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Abstract

Grids are being used for executing parallel applications over remote resources. For executing a parallel application on a set of grid resources
chosen by a user or a grid scheduler, the input data needed by the application is segmented according to the data distribution followed in the
application and the data segments are distributed to the grid resources. The same input data may be used subsequently by different applications
leading to multiple copies (replicas) of parallel data segments in various grid resources. The data needed for a parallel application can be gathered
from the existing replicas onto the computational resources chosen by the grid scheduler for application execution. In this work, we have devised
novel algorithms for determining “nearest” replica sites containing data segments needed by a parallel application executing on a set of resources
with the objective of minimizing the time needed for transferring the data segments from the replica sites to the resources. We have tested our
algorithms on different kinds of experimental setups. We find that the best algorithm varies according to the configuration of data servers and
clients. In all cases, our algorithms performed better than the existing algorithms by at least 15%.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Computational grids have been found to be powerful
research-beds for the execution of various kinds of parallel
applications [2,4,19]. For the execution of a parallel application,
a set of grid resources is chosen by a resource broker or
grid scheduler [5]. The input data needed by the application
is partitioned and distributed on the resources using a data
distribution strategy [28].

In a virtual organization defined by a grid, different members
of the organization or community may be interested in
performing different parallel operations on the same input data.
For example, applications involving parallel matrix operations
have been executed on grids [19]. In these applications,
different parts of a matrix are partitioned and distributed to
the different resources used for a parallel matrix operation.
The same matrix can be used as inputs to different matrix
operations including LU factorization with multiple right-hand
sides, multiplications with other right-hand sides, eigenvalue

∗ Corresponding author.
E-mail address: vss@serc.iisc.ernet.in (S. Vadhiyar).

determination, calculation of norms etc. Different sets of
resources can be selected by grid resource brokers for each
of these operations. Similarly, large amounts of data will be
generated in the high-energy physics experiments at CERN [9]
and same portions of the data will be used for different kinds of
processing by different users. Since the amount of data is large,
some of the processing may involve parallel computations on
the data whereby the data is partitioned and distributed among
the resources used for parallel computations.

In grids, it is beneficial to have caching and replication
policies so that data that is distributed on a set of resources for
a parallel application is retained on those resources for access
by subsequent parallel applications dealing with the same data.
Thus, more replicas of input data will be created with different
distributions on different sets of resources with more number
of parallel computations on the same data. These replicas can
help in reducing data access times for a computation and
accordingly, various replica placement strategies have been
proposed [21].

In this, paper we address the following challenge related to
replica selection: Given a set of replicas of an input data, with
each replica corresponding to a partitioning and distribution of
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the input data on a set of resources (replica servers), and given
a new set of resources (clients), on which a parallel application
needing the same input data with a given distribution/partition
will be executed, how to choose the “nearest” replica servers
with the objective of minimizing the time for transferring the
needed data segments from the replica servers to the client
resources? Thus, for each data segment, an appropriate replica
server has to be selected from many possible servers.

Previous efforts [3,10,20] have devised algorithms for
selection of data servers for transferring data segments from
multiple servers to a single client resource. In this paper,
apart from extending two of the algorithms used in multiple
server–single client scenario, we have also developed two new
algorithms for selection of data servers and transferring data
segments from multiple servers to multiple client resources
for parallel application execution on the client resources. One
algorithm considers the impact of simultaneous downloads on
a data transfer and the other algorithm is based on collective
download optimization used in parallel I/O.

In our work, we assume the existence of replica catalogs [6,
8] containing various information about replicas including
locations of replica data segments and the data distribution
schemes used for distributing the data to different replica
resources. Based on the information contained in the catalog
and information regarding a new parallel application, our
algorithms determine the different sources/replica servers
available for each of the data segments needed by the
application. The algorithms then select a data source for each
data segment needed by each process of the parallel application
(client application) such that the time taken for fetching
the entire set of parallel data by the parallel client for the
parallel application is minimal. We evaluated the performance
of our algorithms in terms of times needed for data transfers
on various experimental setups that differed in client–server
bandwidths and latencies. Based on our experiments, we
conclude that different algorithms give best performances
for different grid network settings. We also find that in all
the experiments, our algorithms outperformed the multiple
server–multiple client extensions of the existing algorithms by
at least 15%.

In Section 2, our proposed algorithms for data selection
and transfer are described in detail. In Section 3, different
experimental settings in terms of different client–server
bandwidths are considered and the performance of the
algorithms on these settings are compared. In Section 4, related
work is presented. Conclusions are given in Section 5 and future
enhancements are listed in Section 6.

2. Algorithms for data selection

We have developed a total of 4 algorithms. Our algorithms
assume that the user’s data is distributed among the parallel
resources with block-cyclic distribution corresponding to a
block size. Thus different distributions of the same data
correspond to different number of resources and/or different
block sizes. We chose block-cyclic distribution since it
is a popular data distribution strategy used by parallel

applications [24]. The techniques developed in this work can
easily be extended to other distributions. We use the terms
blocks and data segments interchangeably to refer to the blocks
and block size to refer to the size of the blocks in block-cyclic
distributions.

In all our algorithms, the clients download blocks whose
sizes are equal to GCD block sizes. GCD block sizes are
obtained by calculating the GCD (Greatest Common Divisor)
of the block sizes of the available data distributions in the
replica servers and the data distribution used by the parallel
client application. For example, if there are 4 replicas of parallel
data corresponding to block sizes of 50, 150, 200 and 250
and the parallel client application uses block-cyclic distribution
with block size of 100, our algorithms download data segments
of size 50 from the replica servers. For most of our algorithms,
we use latencies and bandwidths of the network links measured
by periodic network probes.1 The network probes execute every
2 minutes and write the latency and bandwidth values to probe
files. These values are read from the probe files and used by
our algorithms. Our implementations of the algorithms use
the Globus GridFTP client [1] for transferring data segments
from the servers to the clients. We do not use any specific
optimizations for GridFTP data transfers including TCP buffer
size tuning, parallel streaming etc.

The first two algorithms, basic downloading and fastest1 are
simple modifications of the algorithms developed for multiple
servers-single client data transfers [3,7,10,20] to enable
them for multiple servers–multiple clients downloads. These
algorithms are used as base cases with which the performance
of the other algorithms are compared. The algorithm that
considers impact of simultaneous downloads, ISD, dynamically
calculates the impact of simultaneous downloads of data
segments from a set of servers to a set of clients on a given
server-to-client data transfer. The last algorithm, collective
downloads, is based on collective I/O optimization used in
parallel I/O and is especially used in cases when the latencies of
the links between the clients and the servers are high. Although
the underlying principle has been used in parallel I/O, the
algorithm incorporates significant decisions regarding selecting
a replica out of many different replicas for data downloads. The
following subsections describe each of the algorithms in detail.

