
Fast and Accurate Learning of Knowledge Graph
Embeddings at Scale

Udit Gupta
Department of Computational and Data Sciences

Indian Institute of Science
Bangalore, India

uditgupta@iisc.ac.in

Sathish Vadhiyar
Department of Computational and Data Sciences

Supercomputer Education and Research Centre
Indian Institute of Science

Bangalore, India

vss@iisc.ac.in

Abstract—Knowledge Graph Embedding (KGE) is used to
represent the entities and relations of a KG in a low dimensional
vector space. KGE can then be used in a downstream task
such as entity classification, link prediction and knowledge base
completion. Training on large KG datasets takes a considerable
amount of time. This work proposes three strategies which lead
to faster training in distributed setting. The first strategy is
a reduced communication approach which decreases the All-
Gather size by sparsifying the Sparse Gradient Matrix (SGM).
The second strategy is a variable margin approach that takes
advantage of reduced communication for lower margins but
retains the accuracy as obtained by the best fixed margin. The
third strategy is called DistAdam which is a distributed version of
the popular Adam optimization algorithm. Combining the three
strategies results in reduction of training time for the FB250K
dataset from twenty-seven hours on one processing node to under
one hour on thirty-two nodes with each node consisting of twenty-
four cores.

Index Terms—Knowledge graph embeddings, distributed
learning, Horovod.

I. INTRODUCTION

A. KG and KGEs

A Knowledge Graph (KG) is a multi-relational graph com-

posed of entities as nodes and relations as edges. Each instance

in the KG is represented as a triple also called a fact. As the

name suggests, the triple contains three items out of which

two are entities and one is relation. The most commonly used

format is head entity, relation, tail entity; although the format

subject, predicate, object is also used. An example of such a

triple is Bangalore, cityIn, Karnataka where cityIn is a relation

connecting the two entities Bangalore and Karnataka. KGEs

are a way to represent the entities and relations present in the

graph as a low dimensional vector embedding. The purpose

of this representation is that the embeddings can be used in

downstream tasks such as entity classification, link prediction

and knowledge base completion.

B. Distributed Training (Machine Learning)

As the datasets become larger and the computational costs

of the algorithms increase, there is an increasing need for

distributed training of the model for improved scalability and

to explore large problems. The parameter server approach for

distributed training was proposed in [1]. In this approach the

data and computation is distributed among the workers and

the parameter server maintains the shared parameters. Training

data is divided into shards and each shard is handled by a

worker. Each worker calculates gradients with respect to the

shard allotted to it and sends them to the parameter server. The

parameter server aggregates gradients from all the workers and

updates the shared parameters accordingly.

The parameter server approach though widely used and

popular has the disadvantage of network bottleneck since many

workers communicate to few servers. Due to this disadvantage,

a new architecture called Ring-AllReduce was proposed by [2].

The working of Ring-AllReduce is as follows, the data to be

aggregated is divided into P chunks therefore the size of each

chunk is N
P where P is the number of processes and N is

the size of data within a process. Each process P sends its

Pth chunk to the (P+1)th process and receives (P-1)th chunk

from (P-1)th process, then it performs reduction on (P-1)th

chunk. In the next iteration, it sends the reduced chunk to the

next process and so on. After repeating the steps of Receive-
Reduce-Send P-1 times each process holds one of the reduced

chunks. The whole process has to be repeated (P-1) more times

(without reduction operation) such that each process obtains

all the reduced chunks.

In the case of machine learning, gradients calculated by

different workers need to be aggregated before updating the

parameters. The success of ring-allreduce algorithm in reduc-

ing communication bottleneck prompted its use in distributed

machine learning and served as motivation for Horovod [3]

which is currently the state-of-the-art framework for dis-

tributed training. In our work we use Horovod with Tensorflow

to parallelize the KGE learning process. In this work, we pro-

pose three efficient strategies for distributed learning of KGEs

using Horovod. The first strategy is Reduced communication
approach which decreases the All-Gather size by sparsifying

the Sparse Gradient Matrix (SGM). The second strategy is

Variable margin approach that takes advantage of reduced

communication for lower margins but retains the accuracy

as obtained by the best fixed margin. The third strategy is

DistAdam which is a distributed version of the popular Adam

optimization algorithm [4]. This strategy suggests changes that

need to be made to hyperparameters including learning rate for

fast and accurate optimization in distributed mode. DistAdam
is proposed as a general distributed optimization algorithm

173

2019 IEEE 26th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/19/$31.00 ©2019 IEEE
DOI 10.1109/HiPC.2019.00030

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:44:47 UTC from IEEE Xplore. Restrictions apply.

which is applicable for all machine learning problems.

Combining the three strategies results in reduction of train-

ing time from twenty-seven hours on one processing node

to under one hour on thirty-two nodes for FB250K dataset.

The speedup was obtained without compromising the model

accuracy.

