Submitter

Monitor
Job

Job
Script

Queuing System

Job
Submitter

Monitor
Job

Job

Queuing System

Job
Submitter

Monitor
Job

Job
Script

Queuing System

Job
Submitter

MPI MPI MPI
Script

Fault Tolerance Coordinator

QUEUE1 QUEUE2 QUEUE3 QUEUE4

Figure 2: Morco - Grid Middleware Framework

architecture is illustrated in Figure 2.

An application job is submitted to each of the batch systems with
a request for a specific number of processors by the Job Submit-
ter. When a job on a batch system is active (not waiting in queue),
it coordinates with our middleware framework and executes some
components of the application depending upon the number of ac-
tive batch systems at that instant. The components executed by the
job can change when the number of active batch systems changes.
When the job is close to its maximum execution time-limit on the
batch system, it coordinates with the rest of our framework, creates
the necessary restart data and exits the queue. The job submitter
submits a new job after the job exits the queue.

When a job submitted to a system becomes active or has entered
the execution state after waiting in the batch queue, the job monitor
on the system informs the coordinator of the START status of the
job. Similarly, when the batch job on one of the active systems is
about to reach the execution time limit of the system, the job mon-
itor at the system sends a STOP message to the coordinator. The
coordinator sends stop signals to the MPI jobs executing on all ac-

tive batch systems. The MPI jobs, after receiving the stop signals,
create the restart files and stop executions. The job monitors at each
site then send a STOPPED message to the coordinator. The coor-
dinator waits for the STOPPED message from all the previously
active batch systems.

Based on the number of active batch systems, the coordinator then
uses a genetic algorithm to determine the schedule of execution of
the multi-component application on the set of active batch systems.
The schedule contains the set of components and the number of
processors for the components allocated to each active system. The
schedule is sent to the job monitors of the active systems which
write the schedule to files called component-config files. It also
transfers the restart dump files generated by the applications in
the previous set of active systems to the new schedule, and takes
a backup of the restart files for use in case of a complete sys-
tem failure, thereby providing fault-tolerance. It then informs the
batch jobs of the active systems to resume execution. The batch
job of each active system reads its component-config and executes
its set of components on the set of its processors as specified in the
component-config file.

Some of the salient features of our Morco framework are listed be-
low:
1) Long-running multi-component applications: Since the ap-
plications considered are long-running, it is reasonable to assume
that they can be stopped and restarted either using in-built restart
facilities or using an external checkpointing library. Since com-
ponents of most coupled multi-component applications cannot be
split, we perform distribution of the communicating components
across the sites rather than splitting a component across sites.
2) Multiple queues across multiple sites: The framework can
handle variable number of queues and clusters at different sites.
It can handle multiple queues within the same cluster as well as
queues across clusters. Its primary function is to coordinate ex-
ecution of a single large long-running multi-component applica-
tion through jobs submitted multiple times to each of the multiple
queues.
3) Dynamic reconfiguration of application: Our framework sup-
ports multiple reconfigurations of application within a submission
corresponding to other submissions becoming active or inactive.
It automatically detects the job submitted to queue becoming ac-
tive and reconfigures the multi-component application to include
the newly available resources. Similarly, it also automatically de-
tects when a job in a queue is close to timeout and reconfigures the
multi-component application restricting it to other active queues.
It uses a genetic algorithm based scheduler to dynamically com-
pute the configuration, i.e. the mapping of components to proces-
sors. We model each chromosome as a string of processor-sizes
of components, and evaluate it with an application-specific fitness
function, which gives the best execution rate possible with these
component sizes across all possible mappings on the current set
of active queues. To estimate the execution rates, we have devel-
oped a performance model for predicting performance of the multi-
component application across multiple sites.
4) Portability to Different Batch Systems: At any instant there
is exactly one job corresponding to our target application in each
queue, and hence it does not unfairly affect the queue wait times
of other external jobs in the queue. Our framework performs and
monitors our submission and acts in response to the actions of the
schedulers in the batch system; thus, it can be used without any
modifications to existing independently managed batch schedulers
at various sites. Also, since its only interaction with the batch sys-

329

tem is to submit a job, it can be used with a wide range of batch
system schedulers.
5) Fault-tolerance: Since our framework supports execution of
an application across an open network with potential network in-
stabilities that can cause failures in MPI executions, we have in-
cluded an adjunct fault-tolerance framework for automatically de-
tecting such and other failures and re-running the application from
the previous restart-dumps. We have also incorporated a large-scale
fault-tolerance feature within the coordinator daemon of the main
framework to handle major failures such as node failures resulting
in failure of the framework daemons.