2.1. Basic downloading algorithm

The basic downloading algorithm is the simplest of all the
algorithms. It follows a workqueue model where a queue of
pending blocks to be downloaded are maintained in each client.
Each client opens multiple connections/threads to servers, one
to each server that contains the blocks needed by the client.
Each thread downloads a unique block from the server. When a
thread finishes downloading a block, it starts downloading the
next block contained in the corresponding server and that is not

1 We are not using the popular grid tool, Network Weather Service
(NWS) [32] for network measurements since currently, there are difficulties in
executing NWS on Microgrid emulation tool on which we validate and compare
our algorithms.
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being downloaded by other threads. In this way, different clients
download blocks needed by them simultaneously from different
servers.

The basic downloading algorithm does not use network
measurements for selecting replica servers for data downloads.
The workqueue model followed in the basic downloading
algorithm is a popular parallel programming model used in
many situations especially when there are no dependencies
between threads. Although, for our data download problem,
there are not logical-level dependencies between data transfers
by different threads, data downloads by one thread can
impact data downloads by another thread thereby creating
performance-level dependencies. Also, the basic download
algorithm is considered to be unfriendly to networks since
it can introduce network congestion due to unconstrained
simultaneous downloads thereby impacting other network
applications using the same network links. Although the basic
downloading algorithm did not give good performance in the
multiple server–single client scenario, we implemented the
algorithm due to its simplicity and to verify if its performance
improves in the multiple server–multiple client scenario.

2.2. Fastest1

Fastest1 is a promising algorithm and has been found to
give the best performance for multiple server–single client data
downloads [10]. In this algorithm, a client, for each block
it wants to download, forms a list of servers containing the
block. It chooses that server that minimizes t ∗ (l + 1) and
downloads the block from the server. Here, t is the predicted
time for downloading the block from the server when there
is no contention. In our implementation, t is calculated at the
beginning of the algorithm based on the size of the block, and
the latency and bandwidth between the client and the server
measured by our network probes. l refers to the number of
current ongoing downloads from the server to the different
clients.

The algorithm is implemented as a master–worker model.
The master process is executed on one of the client machines
that is “closest” to all other client machines in terms of
the average of the bandwidths between the client and other
clients. The worker/client processes, equal to the number of
client machines, are executed on the client machines. The
master process initially reads from network probe files and
sends client–server latencies and bandwidths to all the clients.
The master process also maintains current downloads matrix
whose (i, j) entry denotes the current number of data transfers
between server j and client i . Whenever a worker/client
process is ready to download, it sends a request to the
master where the request is added to a request queue. The
master processes the client request from the request queue and
sends the current downloads matrix to the client. The client
chooses the server for downloading the block, spawns a process
for downloading, and sends information regarding its current
downloads from different servers to the master. The master
uses this information to update the current downloads matrix.

Algorithm 1 Fastest1 Algorithm
1: servers: total number of servers; clients: total number of

clients;
2: lat , band: (clients× servers) matrices denoting latencies

and bandwidths, respectively, between clients and servers;
3: curr dwlds: (clients × servers) matrix where

curr dwlds[i, j] denotes the current number of data
transfers between server j and client i;

4: Begin Master
5: request queue: a queue of pending client requests;
6: read probe files and fill lat and band; curr dwlds ← 0;
7: for i ← 1, clients do
8: send lat , band to client i;
9: end for

10: while request queue not empty do
11: dequeue next request corresponding to client, c;
12: send curr dwlds to c; recv curr dwlds[c] row

from client c;
13: end while
14: End Master

15: Begin Worker Client c
16: blocks(c): set of blocks needed by client, c;
17: serverswi thblk(b): set of servers containing block, b;
18: blockList : list of blocks remaining to be downloaded;
19: GC D block si ze: GCD of block sizes of available and

current data distributions;
20: min time: minimum time to download a block;
21: min server : server corresponding to min time;
22: calculate blocks, serverswi thblk(b); blockList ←

blocks;
23: recv lat , band from master;
24: while blockList is not empty do
25: remove a block, b, from blockList ;
26: recv curr dwlds from master;
27: min time← Large; min server ← null ;
28: for each server s ∈ serverswi thblk(b) do
29: torig = lat[c][s] + GC D block si ze

band[c][s] ;

30: total downloads =
∑clients

i=1 curr dwlds[i] [s];
31: predicted download time = torig × (total

downloads + 1) ;
32: if predicted download time < min time

then
33: min time = predicted download time;

min server = s ;
34: end if
35: end for
36: spawn process to download b from min server ;
37: update curr dwlds[c]; send curr dwlds[c] row to

master;
38: end while
39: End Worker Client c

The master terminates when there are no more requests in the
request queue. The algorithm is shown in Algorithm 1.
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Although fastest1 adopts a simple strategy for server
selection, it has been found to give good performance for
multiple server–single client data downloads [10]. However, the
following aspects of fastest1 prevent the algorithm from being
suitable for multiple server–multiple client data downloads.
The major drawback of the fastest1 algorithm is the scaling
factor applied to the predicted time for downloading a block
from a given server in the absence of contention, torig, to
calculate the predicted time for downloading from the server
in the presence of other data downloads. As can be seen in line
31 of the algorithm, the scaling factor is (total downloads+ 1),
which is the current number of downloads from the server to
different clients added with 1 to indicate the potential download
from the server to client c. Thus fastest1 assumes a round-
robin strategy with equal time quanta for scheduling multiple
downloads from a given server. While round-robin is a popular
strategy for scheduling CPU-intensive jobs, network-intensive
data downloads are scheduled using complex system dynamics.
Also, total downloads is calculated as the plain sum of number
of current downloads from the server to each client (line 30)
thus giving equal weights of 1 to each client. Thus fastest1
makes the assumption that the impact on a given download
from a server to a client due to another download from the
same server is the same irrespective of the location of the
client involved in the other download. While this assumption is
valid for multiple server–single client scenario where only one
client is involved, it is unrealistic in multiple server–multiple
clients downloads on a grid setting where different clients can
be connected by same or different sets of network paths to a
given server.

Also, the calculation of predicted download time for a
given server, in line 31, is based on torig. By definition,
torig is the time taken for downloading a block from the
server to the client when there is no contention. Hence it
should be calculated during initialization and before any of the
data downloads. There are at least 2 approaches to calculate
torig. One approach is to conduct an initial benchmarking
procedure where downloads from the various servers with
the GCD block size are performed and times taken for such
downloads are measures as torig for the servers. Though this is
a viable approach in the multiple server–single client scenario
where the number of such downloads will be O (servers), it
is not scalable for multiple servers–multiple clients downloads
where the number of downloads will be O (clients× servers).
Moreover the benchmarking procedure will be redundant to
the periodic network probes that are integral to many grid
systems [32]. Another approach to calculate torig is the one
followed in our algorithm in line 29, i.e., based on latencies
and bandwidths measured by periodic network probes before
data downloads. Although, this approach helps in determining
the relative merits between different servers for a given client,
it is not accurate since the message sizes used in network
probes will be different from the block sizes used in the actual
downloads [29]. Hence, the latencies and bandwidths calculated
from network probes will not lead to accurate calculation of
torig. Moreover, the calculation of torig before the downloads
in both the approaches prevents fastest1 from being adaptive

to grid load dynamics and especially for large data downloads
when external network loads can change during the downloads.