Section II describes related work in distributed training

of machine learning models. Section III provides back-

ground on KGE models and distributed learning using the

Horovod framework. This section also provides profiling re-

sults highlighting the performance bottlenecks with the base-

line Horovod strategy. In Section IV, all the three strategies

for performance improvement of distributed training of KGE

models are explained in detail. Section V presents details

on experimental setups, and gives results and observations

with the proposed strategies. Section VI gives conclusions and

future work.

II. RELATED WORK

Zhang et al. [5] proposed a parallel framework to make

KGE training faster. The objective of their model was to avoid

collisions when the same embedding vector is updated by

two different processors. The embedding vectors are updated

without synchronizations. This work is applicable only for

shared memory systems. ParaGraphE [6] proposes a multi-

threaded implementation which reduces the training time, but

this approach is also restricted to the shared memory paradigm.

A recent work by Goyal et al. [7] trained a deep learning

model (Resnet-50) on Imagenet dataset using 256 workers in

one hour, achieving scaling efficiency of 90% while main-

taining the accuracy. They used distributed synchronous SGD
algorithm for multi-worker training, and MPI Allreduce [8]

(an MPI collective operation) for gradient aggregation. Ben-

Nun et al. [9] found out that Map-Reduce posed a hindrance

to deep neural network specific optimizations and MPI was

better suited to implement fine grained parallelism features.

Motivated by good performance achieved by MPI based

methods of distributed training on deep learning tasks, this

work explores the approaches to make KGE training faster in

distributed memory systems using Horovod [3].

Various models have been proposed to learn KGEs. One

of the common models is the TransE [10]. TransE achieved

major improvements in terms of accuracy as compared to its

predecessors, also it is a less complex model and requires rela-

tively fewer parameters. TransE’s success served as motivation

for current state-of-the-art models for learning KGEs. TransH
[11] was proposed to better capture the mapping properties

of relations. It is similar to TransE except that the relation is

represented by two embeddings instead of one. Each relation is

modelled as a hyper-plane along with the translation operation.

Due to the large size of KGs, learning of KGEs takes a

considerable amount of time. Our aim is to reduce the training

time using distributed training.

III. BACKGROUND

A. KGE Models

TransE and similar models use a margin based ranking

loss function which encourages lower error for the correct

triple present in the KG and higher error for the corrupted

triple. The corrupted triple is constructed from the correct

triple by replacing either the head entity or tail entity with

some random entity present in the KG. The parameters, i.e.

the low dimensional representation of entities and relations,

are initialized randomly and an optimization algorithm such

as SGD is used for updating the parameters such that the loss

function is minimized.

The basic structure of the loss function is:

L =
∑

(h,r,t)∈S

∑
(h′,r′,t′)∈S′(h,r,t)

max[0, fr(h, t)+γ−fr′(h
′, t′)]

(1)

Here, S is a set of correct training triples and S ′(h,r,t) is the

set of corresponding corrupted triples. fr(h, t) is the model

specific score function and γ is the margin. The correct triple

is expected to have a lower score and the corrupted triple

is expected to have a higher score. The major differentiating

factor among the KGE models is the formulation of score

function. In the TransE model, each entity and each relation

is represented by a low dimensional vector embedding (of size

say 50 or 100). The score function of TransE is given by:

fr(h, t) = d(h+ r, t) (2)

where d(.) is a distance metric and is generally taken to be

the L1 norm.

TransH uses the following score function:

fr(h, t) = d(h⊥ + dr, t⊥) (3)

where h⊥ = h− wT
r hwr and t⊥ = t− wT

r twr

h⊥ and t⊥ are the projections of embeddings of h and t on the

relation specific hyper-plane wr; dr is the translation vector

for a relation.

B. Accuracy Metrics

We follow standard evaluation protocol for link prediction

as was followed by TransE [10]. We present results for three

metrics i.e. Mean Rank (avg), Hits@10 (avg) and Triple

Classification Accuracy (TCA). Mean rank (tail), for a test

triple, is calculated by replacing the tail by every other entity in

the KG and calculating the score function; the scores are then

ranked in ascending order and the rank of the correct triple is

noted. This procedure is repeated for every instance in the test

set and the ranks are averaged to get the Mean Rank (tail).

Similarly, Mean Rank (head) metric is obtained by replacing

the head. Mean Rank (avg) is calculated by averaging the

Mean Rank (tail) and Mean Rank (head). For Hits@10 (avg),

similar approach of averaging is followed where Hits@10 (tail)

and Hits@10 (head) are averaged. The Hits@10 metric is

computed by considering the correct entities ranked in the top

ten after sorting them according to the score function’s output.

174

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:44:47 UTC from IEEE Xplore. Restrictions apply.