3. EXPERIMENTS AND RESULTS
We tested our Morco middleware framework by executing CCSM
across four batch queues in three clusters, namely, fire-16, a AMD
Opteron cluster with 8 dual-core 2.21 GHz processors, fire-48, an-
other AMD Opteron cluster with 12x2 dual-core 2.64 GHz proces-
sors, and varun, an Intel Xeon cluster with 13 8-core 2.66 GHz
processors. Four queues were configured on these systems with
OpenPBS: one queue, queue-14, of size 14 on fire-16, one queue,
queue-48, of size 48 on fire-48, two queues, queue-32 and queue-
64, of sizes 32 and 64, respectively, on varun. The AMD clusters
are located at the Supercomputer Education and Research Centre
and the Intel Xeon cluster is located at the Centre for Atmospheric
and Oceanic Sciences, and are connected through a campus net-
work with a bandwidth of around 500 Kbps. The AMD clusters
are connected to each other with Gigabit ethernet switches. The
connections within the three clusters are using switched Gigabit
Ethernet.

External loads were simulated by submitting synthetic MPI jobs
to the queuing systems based on the workload model developed by
Lublin and Feitelson [8]. The maximum execution time limit for all
jobs on all queues was set to 12 hours. The coordinator was started
on the front-end node on fire-16. A job monitor and a job submitter
corresponding to each queue were started on the front-end of its
cluster.

We performed a long-running experiment in which our Morco frame-
work executed CCSM for a period of 6.5 days across the 4 queues
on 3 systems during which climate of 5 years, 4 months and 26 days
was simulated. As the jobs on each of the four queues became ac-
tive and inactive, the CCSM runs were automatically reconfigured
and restarted by our framework. The execution profile of CCSM
on the various queues during this multi-site execution is shown in
Figure 3.

The figure shows the location of execution of various CCSM com-
ponents along the execution time-line as the configurations change.
The figure comprises of four subplots corresponding to the four
queues in our experiment, as indicated by the labels at their top
right corners. The x-axis shows the experiment timeline in hours,
while the y-axis has the total number of processors available in each
queue. The colored regions correspond to the execution of CCSM,
while the white regions correspond to processor-periods that are
either unused or used by other jobs in the queue. Each color in
the figure corresponds to a single component. For any given x-axis
value corresponding to a given time instant, the components ex-
ecuting in each queue and the number of processes used by each
component are indicated by the component-colors and the height
of each color, respectively. For example, during the 2nd-12th hour
of execution, the land component, represented by the green bar, ex-
ecuted on queue-14 and the atmosphere component, represented by

0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

Wallclock time (in hours)

N
um

be
r o

f P
ro

ce
ss

or
s

Single Site Execution

ATM

OCN

LND
ICE

CPL

Figure 4: Single-site Execution Profile

the dark blue bar, executed on queue-48. The experiment involved
a total number of 35 reconfigurations of CCSM components per-
formed automatically by our framework.

As the variations in the heights of colored regions in the figure indi-
cate, the component sizes and hence the total number of processes
used for CCSM execution varies with the set of active queues. Also,
there are noticeable periods of inactive systems in each queue indi-
cated by the white regions. Our framework automatically handles
large changes in the number of active queues and the number of
processors. For example, in the 1

st hour, only queue-14 was active
and all the five CCSM components were executed in this queue.
This is indicated at hour 1 on the x-axis by the presence of all four
colors in the topmost subplot and the blank regions on other sub-
plots. The figure also shows two phases during the experiment near
the 100

th and 130
th hours, during which there were zero active

systems, i.e., when the CCSM jobs on all the batch systems were
waiting in the queue. The black vertical lines indicate points dur-
ing our experiment when there were system failures due to power
failures resulting in the shutdown of the entire system on one of the
sites. Our fault-tolerant framework takes backups of all the com-
ponent restart files at each CCSM reconfiguration. We used these
restart backups to continue our experiment from these points.

Hence, as illustrated, whenever new batch systems become active
or active systems reach execution time limit, our Morco framework
automatically stops the execution on the current configuration, cal-
culates a new configuration with different component sizes and dif-
ferent locations, reconfigures the CCSM components to the new
configuration and continues the execution. It also handles smoothly
the cases of no active queues and all queues becoming active. Thus,
the experiment has demonstrated that our middleware framework
can be effectively used for robust long-running simulations.

A similar execution profile for a single-site run is shown in Figure
4. As shown in the figure, there are larger gaps between two CCSM
executions when CCSM is executed only on a single site than when
it is executed across multiple sites using our Morco framework as
shown in Figure 3. The total length of the gaps is 88 hours for
single-site runs and only 25 hours for multi-site runs. Thus, multi-
site executions of CCSM using our Morco framework ensure con-
tinuous progress and regular updates of long-running climate sim-
ulations.