2.3. Algorithm based on impact of simultaneous downloads

(ISD)

The ISD algorithm tries to remove/alleviate the prob-
lems mentioned for fastest1 algorithm. In ISD, the pre-
dicted download time for downloading a block from a server,
s, to a client, c, is calculated based on weighted sum of cur-
rent number of downloads from the server to different clients
instead of the plain sum used in fastest1, and is given by:

torig ×

((∑
i 6=c

weighti × current downloads[i, s]

)

+weightc × (current downloads[c, s] + 1)

)
. (1)

The weights in the equation serve 2 purposes:

(1) The different weights for different clients take into account
the different impacts of the downloads involving the clients
and the server, s, on the potential download of data from the
server to the client, c.

(2) Also, in ISD, torig is calculated based on latencies and
bandwidths that are refreshed every 2 min by periodic
network probes. Hence torig, the time to download a block
of data from the server, s, to a client, c, in the absence of
contention, is refreshed every 2 min thus making ISD more
adaptive to external network load dynamics than fastest1.
But as discussed earlier, the use of latencies and bandwidths
from network probes leads to prediction inaccuracies due to
the different message sizes used for network probes and for
data downloads. The weights in the equation also help to
alleviate the prediction inaccuracies.

The working of ISD is shown in Algorithms 2–4.
The structure of the algorithm is very similar to fastest1. The

master process, through a separate thread, reads latencies and
bandwidths from probe files every 2 min. When it processes
a request from a client for the first time since the last refresh
of latencies and bandwidths by network probes, it sends the
network values to the client, c (lines 9–11 of Algorithm 2)
and does not send the values to the same client until the next
periodic refresh by the probes.

The client process then calculates approx torig for a given
server, s, based on these latencies and bandwidths obtained
from the master and the GCD block size (line 17 of Algorithm
3). At the time of obtaining the latencies and bandwidths, if
there are no downloads from the server, s, to any client, approx
torig is considered as torig, the time to download from s without
contention (line 21 of Algorithm 3). If there are downloads from
the server, s, i.e., there was contention, at the time of obtaining
network parameters, then approx torig is scaled down by a
factor to obtain torig, i.e. the time without contention (line 19 of
Algorithm 3). The client then calculates the time to download
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Algorithm 2 ISD Algorithm – Global Data Structures and
Master

1: servers, clients, lat , band , curr dwlds: same as
previous;

2: Begin Master
3: request queue: same as previous;
4: spawn a thread that reads probe files every 2 minutes

and updates lat and band ;
5: curr dwlds ← 0;
6: while request queue not empty do
7: dequeue next request corresponding to client, c ;
8: if c has sent download request for the first time since

last read from probe files then
9: send ( f irst time = 1) to client c;

10: tempDownloads ← curr dwlds ;
11: send lat , band , tempDownloads to client c;
12: else
13: send ( f irst time = 0) to client c;
14: end if
15: send curr dwlds to c ; recv curr dwlds[c] row

from client c ;
16: end while
17: End Master

a block from the server using Eq. (1) (line 23 of Algorithm 3)
and chooses the server for which the value of the equation, i.e.
predicted time to download, is minimum for downloading the
block.

The weights corresponding to different clients for different
servers are maintained in a (clients × servers) matrix. The
weights are initialized to 1 (line 6 of Algorithm 3), i.e., the
algorithm starts with the same assumptions as fastest1, and are
then improved as the algorithm progresses. There are 2 kinds of
weights: fixed and changeable. Fixed weights are those weights
that do not change until the client obtains new latencies and
bandwidths from the master while changeable weights change
from the previous values. The (clients × servers) matrix,
fixed weights, denotes whether a given weight corresponding
to a given client and server are fixed (value 1) or changeable
(value 0). Initially, the fixed weights matrix is initialized to 0
(line 6 of Algorithm 3).

After spawning a process for downloading the block from
min server (line 27 of Algorithm 3), the client c calculates the
rate of progress of downloading after 2 seconds and determines
the actual time to download, actual download time, based on
the rate of progress, block size and the latency[c,min server]
(lines 2–4 of Algorithm 4). It then uses actual download time
on the left-hand side of Eq. (1) to determine the weights
(line 5 of Algorithm 4). Fixed weights are obtained when this
equation is solved with only one unknown weight term on the
right-hand side (line 8 of Algorithm 4). This happens when
the rest of the terms either cancel when the corresponding
number of downloads, current downloads[i, min server], are
0 or when the corresponding weights, weights[i, min server],
are fixed due to the solution of previous equations. Changeable
weights are obtained when this equation has more than one

Algorithm 3 ISD Algorithm – Client
1: Begin Worker Client c
2: blocks, serverswi thblk(b), blockList ,

GC D block si ze, min time, min server : same as
previous ;

3: weight : a (clients × servers) matrix containing
weights between clients and servers used in Eqn. 1. ;

4: f i xed weight : a (clients × servers) matrix.
weight[i, j] is fixed if f i xed weight[i, j] == 1, and
unchangeable otherwise.

5: calculate blocks, serverswi thblk(b);
6: blockList ← blocks; weight ← 1 ; f i xed weight← 0;
7: while blockList is not empty do
8: remove a block, b, from blockList ;
9: recv f irst time from master;

10: if f irst time == 1 then
11: recv lat , band , tempDownloads from master;
12: f i xed weight ← 0;
13: end if
14: recv curr dwlds from master;
15: min time← Large; min server ← null;
16: for each server s ∈ serverswi thblk(b) do
17: approx torig = lat[c][s] + GC D block si ze

band[c][s] ;
18: if tempDownloads[s] 6= 0 then
19: torig =

approx torig∑clients
i=1 tempDownloads[i,s]

;

20: else
21: torig = approx torig ;
22: end if
23: total downloads =

∑
i 6=c(weight[i][s]×curr

dwlds[i, s])+ weight[c][s] × (curr dwlds[c, s] + 1);

24: predicted download time = torig × total
downloads;

25: update min time, min server ;
26: end for
27: spawn process to download b from min server ;
28: update curr dwlds[c];
29: send curr dwlds[c] row to master;
30: UpdateWeights(); F a function to update weights ;
31: end while
32: End Worker Client c

unknown weight term on the right-hand side. In this case, after
canceling the 0 terms and assigning fixed weights, the weights
corresponding to the rest of the terms are assumed to be equal
and solved.