The setting described above is termed as raw. We also used

the filtered setting proposed by Bordes et al. [10] in which the

corrupted triples occurring in the dataset were not considered

for ranking. Another metric used is TCA, which is a binary

classification metric which predicts whether the given triple is

correct or incorrect (based on the learned KGEs).

C. Distributed Learning of KGE using Horovod: Baseline
Strategy and Performance Bottlenecks

Horovod [3] is a distributed training framework which has

been shown to be better than parameter server approach for

deep learning tasks as it provides a network optimal way

of aggregating gradients. Horovod’s success in distributed

training of deep learning tasks prompted its use in our work

as KGE models are essentially single layer learning models.

In Horovod, global averaging of gradients across multiple

workers is done using All-Reduce or All-Gather algorithm. In

All-Reduce, the gradients corresponding to the whole embed-

ding matrix are averaged and hence it corresponds to dense

updates. In All-Gather, only active1 indices and corresponding

rows of gradients are collected (gathered) and hence it corre-

sponds to sparse updates. For KGE models, dense updates are

not efficient because a batch of input will involve only a certain

number of entities and relations (much less than total number

of entities and relations). So, applying All-Reduce on the whole

embedding matrix will lead to unnecessary communication of

zeros. In this work, we aggregate gradients using the sparse

mode.

In all our experiments, the batch size per worker is fixed

at 10,000. When k workers are involved in the training

process, then the effective batch size becomes 10, 000 × k.

The gradients are calculated locally by each worker w.r.t to

the current batch of training instances and communicated

across multiple workers using MPI. A synchronous distributed

strategy is followed where all workers maintain the same set

of parameters after an update has been made.

We conducted experiments with the above baseline strat-

egy of Horovod to identify potential performance and

scalability bottlenecks. The experiments were performed

on the FB250K dataset2. The learning rate was selected

from {0.01, 0.001, 0.0001} and margin was selected from

{1, 2, 3, 4, 5}. Optimal values were, learning rate = 0.0001 and

margin = 3. For establishing a baseline in distributed setting,

linear scaling rule was used [12] as this is the widely adopted

default strategy when training using multiple workers.

1) Profiling Results: Results in this section and subsequent

sections on profiling have been obtained using Tuning and

Analysis Utilities (TAU) [13] v2.27.

At any given time, a worker could be in one of the following

phases:

1) Local computation phase : Each worker calculates its

local gradients corresponding to the batch it is currently

handling. This phase also includes the time required

1Here active refers to the entities present in the current batch
2The dataset is described in section V-A1.

No.
of

Nodes

AG
Time
(hrs)

Other
Time
(hrs)

Total
Time
(hrs)

EFC
TCA
(%)

MR Hits@10

——— raw filter raw filter
1 0 27.02 27.02 800 89.06 4883 359 0.245 0.592
2 11.64 14.16 25.80 798 89.45 4909 345 0.250 0.600
4 11.29 9.07 20.36 727 89.42 4911 346 0.248 0.601
8 9.98 7.11 17.09 778 89.58 4920 331 0.252 0.606
16 9.14 5.93 15.07 793 89.73 4951 336 0.253 0.610
32 8.95 4.88 13.83 780 89.75 4953 334 0.254 0.611
64 9.62 4.18 13.80 796 89.73 4965 336 0.252 0.611

TABLE I: Results for Baseline Model

Fig. 1: Breakdown of Total time for multiple nodes (Baseline)

for the All-Gathered gradients to be applied to their

respective parameters.

2) Negotiation phase: Computation time of workers will be

different. Therefore, some workers may need to wait for

other workers to finish their computations.

3) All-Gather phase: After every worker has completed

their computations, each worker communicates its local

gradients to every other worker for aggregation.

The Profiling results on FB250K dataset are presented in

Table I. The times have been split up into All-Gather time
and Other time. Other time includes the Local computation

phase and Negotiation phase as mentioned above. Model is

trained till convergence3. In Table I EFC stands for Epochs for

Convergence, TCA stands for Triple Classification Accuracy

and AG Time is the All-Gather Time.

From Figure 1, we observe that though the Other time is

decreasing, All-Gather time remains almost constant which

leads to saturation. From Table I we observe that the accuracy

of model trained in distributed mode is at par with the accuracy

obtained using single node training. The drawback of baseline
is that the model takes too many epochs to converge which

leads to longer training time.

Thus, the following improvements need to be made to

eliminate the performance and scalability bottlenecks in the

baseline multi node strategy. All-Gather time needs to be

reduced as it forms a significant percentage of overall time

for higher number of nodes. In order to decrease the total

training time we formulate an accurate distributed optimization

algorithm which takes fewer epochs for convergence.

3convergence criteria mentioned in section V-A3

175

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:44:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Similarity between %NNZ rows in SGM and Loss

value

IV. STRATEGIES FOR SCALABLE KGE LEARNING

In this section, we discuss three different strategies for im-

proved performance and scalability in the distributed learning

of KGEs. These strategies are generic and can be applied to

different models. The first two techniques, namely, reduced
communications and variable margin can be applied to any

model which uses a margin based ranking loss function.