Figure 5 compares the execution progress of CCSM on multi-site
runs with that on single-site runs. Each point in the figure corre-
sponds to a restart point in the experiments. The almost flat-regions
of the multi-site execution curve between 120-140 hours is due to
all batch jobs becoming inactive during this time as seen in Figure
3. The other flat regions (e.g. 40-60 hours) correspond to exe-
cution on small number of processors on queue-14. We find that
the progress of execution with multiple sites is comparable with

330

0 20 40 60 80 100 120 140 160
0

5

10

0 20 40 60 80 100 120 140 160
0

20

40

0 20 40 60 80 100 120 140 160
0

20

40

60

0 20 40 60 80 100 120 140 160
0

10

20

30

Nu
mb

er
of

Pro
ces

sor
s in

 Ea
ch

Qu
eu

e

ATM
OCN
LND
ICE
CPL

Multi−site Execution

Wallclock Time / Time Progession (in hours)

queue−14 (fire−16)

queue−48 (fire−48)

queue−64 (varun)

 queue−32 (varun)

Figure 3: Multi-site Execution Profile

0 20 40 60 80 100 120 140 160 180
0

1

2

3

4

5

6

Wallclock Time (in hours)

Nu
m

be
r o

f C
CS

M
 y

ea
rs

 s
im

ul
at

ed

Rate of CCSM Simulation

Single−site
Multiple−site

Figure 5: Rate of CCSM Simulation

single-site executions, in spite of the various overheads related to
multi-site executions including system failures due to power fluc-
tuations, restart overheads, multiple reconfiguration and rebuilding
overheads.

4. RELATED WORK
Buisson et al. [2] in their work on scheduling malleable applica-
tions in multi-cluster systems, have developed a middleware frame-
work called DYNACO for their application runner, MRunner, to
execute malleable applications. They support dynamically grow-
ing and shrinking the applications processor set. Our framework,
though similar, is designed for multi-submission executions on generic
batch scheduling systems. Markatchev et al. [9] have developed a
middleware framework for checkpointing, migration and reconfig-
uration for execution of traditional long-running applications. They
also consider batch systems and execution time limits of the sys-
tems, and perform migration of batch jobs before reaching the time
limits. However, unlike our framework, their work does not support
execution of an application job co-allocated across multiple batch
systems. Thus our work is unique in building a framework for co-
allocation to execute long running applications spanning multiple
batch submissions with the batch queues of potentially different ex-
isting job execution policies and where the number of batch queues
available for execution can change during the execution of the ap-

plication.

5. REFERENCES
[1] A. Bhatele, S. Kumar, M. Chao, J. Phillips, Z. Gengbin, and L. Kale.

Overcoming Scaling Challenges in Biomolecular Simulations across
Multiple Platforms. In IPDPS ’08: Proceedings of the 2008 IEEE
International Symposium on Parallel and Distributed Processing,
pages 1–12, 2008.

[2] J. Buisson, O. Sonmez, H. Mohamed, W. Lammers, and D. Epema.
Scheduling Malleable Applications in Multicluster Systems. In
CLUSTER ’07: Proceedings of the 2007 IEEE International
Conference on Cluster Computing, pages 372–381, 2007.

[3] Community Climate System Model (CCSM).
http://www.ccsm.ucar.edu.

[4] W. Collins, C. Bitz, M. Blackmon, G. Bonan, C. Bretherton,
J. Carton, P. Chang, S. Doney, J. Hack, T. Henderson, J. Kiehl,
W. Large, D. McKenna, B. Santer, and R. Smith. The community
climate system model: Ccsm3. 1998.

[5] B. Howe, P. Lawson, R. Bellinger, E. Anderson, E. Santos, J. Freire,
C. Scheidegger, A. Baptista, and C. Silva. End-to-End eScience:
Integrating Workflow, Query, Visualization, and Provenance at an
Ocean Observatory. In ESCIENCE ’08: Proceedings of the 2008
Fourth IEEE International Conference on eScience, pages 127–134,
2008.

[6] Y. Joshi and S. Vadhiyar. Analysis of DNA Sequence
Transformations on Grids. Journal of Parallel and Distributed
Computing, 69(1):80–90, 2009.

[7] S. V. Kumar, P. Sadayappan, G. Mehta, K. Vahi, E. Deelman,
V. Ratnakar, J. Kim, Y. Gil, M. Hall, T. Kurc, and J. Saltz. An
Integrated Framework for Performance-based Optimization of
Scientific Workflows. In HPDC ’09: Proceedings of the 18th ACM
international symposium on High performance distributed
computing, pages 177–186, 2009.

[8] U. Lublin and D. Feitelson. The Workload on Parallel
Supercomputers: Modeling the Characteristics of Rigid Jobs. Journal
of Parallel and Distributed Computing, 63(11):1105–1122, 2003.

[9] N. Markatchev, C. Kiddle, and R. Simmonds. A Framework for
Executing Long Running Jobs in Grid Environments. In HPCS ’08:
Proceedings of the 22nd International Symposium on High
Performance Computing Systems and Applications, pages 69–75,
2008.

[10] K. Nomura, R. Seymour, W. Weiqiang, H. Dursun, R. Kalia,
A. Nakano, P. Vashishta, F. Shimojo, and L. Yang. A Metascalable
Computing Framework for Large Spatiotemporal-scale Atomistic
Simulations. In IPDPS ’09: Proceedings of the 2009 IEEE
International Symposium on Parallel and Distributed Processing,
pages 1–10, 2009.

331