The ISD algorithm is a “best-effort” algorithm where
assumptions are made only when necessary. The problem of
finding time to download from a server in the absence of
any contention given the time to download from the server
in the presence of a set of downloads from the server to
a set of clients is a difficult problem to solve. Hence, we
assume the round-robin scheduling strategy used in fastest1
to determine this time in line 19 of Algorithm 3. Also,
all the weights are initialized to 1 similar to fastest1 and
some weights will be changed according to Eq. (1) while
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Algorithm 4 UpdateWeights()
1: procedure UPDATEWEIGHTS

2: wait for 2 seconds ;
3: find the amount downloaded from min server ;

calculate actual band ;
4: actual download time = lat[c][min server ] +

GC D block si ze
actual band ;

5: Solve actual download time = torig×(
∑clients

i=1 (weight
[i][min server ] × curr dwlds[i, min server ]);

6: F In
the above eqn., substitute all weights whose corresponding
f i xed weight[][min server ] == 1. Cancel those terms
whose corresponding curr dwlds[][min server ] == 0.
Treat weights of remaining unknown terms as equal.
Solve the eqn. and update corresponding entries in weight
matrix.

7: if number of unknown terms in eqn. == 1 and
corresponds to a client c1 then

8: f i xed weight[c1][min server ] = 1 ;
9: end if

10: end procedure

some weights remain as 1. Thus, there will be an initial
period of unfairness and unequal treatment of weights. Finally,
when the equation has more than one unknown weight term
during the weight update phase, we treat the corresponding
weights as equal similar to fastest1 in the absence of a better
strategy. In spite of these small deficiencies, ISD is expected
to perform better than fastest1 for large data sizes on grid
systems due to weight-based calculation of download impacts
and its more adaptive capability to changing external load
dynamics.

2.4. Collective download

Collective download is a traditional optimization in parallel
I/O [27] where a set of parallel processors wants to read data
that is distributed across a number of disks. The part of data
that is required by one processor may not be available as
a single contiguous chunk in a disk, but may be scattered
among different disk locations and different disks. In collective
download, each processor, instead of making multiple disk
accesses to retrieve its part of data makes one single access to a
disk and reads a contiguous chunk of data even if some parts of
the chunk may belong to some other processors. The processors
then exchange the required pieces of data between themselves.
Thus the algorithm consists of a download/upload phase and
a redistribution phase. The purpose of this algorithm is to
decrease the cost due to multiple disk accesses and latencies in
the download/upload phase at the expense of relatively much
cheaper communication costs between the processors in the
redistribution phase. This algorithm is useful in cases where
there is a significant performance difference between the times
needed for download/upload and for redistribution.

A similar technique can be used in our multiple
servers–multiple clients data download scenario especially

when the network characteristics between the clients and
the servers are much worse when compared to the network
characteristics between the clients themselves. This situation
can happen when the clients and servers are located in different
sites separated by high latency and low bandwidth WAN links.
In our collective download algorithm, each client downloads
a contiguous large data chunk from a set of servers in the
download phase. The data chunk may be contained in a single
server or may be contained in multiple servers as illustrated in
Fig. 1(a) and (b). The client then sends the segments of the
data chunk needed by other clients to the appropriate clients
and receives the data segments needed by it from other clients
in the redistribution phase. Our algorithm is designed in such
a way that each client makes only one access to a server
thereby incurring only one latency cost to the server while in the
previous algorithms, a client could potentially make multiple
accesses to a server.

Although collective download is widely used in parallel I/O
optimization, our version of the algorithm for downloading in
the presence of multiple replicas of parallel data is novel in the
aspect of selecting a single parallel data replica for download.
Our algorithm starts by finding the size of the data chunk to be
downloaded by a single client as:

data chunk size =
total data size

number of clients
. (2)

The algorithm then reads the latencies and bandwidths between
the clients and servers from the probe files. For each possible
server configuration, svr cfg, i.e. a set of servers containing the
parallel data, each client, c, finds the average time to download
the data chunk from the servers in svr cfg. This average time,
avg dwld time[c, svr cfg], is calculated using data chunk size,
and latency and bandwidth between the client and the servers
in svr cfg.

dwld time[c, s] = lat[c, s] +
data chunk size

band[c, s]

dwld sum[c, svr cfg] =
∑

s∈svr cfg

dwld time[c, s]

avg dwld time[c, svr cfg] =
dwld sum[c, svr cfg]

count(svr config)

(3)

where count(svr cfg) represents the number of servers
in svr cfg. The algorithm then finds the average of
avg dwld time[c,svr cfg], avg avg time[svr cfg], over all the
clients of the parallel application for the server configuration,
svr cfg.∑
c∈clients

avg dwld time[c, svr cfg]

clients
. (4)

The client then chooses that server configuration, out of
many server configurations, for which avg avg time[svr cfg] is
minimum. This condition helps in minimizing the time required
for the download phase. Data chunks from the servers in the
chosen server configuration are downloaded by the clients in
increasing order, i.e. the first data chunk from the first set of
servers are downloaded by the first client, the second data chunk
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(a) Download from a single server by a client. (b) Download from multiple servers by a client.

Fig. 1. Two cases in collective download.

from the second set of servers are downloaded by the second
client and so on as shown in Fig. 1.

As mentioned earlier, after the downloading phase, some
segments of the data chunk belong to the client while the other
segments will be needed by other clients. The chosen server
configuration can consist of the same parallel data in different
distributions corresponding to different block sizes of the block-
cyclic distributions, i.e., multiple replicas in the same set of
servers. For each distribution or replica, the algorithm measures
a metric called avg intersect. For a given replica in the server
configuration and for each client, the algorithm measures the
percentage of data that will belong to the client out of the total
amount of data that the client will download from a subset
of servers in the server configuration. The average of this
percentage across all clients is measured as avg intersect for
a given data distribution. The algorithm then chooses the data
distribution or replica in a server configuration that maximizes
the avg intersect metric. The purpose of this maximization is
that when most of the data that will be downloaded by the
clients belong to the respective clients, only small amount of
data will be exchanged among the clients in the redistribution
phase thereby optimizing the redistribution phase. Thus our
algorithm performs optimizations of both downloading and
redistribution phases.