The third technique, the DistAdam Optimizer is a general

optimization algorithm for distributed setting. It is not limited

to the training of KGE models but can be applied to other

domains including distributed deep learning.

A. Avoiding Zero-row Communications

It was observed that as the training progresses, many rows

(corresponding to the parameters in indices array) of SGM

become zero rows. This is because of the formulation of

margin based ranking loss function (refer Equation 1). Such

behavior is observed because as the training progresses and

embeddings are learnt, the score function (refer Equation 2)

for many correct triples decreases (desired behavior). The loss

value for such triples becomes zero resulting in the gradients

of the corresponding parameters also to be zero. Another

explanation for this observation is the following. Gradient

represents the amount of update to be made to a parameter.

Initially, the parameters are randomly initialized and hence

more number of parameters need to be updated. Hence, the

Number of Non-Zero (NNZ) rows in the SGM is more (i.e.

less sparse). In later stages of training much of the learning

has already happened, hence less number of parameters need

to be updated. Thus, the Number of Non-Zero (NNZ) rows

in the SGM is less (i.e. more sparse). To confirm the above

theory, experiments were performed on FB15K dataset on a

single node. %NNZ rows in SGM was calculated for the first

batch in each epoch and plotted against the loss for that epoch.

Figure 2 shows that the %NNZ value decreases in a similar

way as the training loss decreases. This implies that the full

SGM need not be communicated in the multi-node setting.

We can only communicate the NNZ rows without impacting

accuracy of the model. This method of selectively sending the

NNZ rows greatly reduces the All-Gather size in sparse mode,

and hence reduces the communication time.

(a) Comparison of %NNZ gradients for two margins

(b) Comparison of Validation Accuracy for two margins

Fig. 3: %NNZ gradients and Validation Accuracy for two

margins

B. Variable Margin Approach

The loss function mentioned in Equation 1 has a γ term

which is the margin hyperparameter. The tuning of γ is done

along with other hyperparameters such as learning rate and

batch size. In the distributed setting, the effective batch size

is k × n, i.e the batch size keeps changing as we change the

number of workers. This also means that the γ value that

gives best validation accuracy for k = 1 may not be the

best option for (say) k = 32. Continuous tuning of γ as the

number of workers change, is a tedious and time consuming

process. Instead, γ can be made self-adaptive. This is our first

motivation for Variable Margin approach.

The value of γ directly affects the loss function value

(refer Equation 1). The higher the γ, the higher is the loss

value. According to the training objective we want lesser

score function value for correct triple and higher score value

for incorrect triple. A triple in the training data will either

incur zero loss or a positive loss depending on the difference

between the scores and γ value. It was shown in Figure 2

that the %NNZ gradients decrease as the loss value decreases.

This means, for lesser loss value we obtain lesser %NNZ

gradients which in turn reduces the All-Gather size. Reducing

communication volume for multi-node setting is our second

motivation for Variable Margin approach.

Plots supporting this theory are shown in Figures 3a and

3b. For these plots, experiments were performed on FB15K

dataset and models trained till convergence. On this dataset,

best validation accuracy is achieved with η = 0.001 and γ =

5. γ = 1 has been used for comparison.

176

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:44:47 UTC from IEEE Xplore. Restrictions apply.

It can be seen from Figure 3a that the %NNZ for γ = 1 is

much less than the %NNZ for γ = 5. Although γ = 1 has the

advantage of lesser All-Gather size, it performs poorly on the

validation data as is shown in Figure 3b.

Ideally, we would like to maintain the validation accuracy

as achieved by γ = 5 and also have lesser %NNZ for reduced

All-Gather size as achieved by γ = 1. In this section we

propose an approach to gradually change the margin such that

both the desired properties can be achieved.

A very high value of margin allows the scores of correct

and incorrect triples present in training data to be further apart.

This generates embeddings which are suited for training data

but performance on validation data is poor. In general, less

value of margin may lead to under-fitting and high value of

margin may lead to over-fitting of training data. Figure 3b

shows that the validation accuracy for γ = 1 is better than

that of γ = 5 for the first 150 epochs, but after that learning

saturates for γ = 1. In our approach, we start with a lesser

value of margin, such as γ = 1 and increase it dynamically

until it reaches γ = 5. This has two advantages, first is the

reduction in All-Gather size and second is higher validation

accuracy during initial epochs. To dynamically vary the margin

we link it to validation accuracy computed after each epoch.

If the validation accuracy does not improve for five or ten

consecutive epochs we increase the margin by five percent.

After increasing the margin if the validation accuracy still does

not improve for another ten epochs we increase the margin

steeply i.e. by ten percent.

C. DistAdam: Adam Optimizer for Large Scale Training

In this section, we propose Adam optimizer for distributed

(synchronous) training called DistAdam. Until now, for multi-

node case we have used the linear scaling rule [7] which is

formulated for SGD optimizer. Though Adam optimizer [4]

is popular and works better than its contemporaries, there has

not been an attempt to adapt it for distributed scenario. For

the baseline model in Section III it was shown in Table I that

the number of epochs for convergence is too high for multi-

node setting. Formulation of an accurate optimization strategy

will lead to fewer number of epochs for convergence thereby

reducing the training time.

The Adam optimizer algorithm proposed by Kingma and

Ba. [4] does not mention the batch size, so some changes are

made in the notations to incorporate the batch size.

f(θ) : Objective function with parameters θ
gt,i : gradient of f w.r.t θ evaluated at timestep t

for training instance i
mt : 1

st order moving average at time t

vt : 2
nd order moving average at time t

η : Base learning rate

αt =

√
1−βt

2

1−βt
1

Rule for updating the parameters is mentioned below in

Equation 4

θt+1 ← θt − η · αt+1 · mt+1√
vt+1 + ε

(4)

Equations written below are for mt+1; for vt+1, replace β1 by

β2 and gt,m by g2t,m.

mt+1 = β1 ·mt + (1− β1) · gt+1,1 + gt+1,2 + · · ·+ gt+1,n

n

mt+k = β1·mt+k−1+(1−β1)·
gt+k,(k−1)n+1 + · · ·+ gt+k,kn

n

In general,

mt+p = β1 ·mt+p−1 + (1− β1) ·

n∑
j=1

gt+p,(p−1)n+j

n

Define g(t, p, n) =

n∑

j=1
gt+p,(p−1)n+j

n
Therefore,

mt+p = β1 ·mt+p−1 + (1− β1) · g(t, p, n) (5)

Similarly,

vt+p = β2 · vt+p−1 + (1− β2) · g2(t, p, n)
1) Correctly weighting moving averages: After k small

batches of size n, the first order moving average m becomes:

mt+k = β1 ·mt+k−1 + (1− β1) · g(t, k, n)
= β2

1 ·mt+k−2 + (1− β1) · [β1 · g(t, k − 1, n) + g(t, k, n)

...

= βk
1 ·mt + (1− β1) · [βk−1

1 · g(t, 1, n)+
βk−2
1 · g(t, 2, n) + β0

1 · g(t, k, n)]
(6)

Taking one step in the case of large batch size kn, the
first order moving average m̂ becomes (hat has been used
to differentiate large batch with small batch):

m̂t+1 = β1 ·mt + (1− β1) · gt+1,1 + gt+1,2 + · · ·+ gt+1,kn

kn
= β1 ·mt + (1− β1) · g(t, 1, kn)

(7)

Note that mt in first part of Equations 6 and 7 is the same

since it is considered the starting point for both small and large

batch. Or in other words mt = m̂t. Ideally, we want value of

m after taking 1 large step should be equal to value of m after

taking k small steps. Currently, there is vast difference between

mt+k and m̂t+1 because in Equation 6, m is weighted by

βk
1 whereas in equation 7, m is weighted by β0

1 . We make

a few assumptions to ensure m̂t+1 ≈ mt+k. For SGD, the

assumption made by Goyal et al. in [7] (in terms of our

notation) is mentioned in equation 8.

k∑
j=1

g(t, j, n) = k · g(t, 1, kn) (8)

In Equation 6, g(t, 1, n) is weighted by βk−1
1 , g(t, k, n)

is weighted by β0
1 and so on. In the distributed case,

g(t, 1, n), g(t, 2, n), · · · , g(t, k, n) are computed by workers

individually and independently, so selective weighting of gra-

dients is not appropriate. Equation 6 contains gradients w.r.t

177

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:44:47 UTC from IEEE Xplore. Restrictions apply.

batch size n, whereas Equation 7 contains gradients w.r.t batch

size kn. To compare Equations 6 and 7, a stronger assumption

has been made, the assumption is:

g(t, 1, n) = g(t, 2, n) = · · · = g(t, k, n) (9)

From equations 8 and 9, following is inferred:

g(t, 1, n) = g(t, 2, n) = · · · = g(t, k, n) = g(t, 1, kn) (10)

Since g(.) is computed for a batch size of 10,000 in our case,
it can be argued that the assumption stated in Equation 10 is
true by Central Limit Theorem. Based on stated assumptions,
Equation 6 can be simplified as:

mt+k ≈ βk
1 ·mt + (1− β1) · g(t, 1, kn) · [βk−1

1 +

βk−2
1 + · · ·+ β0

1]

≈ βk
1 ·mt + (1− β1) · g(t, 1, kn) · 1 · (1− βk

1)

1− β1

≈ βk
1 ·mt + (1− βk

1) · g(t, 1, kn)
≈ m̂′t+1

(11)