The algorithm is shown in Algorithm 5. Lines 6–21 perform
optimization of download phase while lines 23–33 perform
optimization of redistribution phase. Lines 36 and 37 are
the download and redistribute phases, respectively, of the
algorithm. As can be seen in Algorithm 5, unlike the ISD
algorithm, the collective download algorithm is not adaptive to
dynamic load changes during the data downloads since server
selection decisions by the clients are based on the latencies and
bandwidths collected before the data downloads. Also, when
a server contains data chunks needed by more than one client
as in Fig. 1(a), the collective download doesn’t consider the
impact of simultaneous downloads from the same server by
the clients on the download performance. But in a grid setting
involving slow WAN links, where slow latencies are the major
bottlenecks, the advantage of using collective download due
to single server access by a client can very well offset these
disadvantages.

3. Experiments and results

We used 3 experiment configurations. The first setup is
Intra-Cluster Configuration where the parallel servers and
clients are the same machines in a cluster and thus inter-
connected by local LAN network. This configuration is use-
ful for scenarios when there is a powerful cluster in a grid
and the grid scheduler repeatedly allocates the machines in this
cluster for problem solving. Thus multiple replicas correspond-
ing to multiple data distributions/block sizes are formed on the
same sets of machines and new data distributions/replicas are
formed on the same machines from the existing replicas us-
ing the algorithms discussed in the previous section. For ex-
periments in this configuration, a cluster of 8 Intel Pentium
4 nodes connected by 100 Mbps Ethernet was used. Each node
has a 2.8 GHz processor with 512 MB RAM, 80 GB hard
disk and running Fedora Core 2.0 Linux 2.6.5 operating sys-
tem. For all our experiments, we used network probes that use
messages of sizes 64 KBytes to determine the periodic band-
widths of the links. The bandwidths observed on dedicated
links of the 100 Mbps Intel cluster with the network probes
are typically 87 Mbps. However, the bandwidths that were ob-
tained on the dedicated links with the Globus GridFTP client [1]
used in our algorithms were 6–38 Mbps for different mes-
sage sizes. This is due to the additional overheads due to au-
thentication and handshaking incurred by the Globus GridFTP
protocol.

In the second setup, Inter-Cluster Configuration, the parallel
data replicas are located in different clusters of different sites,
with each replica entirely contained in a single cluster. The
client machines, that execute the different parallel download
algorithms to download data from the replica servers, are
also located in a single cluster. The client and server clusters
are typically separated by low bandwidth Internet links. This
configuration is common when scheduling tightly-coupled
parallel applications like ScaLAPACK [24] applications on
grid systems. These applications were originally developed for
tightly-coupled homogeneous systems and provide the highest
performance when executed on machines within a cluster. Thus
a grid scheduler can execute these applications at different
clusters at different points of time, leading to formation of
parallel data replicas in the clusters. At some point of time,
when the parallel application is executed in a cluster, data
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Algorithm 5 Collective Download Algorithm
1: servers, clients, lat , band: same as previous ;
2: data chunk: Part of the total data downloaded from a set of

servers by a client ; data chunk si ze: Size of data chunk ;
3: total svr c f gs: number of distinct sets of servers

containing replicas of parallel data ;
4: F If 3 replicas are contained in {svr-1, svr-2}, {svr-1,

svr-3}, and {svr-2, svr-1} respectively, then total svr c f gs
is 2. i.e., only the first 2 sets are distinct.

5: read probe files and fill lat and band ; data chunk si ze =
total data si ze

clients ;
6: min time← Large ; min svr c f g← null ;
7: for each svr cfg in total svr cfgs do
8: total time[svr c f g] = 0 ;
9: for each client, c in clients do

10: count = 0 ; dwld sum[c, svr c f g] = 0
11: for each server, s, in svr c f g do
12: dwld sum[c, svr cfg] + = (lat[c, s] +

data chunk si ze
band[c,s] ); count ++;

13: end for
14: avg dwld time[c, svr c f g] = dwld sum[c, svr c f g]

count ;
15: total time[svr c f g] + = avg dwld time [c, svr

c f g] ;
16: end for
17: avg avg time[svr c f g] = total time[svr c f g]

clients ;
18: if avg avg time[svr c f g] < min time then
19: Reassign min time and min svr c f g ;
20: end if
21: end for
22: F min svr cfg, a set of servers, can contain multiple

replicas
23: max intersect ← Small; max rep← null ;
24: for each replica, rep, in min svr c f g do
25: intersect amount = 0 ;
26: for each client, c in clients do
27: intersect amount + = percentage of data chunk

that will belong to c if downloaded from rep;
28: end for
29: avg intersect = intersect amount

clients ;
30: if avg intersect > max intersect then
31: max intersect = avg intersect ; max rep = rep;
32: end if
33: end for
34: parallel for
35: for each client, c, of parallel application do
36: download cth data chunk from cth sets of servers in

min svr c f g, max rep replica ;
37: redistribute parts of data chunk to & from other

clients
38: end for

needed by the application can be obtained from the other
clusters containing the replicas.

The final setup, Chaotic Configuration is where each of
the replicas can be contained in machines from different
clusters/sites. The client set of machines can also be from

different clusters. This scenario happens when loosely-coupled
applications like task farming applications are executed on grid
systems. Because of the low communication complexities in
these applications, a grid scheduler typically allocates many
machines from different clusters for an application execution.
Thus a single parallel replica may involve multiple clusters.

For the second and third experiment setup, we used an
emulated grid environment. We used the Microgrid [16,25]
emulation framework to validate, evaluate and compare our
algorithms. For all our experiments, Microgrid was run on
the cluster of 8 Intel Pentium 4 nodes. The use of Microgrid
emulator for the second and third experiments can result in
different runtimes when compared to experiments conducted
on real machines. However, we show that emulation will not
lead to significant changes in the relative differences in runtimes
of the different algorithms. For this, we validate Microgrid
by emulation of our local cluster. We conduct experiments
corresponding to intra-cluster configuration on the emulated
local cluster and compare the results with the corresponding
results obtained on the real machines. Results on extensive
validation of Microgrid for different environments were shown
in earlier efforts [16,17].

The grid emulated using Microgrid was a virtual grid setting
consisting of 6 sites: 1. University of California, San-Diego
(UCSD), USA, 2. University of Urbana-Champaign (UIUC),
USA, 3. University of Tennessee (UT), USA 4. University of
Belfast, UK 5. Indian Institute of Science, India and 6. Kasetsart
University, Thailand. The latencies and bandwidths of the links
between the 6 sites were obtained offline by observing the
average times for connections between the different sites and
for downloading large files (Fedora Core binary downloads)
from a site to the other sites. Table 1 shows the bandwidths
and latencies between the different sites used in our Microgrid
emulation. We used a total of 24 machines, 4 in each site,
for our experiments. All the machines had equal CPU speeds.
The bandwidths shown in Table 1 can fluctuate due to the
presence of background traffic in wide-area networks. However,
we do not emulate the background traffic in our experiments
due to the lack of realistic wide-area traffic generators. Hence
our results represent average behavior of our algorithms and
can potentially overestimate performance. The times shown
in the results represent the execution times of the algorithms
and include both the data transfer times and algorithmic
overheads.