The difference between Equations 7 and 11 is that β1 in
Equation 7 has been replaced by βk

1 in Equation 11. Finally,

for the large batch case, using m̂′t+1 is more appropriate
than using m̂t+1. Calculations can be worked out similarly
for v̂′t+1 as well, and we get:

m̂′t+1 = βk
1 ·mt + (1− βk

1) · g(t, 1, kn)
v̂′t+1 = βk

2 · vt + (1− βk
2) · g2(t, 1, kn)

(12)

For distributed setting with k workers

use βk
1β
k
1β
k
1 instead of β1β1β1 in case of m and use βk

2β
k
2β
k
2 instead of

β2β2β2 in case of v

Note: β1 and β2 used to calculate αt are not changed.
2) Scaling factor: Scaling factor refers to the scaling of

learning rate in case of large batch. Owing to less number of
updates in large batch, its learning rate needs to be multiplied
by a scaling factor such that its update value after one step
can match update value of small batch after k steps. From
Equation 4, after taking k small steps, the update will be:

θt+k = θt+k−1 − η · αt+k
mt+k√
vt+k + ε

= θt − η · [αt+1
mt+1√
vt+1 + ε

+ αt+2
mt+2√
vt+2 + ε

+

· · ·+ αt+k
mt+k√
vt+k + ε

]

(13)

After taking one large step, the update equation will be:

θ̂t+1 = θt − η̂ · [αt+1
m̂′t+1√
v̂′t+1 + ε

] (14)

Note that η̂ in Equation 14 is different from η in Equation

13 and in this section we determine the appropriate value of

η̂. (Note that according to linear scaling rule η̂ = kη)

According to Equation 11, mt+k ≈ m̂′t+1 and vt+k ≈ v̂′t+1.

The assumption that is made here is:

mt+1√
vt+1 + ε

≈ mt+2√
vt+2 + ε

≈ · · · ≈ mt+k√
vt+k + ε

≈ m̂′t+1√
v̂′t+1 + ε

Incorporating this assumption in Equation 13 and comparing
with Equation 14, we get:

η̂ · αt+1 = η ·
k∑

j=1

αkt+j

η̂ = η ·

k∑
j=1

αkt+j

αt+1

(15)

Scaling factor to use for k workers
k∑

j=1
αkt+j

αt+1
instead of k

The complete DistAdam algorithm is stated in Algorithm 1

Algorithm 1: DistAdam

η : base learning rate (say 0.0001)

β1, β2 ∈ [0, 1)
f(θ): Stochastic objective function with parameters θ
θ0: Initial parameter vector

m̂′0 ← 0 (Initialize 1st moment vector)

v̂′0 ← 0 (Initialize 2nd moment vector)

t← 0 (Initialize timestep)

while θt not converged do
g(t, 1, n)← ∇θft+1(θt)
All-Gather g(t, 1, n) from k workers and average to

generate g(t, 1, kn)

m̂′t+1 ← βk
1β
k
1β
k
1 · m̂′t + (1− βk

1β
k
1β
k
1) · g(t, 1, kn)

v̂′t+1 ← βk
2β
k
2β
k
2 · v̂′t + (1− βk

2β
k
2β
k
2) · g2(t, 1, kn)

αt+1 ←
√

1−βt+1
2

1−βt+1
1

scale =

k∑

j=1
αkt+j

αt+1

θt+1 ← θt − η · scale · αt+1 · m̂′t+1√
v̂′t+1 + ε

t← t+ 1
end

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

1) Datasets: In this work, we used three datasets, namely

FB15K, FB250K and Wiktionary English dataset. The FB15K

dataset has been used to gain insights and confirm the working

of proposed techniques. FB15K is an open-source dataset cre-

ated by Bordes et al. [10] by skimming the original Freebase

dataset [14], which is a very large dataset consisting of around

2 billion triples (facts).

FB15K dataset has 14951 unique entities, 1345 unique rela-

tions and close to 600k triples. To demonstrate the scalability

of the results, we created a dataset called FB250K. This dataset

is created by extracting most frequently occurring 250k entities

from the Freebase dataset and then selecting only those triples

which contained these entities. The FB250K dataset has about

16 million facts, 240k entities and 9280 relations.

178

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:44:47 UTC from IEEE Xplore. Restrictions apply.

The Wiktionary English [15] dataset was created by extract-

ing the most frequently occurring one million entities and

selecting triples containing only these entities. This resulted

in six million training instances.

The datasets were divided into train, valid 1, valid 2
and test. FB15K dataset already has three splits i.e. train,

validation and test. The validation set was split in two halves to

generate valid 1 and valid 2. For FB250K dataset, instances

were randomly chosen to be in either of the 4 splits with

different probabilities. FB250K dataset has ∼15.1 million train

instances, ∼375k instances each in valid 1 and valid 2 and

∼50k test instances. For the multi-worker setting involving

k workers, the dataset is partitioned into k equal portions

and each worker samples batches randomly from the partition

of dataset available to it. Therefore, at each training step,

we sample non-overlapping portions of the dataset which

eliminates redundancy. The batch size per worker is fixed at

10,000.

2) Metrics: We compare in terms of both performance and

accuracy. For evaluation of accuracy, we use the accuracy

metrics described in Section III-B. For Triple Classification

Accuracy (TCA), δr is the threshold learned individually for

each relation and valid 1 split is used to learn the optimum

value of δr. For a given triple in valid 2, the score function is

calculated using the learnt embeddings and if this value is less

than the threshold δr, then the triple is classified as correct or

incorrect otherwise. After each epoch, TCA is calculated on

valid 2 split (after optimizing δr on valid 1). This value of

TCA is called validation accuracy in this work and is used to

ascertain the convergence behavior of the model. Finally, after

convergence, TCA is calculated on the test set.

3) Model: TransE [10] has been used to compare results

across multiple workers and Horovod [3] has been used as

the distributed training framework. The dimensions of the

vector embedding for both, entities and relations, is set as

100. Construction of incorrect triples is done by generating

one negative sample per training instance in which either

the head or the tail entity is corrupted randomly. Margin

hyperparameter is chosen among values{1, 2, 3, 5, 10} based

on validation accuracy. Adam optimizer [4] has been used for

all KGE models unless otherwise specified. The preliminary

experiments have been performed on our lab server with

Intel(R) Xeon(R) CPU E5-2670 processor which has 32 cores.

The experiments with FB15K dataset have been done on this

machine and OpenMPI has been used for spawning multiple

workers. Each experiment is run until convergence and the

best model is saved based on validation accuracy. The model

is said to have converged if the validation accuracy does not

improve for 40 consecutive epochs. Training is stopped at 800

epochs if convergence is not achieved by then. Selection of

hyperparameters such as learning rate and margin was done

on the basis of best validation accuracy.

4) Optimizer Selection: We performed experiments4 with

both SGD (Stochastic Gradent Descent) and Adam optimizer

4Experiments performed using single worker on FB15K dataset

No.
of

Nodes

AG
Time
(hrs)

Other
Time
(hrs)

Total
Time
(hrs)

EFC
TCA
(%)

MR Hits@10

——— raw filter raw filter
1 0 11.32 11.32 323 88.24 4826 380 0.246 0.582
2 0.73 6.32 7.05 425 89.00 4812 357 0.251 0.592
4 0.78 2.61 3.39 359 88.77 4869 352 0.251 0.597
8 1.06 1.57 2.63 403 89.11 4878 340 0.255 0.601
16 0.58 0.90 1.48 350 88.68 4956 346 0.254 0.605
32 0.40 0.56 0.96 387 88.89 4925 347 0.256 0.607
64 0.62 0.32 0.94 293 88.93 5086 361 0.254 0.608

TABLE II: Results for Combined Approach

Fig. 4: Speedup comparison of proposed models

and found that better validation accuracy was obtained using

Adam optimizer.

5) Parallel System: Our primary experiments were per-

formed on a CrayXC40 supercomputing system in Supercom-

puter Education and Research Centre (SERC) in our Institute.

The cluster has nodes with Intel Haswell processors running

at 2.5 GHz and connected using Cray Aries interconnect. We

used up to 64 nodes for our experiments where each node has

2 CPU sockets with 12 cores each and 128GB RAM.

B. Results

We show results for each of the three individual strategies

described in Section IV and also with the combination of the

strategies.

1) Combined Approach: In this section, results are pre-

sented for combined approach that is a combination of all the

three strategies presented in Section IV. We present results of

Combined approach on the FB250K dataset in Table II.

We observe that the evaluation metrics shown in Table II

are similar to evaluation metrics shown in Table I which is the

desired behavior. The major difference between the two tables

is in terms of total training time. There is significant decrease

in total time using the combined approach as compared to

baseline.

We present speedup results in Figure 4. The speedups are

calculated w.r.t to single node baseline time i.e. 27 hours.

Training time of combined approach on 32 nodes is just 58

minutes whereas that of single node baseline is 27 hours and

32-node baseline is 13.8 hours. Therefore, with 32 nodes, the

combined approach gives a speedup of 28 when compared to

179

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:44:47 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Illustration of decrease in training time per epoch as

training progresses

No.
of

Nodes

AG
Time
(hrs)

Other
Time
(hrs)

Total
Time
(hrs)

EFC
TCA
(%)

MR Hits@10

——— raw filter raw filter
1 0 27.02 27.02 800 89.06 4883 359 0.245 0.592
2 1.22 11.78 13.00 798 89.45 4909 345 0.250 0.600
4 1.31 5.63 6.94 727 89.42 4911 346 0.248 0.601
8 1.57 3.37 4.94 778 89.58 4920 331 0.252 0.606

16 1.33 2.05 3.38 793 89.73 4951 336 0.253 0.610
32 0.97 1.18 2.15 780 89.75 4953 334 0.254 0.611
64 2.39 1.09 3.48 796 89.73 4965 336 0.252 0.611

TABLE III: Results for Reduced Communication Approach

single-node baseline and a speedup of 14.27 when compared

to 32-node baseline.