3.1. Intra-cluster configuration

In this experimental setup, parallel data replicas, correspond-
ing to a matrix of size 14 000× 14 000 (1.56 GB), were formed
in the 8-node Intel cluster. Each parallel replica corresponded
to a number of processors and a block size for block-cyclic dis-
tribution of the data. The number of processors used were 2, 4
and 8 and the block sizes used were 50, 150, 200 and 250 lead-
ing to a total of 12 (3 × 4) combinations/replicas. The parallel
client was run with different downloading algorithms on 8 ma-
chines of the cluster to download data from the replica servers
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Table 1
Inter-site bandwidths (MB/s) and Latencies (s)

Sites UCSD UIUC UT UK Th India

UCSD 45.19, 0.09 4.16, 0.25 4.80, 0.28 1.96, 0.60 2.70, 0.27 0.77, 0.11
UIUC 4.27, 0.28 60.27, 0.06 2.07, 0.57 0.86, 1.35 2.07, 0.34 0.74, 0.10
UT 4.50, 0.28 2.02, 0.56 48.32, 0.09 2.88, 0.41 3.51, 0.33 0.15, 0.45
UK 2.83, 0.64 0.85, 1.35 2.86, 0.41 53.85, 0.06 0.62, 1.81 0.15, 0.29
Th 3.56, 0.29 3.68, 0.33 3.72, 0.32 0.62, 1.83 36.36, 0.05 0.15, 0.11
India 0.15, 0.12 5.81, 0.08 2.72, 0.44 4.36, 0.30 2.57, 0.13 41.41, 0.08

Fig. 2. Intra-cluster results.

and form parallel data at the clients with block-cyclic distribu-
tion of block size 100. The bandwidth obtained for download-
ing a GCD block (14 000× 50, i.e. 5.6 MB) of this matrix on a
dedicated link of the Intel cluster was 38 Mbps.

The results are shown in Fig. 2. As shown in the
Figure, in a tightly-coupled system like a single cluster
environment, algorithms that consider loads on the server
due to simultaneous downloads from the clients, namely,
f astest1 and ISD algorithms, give good performance. When the
replica servers and the clients are located in the same set of
machines, there are high interferences between simultaneous
downloads and hence the two algorithms that consider these
interferences for server selection perform the best. Among
these two algorithms, the ISD algorithm due to its sophisticated
techniques of weight-based impact calculations perform at least
17.72% better than the fastest1.

The links between the servers and the clients are the
same as the links between the clients in a tightly-coupled
cluster environment. Collective download algorithm, which
is tuned for scenarios when there is significant performance
difference between the server–client networks and client–client
networks, does not give good performance for the intra-
cluster configuration. Due to the two-phase data transmissions
in collective downloads, its performance is even worse than
fastest1. Similar to multiple server–single client scenario,
the basic downloading algorithm continues to give poor
performance for the multiple server–multiple client scenario.
The high congestion in the network due to simultaneous data
transfers using multiple threads to a single client along with
the cost of maintaining shared queues lead to performance

Fig. 3. Microgrid emulated intra-cluster results.

difference of at least 25% between the basic downloading
algorithm and the ISD approach.

3.2. Microgrid validation

For this experiment, Microgrid was executed on 4 nodes
of the 8-node Intel cluster and was used to emulate the
complete 8-node cluster. The same experiment corresponding
to intra-cluster configuration shown in Section 3.1 was repeated
on the Microgrid emulated framework. The emulated results
are shown in Fig. 3. Comparing the results in Fig. 3 with
the results in Fig. 2, we find that the use of Microgrid
emulation does not alter the relative performance of the
different algorithms. Hence, we use Microgrid emulation for
our subsequent experiments.

3.3. Inter-cluster configuration

In this configuration, 5 parallel replicas were used, each
belonging to a site. Each replica corresponded to parallel data
for a matrix of size 14 000 × 14 000 and distributed across 4
machines in a site. The replicas were located in UCSD, UIUC,
UK, Thailand and India and the block sizes used for block-
cyclic distribution in the replicas were 50, 150, 200, 250 and
300, respectively. The parallel client was run with different
downloading algorithms on 4 machines of UT to download
data from the replica sites and form parallel data at the clients
with block-cyclic distribution of block size 100. The results are
shown in Fig. 4.
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Fig. 4. Inter-cluster results.

Table 2
Number of blocks downloaded from each site for different algorithms

Algorithms/sites UCSD UIUC UK Th India

Basic 128 21 33 75 23
Fastest1 142 17 38 79 4
ISD 161 10 35 74 0
Collective 280 0 0 0 0

In order to understand the performance difference between
the different algorithms, we observed the number of blocks
downloaded from each replica sites by the clients in UT for
each of the algorithms. Table 2 shows the site-wise distribution
of the number of blocks downloaded from the site to the client
machines.

As can be seen from inter-site bandwidths and latencies
in the columns corresponding to UT in Table 1, the
communication speeds of India–UT, and UIUC–UT links
are low, the speeds of Thailand–UT and UK–UT links is
moderate while the speed of UCSD–UT link is the best. Hence
downloading strategies should download more data from the
good replica sites (UCSD, Thailand and UK) and less data from
the poor replica sites (India and UIUC). The basic downloading
algorithm gives the worst performance among all the algorithms
as shown in Fig. 4. In this algorithm, separate threads are
maintained for each replica server and hence data will be
downloaded from all the replica servers irrespective of the
distance between the replica servers and the clients. Thus it
downloads more data from the poor servers than the other
algorithms.

The fastest1 algorithm is able to reduce the number of
downloads from the bad replica sites since it considers
bandwidths and latencies on the links between the sites in order
to select the server for downloading a block. But the fastest1
algorithm gives poor performance (37% worse than collective
download) in inter-cluster configuration since it makes
assumptions about the impact of simultaneous downloads,
especially the assumption of round-robin scheduling of
network traffic at the server. In inter-cluster configuration,

the scheduling of network traffic on the WAN links follows
multiple complicated dynamics.

Though the ISD algorithm gives 15% less downloading
performance than the collective download, it is competitive
for inter-cluster configuration since its calculation of impact
of simultaneous downloads on a single download is generic
and valid for the WAN-based data transfers in the inter-
cluster configuration. Compared to fastest1, ISD downloads
significantly more number of blocks from the best server
(UCSD). Due to its dynamic impact calculation strategy, ISD
is able to automatically deduct that the interference between
simultaneous downloads from UCSD to UT is not as high or
pessimistic as calculated by fastest1. Accordingly, it is able to
completely eliminate one bad server (India) for downloading
and is also able to reduce the number of downloads from
another bad server (UIUC). The number of downloads from
moderate servers (UK and Thailand) are almost the same
as fastest1 since the ISD algorithm begins with the same
assumptions as fastest1 (equal impacts) and for moderate
servers, the actual impacts on downloads are determined only
at later stages of the algorithm.

The collective download algorithm, as shown in the previous
section, downloads data from only one replica, and in our inter-
cluster experiment, chooses the replica in UCSD since this is
the best replica server. For our experiment, it turned out that
downloading all blocks from the best replica is better than
downloading some of the blocks from other replicas. Hence
the collective download algorithm gives the best performance
among all the algorithms. In inter-cluster configuration where
clients and servers are located at different sites, the network
characteristics of the links between the 5 sites (servers) and UT
(clients) are much worse than the network characteristics of the
links between the clients. Hence, collective download, tuned for
handling this particular case, gives the best performance among
all the algorithms as shown in the Figure.

3.4. Chaotic configuration

In this configuration, 24 machines located in 6 sites, used
in the previous configuration, was used. 21 different replicas,
each for matrix size of 14 000× 14 000, were generated.2 Each
of the 21 replicas corresponded to a set of replica servers where
the matrix was distributed with block-cyclic distribution of a
particular block size. The number of servers in the set for a
replica were randomly generated between 2 and 24 and the
actual servers in the set were randomly chosen out of the 24
machines. The block size for a replica was randomly chosen
from 50, 100, 150, 200, 250 and 300.

Initially, a replica was randomly generated on a set of
replica servers with a particular block size. Then, a set of
machines was randomly chosen with another block size for
block-cyclic distribution. The parallel client program with the
four data download algorithms was run on these client machines
to download the data from the first set of replica servers to

2 We were not able to generate more than 21 replicas due to insufficient disk
space on our 8-node cluster.
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Fig. 5. Performance of algorithms with increasing number of data replicas.

the client machines. The times taken for the four algorithms
were noted. The client machines were then added as the second
replica set to the replica list. A new set of machines and a
new block size was used for running another parallel client
experiment with the four algorithms to download data from the
first 2 replica servers. This process was repeated 21 times. Thus,
for running the i th client application with the four different
download algorithms, i data replicas were made available. This
situation is similar to the usage in a grid environment where
different users execute their parallel applications at different
points of times leading to multiple parallel data/replicas and the
number of such replicas increase over a period of time.

Fig. 5 shows the performance of the 4 different downloading
algorithms for each of the 21 parallel client applications. The
number shown in parentheses in the graph represent the number
of machines used in the parallel client.

The figure shows a number of peaks. These correspond
to small number of machines used in the corresponding
client application. Smaller number of machines lead to lesser
parallelism in data downloads and hence larger execution
times taken for the algorithms. For data set 2, we find that
the collective download took longer time than even the basic
download algorithm. 2 replicas were available for the second
client parallel application. The first replica was distributed on
4 machines in UIUC, UK, UCSD and India while the second
replica was distributed on 6 machines in UK, UIUC, UCSD
and UT. Thus both the replicas were distributed on 4 sites each.
As explained in the previous section, the collective download
algorithm uses only one of the available replicas for download
while the other algorithms can potentially download data from
many replicas. For the second client application, collective
download algorithms used the second replica. Thus, collective
download was able to make use of only 4 sites while the other
download algorithms made use of the union of the sites in the
first 2 replicas, namely, 5 sites.

We also find that collective download gave significantly best
results when small number of machines were involved in the
client applications (data sets 4, 10, 11, 14, 15). When small

number of client machines are involved, there is small amount
of simultaneous downloads from a single server to multiple
clients. The ISD algorithm that is particularly suitable when
the impact of simultaneous downloads on a download is high,
has very few opportunities to choose the right server based on
impacts of simultaneous downloads when the number of client
machines are small. Thus, in these data sets, the collective
algorithm that has a simple strategy for data downloads
involving multiple sites, gave better performance than ISD.

When small number of data replicas were available (<16),
the ISD algorithm gave significant best results when the number
of client machines located in a single site/cluster were high
(data sets 8 and 12). For example, out of the 14 machines
used in the eighth client application, 4 machines were located
in UCSD, and 4 machines in UIUC. When large number
of machines are located in a cluster for a client application,
significant number of shared links are involved during data
transfers between the remote servers and the client machines
in the cluster. Hence the amount of interference due to
simultaneous data transfers between the remote servers and the
client machines in the cluster are high. Hence the ISD algorithm
that considers the impact of simultaneous download gave better
performance than collective download in these cases.

When the number of available data replicas are high
(>16), we find that the ISD algorithm consistently gave best
performance. As the number of replicas are increased, the
chances of finding and downloading from nearby replicas
increase. When the number of replicas are sufficiently large (in
our experiments, it is 16), the nearby data can be found within
the same site/cluster as the client machines. This leads to large
number of shared resources during data transfers, large amount
of impact due to simultaneous downloads, and hence increased
performance of ISD algorithms over the other algorithms.

In order to quantitatively understand the difference between
ISD and collective download algorithms for chaotic setting,
we define a metric, min avg bw(client machines, server list),
between the client machines and a list of machines, server list.
We calculate this metric by finding the averages of bandwidths
between a client, c, in client machines, and each machine in the
server list. We then find the minimum of these averages across
all the clients to form min avg bw(client machines, server list)
since the total download time for data transfers between
machines in server list and client machines is impacted by the
client with the slowest links to the other machines.

For ISD algorithm, we calculate the server list, for a given
client configuration, as the union of sets of replica servers
corresponding to all the previous replicas. This is because ISD
algorithm downloads data from multiple replica server sets. We
then denote the min avg bw for the server list as isd bw. For
collective download algorithm, for each existing replica, we
consider the replica server set corresponding to the replica as
the server list. We then find the min avg bw(client machines,
server list) between the client machines and the server list. We
then find the maximum of the min avg bw across all replicas.
This is because, unlike the ISD algorithm, the collective
download algorithm downloads data only from one replica
server set that is closest to the client machines. We denote the
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Fig. 6. Comparing ISD and collective algorithms in terms of approximate
predicted times.

maximum value as the coll bw. We then calculate the following
approximate predicted times for ISD and collective downloads:

isd pred time = 1/(client mc count × isd bw) (5)

collective pred time = 1/(client mc count × coll bw). (6)

The client mc count in the equations denotes the number
of client machines and takes into account the amount of
parallelism, i.e. more the number of client machines, more the
parallelism and less the download times as seen in Fig. 5.

Fig. 6 plots the isd pred time and the collective pred time
for the same 21 data points shown in Fig. 5. The bandwidths
in Table 1 were used to calculate the approximate predicted
times.

Comparing Fig. 6 with Fig. 5, we find that except for few
points, the relative performance between the 2 algorithms in
terms of the approximate predicted times as calculated by Eqs.
(5) and (6) closely correlates with the relative performance
between the 2 algorithms in terms of the actual execution times.
This confirms our hypothesis that the collective algorithm
performs the best when a single replica server set is closer
to the client machines than the other replica sets while the
ISD algorithm performs the best when all the existing replica
server sets are equally close to the client machines and when
the aggregate bandwidth due to downloading from multiple
replica sets is higher. Thus, based on the Eqs. (5) and (6), we
can predict and use the best algorithm under a given set of
conditions.

4. Related work

The Globus Toolkit, GT4 [11] has interfaces for replica cata-
loging, selection and management [6]. Various replica manage-
ment architectures have been developed for managing replica
placement [18,21] and efficient scheduling of computation and
data in data grids [22,26]. The work by Vazhkudai et al. [30] de-
scribes a generic prototype and various steps needed for replica
selection.

The efforts by Plank et al. [20] and Collins and Plank [10]
deal with replicas of data segments that are scattered on wide-
area resources and selection of appropriate data sources to
improve the performance of data transfers. Various algorithms
for replica selection were developed and evaluated. The main
purpose of their algorithms is to select appropriate data
sources and download from multiple data servers to a single
client resource. Similar to these efforts, the work by Yang
et al. [33] proposes a recursively adjusting coallocation scheme
for parallel downloads from multiple replica servers to a single
client. This problem of data transfers from multiple servers
to a single client is referred to as Plank–Beck problem [3].
This is useful in cases like downloading music file segments
and playing continuous music on a single client resource.
Our algorithms are mainly aimed for transferring parallel data
segments from multiple servers to multiple clients for execution
of parallel numerical application on the clients. The challenges
in multiple server–multiple client scenario are greater since the
server selection and data download on a single client can impact
the server selection and performance of data transfer on another
client.

The work by Collins and Plank [10] deals with four
parameters that can potentially impact the performance of
download algorithms: the number of simultaneous downloads,
the degree of work replication, the failover strategy and
the server selection algorithm. Of these, the number of
simultaneous downloads and the server selection algorithm
were found to be the two most important parameters. Our
work primarily deals with server selection algorithms. Our four
algorithms place no restrictions on the number of simultaneous
downloads. This can lead to more number of simultaneous
downloads than the optimal number. However, the results in
their work [10] show that there is negligible performance
difference (<2%) between maximum number of simultaneous
downloads and the optimal number. The other 2 parameters,
namely, the degree of work replication and failover strategy are
used to ensure reliability, guaranteed response times and fault-
tolerance. Our algorithms will be extended to encapsulate these
parameters in the future.

The work by Santos-Neto et al. [23] considers coscheduling
of computational tasks and data transfers. For data source
selection, they use a metric called storage affinity of a task
to a site, which is the amount of data needed by the task that
is contained in the site. They choose the task with the largest
storage affinity and schedules it on a computation resource
with the data source that can provide the largest storage affinity
value. Thus their strategy can lead to scenarios where a single
data host can be used by multiple tasks, increasing contention to
the data host. Their strategy is static in allocating the data host
for a task. The work by Venugopal and Buyya [31] chooses
a set of data replica hosts and computational resources for a
set of sequential data-intensive jobs. For each job, they employ
a set coverage-based mapping heuristic for choosing the least
number of data hosts that contain the data sets needed by the
job. They then find the minimum completion time (MCT) of
the job by evaluating different computational resources for the
chosen data hosts in terms of completion times. They then



Author's personal copy

656 S. Tikar, S. Vadhiyar / Future Generation Computer Systems 24 (2008) 644–657

employ the MinMin heuristic for choosing the next job among
the set of jobs in order to minimize the total makespan for
all the jobs. However, in their work, the choice of a data host
containing a data set needed by a job is static. In our work, the
data sets for a job/client is dynamically chosen depending on
the contention caused by the downloads from other clients.

The work by Khanna et al. considered scheduling a batch of
data-intensive jobs with batch-shared I/O behavior [14,15] and
also online scheduling of file-shared data-intensive jobs [12].
They employed hypergraph partitioning to schedule jobs for
reducing remote I/O operations for file transfers and assuming
unlimited disk cache sizes for compute nodes [12,15]. They
later developed a scheduling strategy based on 0–1 Integer
Programming and another scheduling strategy using bi-level
hypergraph partitioning to also consider replica placements and
selections with restrictions on disk cache sizes for compute
nodes [14]. In a more recent work [13], they have considered
the problem of scheduling a set of file transfers from one
of multiple possible sources/replicas to a set of destination
nodes across heterogeneous clusters to minimize the overall file
transfer completion time. Their methods also try to minimize
contention and maximize the parallelism in data transfers.
They propose two scheduling algorithms, one based on 0–1 IP
and the other based on max-weighted graph matching. In all
these efforts, they deal with accesses and transfers of entire
files needed for their independent tasks. In our work, each
task of a parallel application deals with segments of files.
They also assume single port model for data transfers where
multiple download requests to the same node are serialized
and also uniform contention on all links to a storage node.
Our work is generic and dynamically determines the weights
for contentions on different links for data transfers based on
observations. Moreover, their scheduling methodologies for
heterogeneous clusters [13] need network topology as one
of the inputs. In a dynamic grid environment, obtaining and
updating network topologies are non-trivial. Our work does not
assume knowledge of network topologies.

5. Conclusions

In this work, we have developed different algorithms for
the efficient selection of parallel data servers out of different
data replicas and efficient transfer of the parallel data from
multiple servers to multiple clients. The challenges involved
are much more complicated than for selection and transfer
of data from multiple servers to a single client for which
algorithms already exist. Apart from extending two basic
algorithms to our problem, we have also developed two new
advanced algorithms, namely, algorithm based on Impact of
Simultaneous Downloads (ISD), and collective download. The
relative performance of the algorithms depend on the network
characteristics of the links between the servers and the clients
and between the clients themselves. While collective download
algorithm gives good performance when the difference in
network characteristics is large and for small number of client
machines, the ISD algorithms give best performance when large
number of client machines are located in a single cluster/site

and when the number of replicas are large. In all cases, the
collective and ISD algorithms performed 15%–30% better than
the two basic algorithms.

6. Future work

The techniques mentioned in this paper will be inte-
grated into a real grid system, GrADSolve [28] which fol-
lows application-level scheduling for selecting computational
resources. A 3-way comparison will then be made between: 1.
when computational resources are chosen by the GrADSolve
scheduler and sequential data from the user is segmented and
distributed to computational resources, 2. when computational
resources are chosen by the scheduler, parallel data is already
available in data replica servers and data is moved from multiple
servers to multiple client resources, and 3. when computation is
performed on the “best” servers that already contain the parallel
data, i.e. when computation is moved to data.
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