2) Reduced Communication: We show results with the first

strategy of avoiding communication of zero-rows described

in Section IV-A. We ran experiments on the large dataset

FB250K and found that there was significant reduction in

training time. As was shown in Figure 2, the NNZ gradient

rows decrease as the training progresses. Hence, we obtain

decrease in training times with the number of epochs. In the

plots shown in Figure 5, time per epoch decreases (in general)

as the training progresses. This method results in lesser com-

munication volume i.e. lesser All-Gather size without affecting

the accuracy.

Table III shows the results for FB250K dataset using the

reduced communication approach. For 32 nodes the reduced

communication strategy is 6.5X faster than the baseline multi-

node strategy. Note that the accuracy evaluation metrics in

Table I and Table III are the same. This is because reduced

communication approach reduces All-Gather size without im-

pacting accuracy).

Figure 6 compares the multi-node baseline and reduced

communication strategy (denoted by B and R respectively).

We observe that the total time has decreased significantly as

compared to baseline. This is largely attributed to decrease in

All-Gather time.

3) Variable Margin Approach: From Figure 7 we observe

that the validation accuracy for the Variable Margin approach

is better than the best validation accuracy achieved for fixed

margin. Also, we observe that the Variable Margin curve

overlaps the γ = 1 curve for initial epochs but does not

Fig. 6: Comparison of total training time for Baseline vs

Reduced Communication model

Fig. 7: Comparison of Validation Accuracy for Variable Mar-

gin Approach

saturate early as that of γ = 1.

Figure 8 shows the variation of %NNZ gradients with

epochs. It shows that %NNZ for Variable Margin is lesser

than best fixed margin of 5 (except for few later epochs), hence

allowing the All-Gather size to be less as well.

4) DistAdam: Simulations in support of DistAdam5:
First, we show simulations for correct weighting of moving

averages. We show comparisons between:

1) mt+k i.e. m generated sequentially using small batches,

considered as ground truth. (refer Equation 6)

Fig. 8: Comparison of %NNZ gradients for Variable Margin

Approach

5Code available at https://github.com/UditGupta10/DistAdam

180

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:44:47 UTC from IEEE Xplore. Restrictions apply.

(a) Comparison of m by simulation

(b) Comparison of v by simulation

Fig. 9: Simulations for m and v values

Fig. 10: Comparison of Proposed Scaling factor with Simu-

lated Scaling factor

2) m̂t+1 i.e. m generated by default using large batches.

(refer Equation 7)

3) m̂′t+1 i.e. m generated by Distadam using large batches.

(refer Equation 12)

In Figures 9a and 9b, (1) sub-figure represents values gener-

ated sequentially using small batch (but shown at k intervals)

to mimic large batch behavior; this is the ground truth. (2)

sub-figure represents values generated by default setting using

large batch. (3) sub-figure represents values generated by

DistAdam using large batch.

Now, we show simulations for scaling factor. The aim is

that the sum of k updates using small batch should be equal

to one update using large batch.

Figure 10 shows that the proposed scaling factor mimics

the ground truth scaling factor. Also, the scaling factor

corresponding to linear scaling rule is not an ideal choice

during initial iterations although the proposed scaling factor

approaches the linear scaling rule during later iterations.

Experiments with FB15K dataset
The best validation accuracy is achieved using (η) = 0.001

and (γ) = 5. Validation curve obtained using DistAdam for

(a) Comparison of Validation accuracy for Linear Scaling Rule and
DistAdam

(b) Comparison of %NNZ for Linear Scaling Rule and DistAdam

Fig. 11: Comparison of Validation accuracy and %NNZ for

Linear Scaling Rule and DistAdam

16 workers is shown in Figure 11a and is compared with the

linear scaling rule for 16 workers. Validation curve for one

worker serves as the baseline.

Though the maximum validation accuracy achieved by

DistAdam and linear scaling rule are almost same, but Dis-
tAdam converges two hundred epochs earlier than the latter

which saves training time. Figure 11b shows that %NNZ for

DistAdam is always lesser than that of other two cases, thereby

resulting in lesser All-Gather size.

5) Results with Wiktionary English dataset: In this section

we present results using Wiktionary English dataset. The best

validation accuracy is achieved using η = 0.001 and γ = 7.

For variable margin strategy the margin was varied from 1 to

7 dynamically.

Figures 12a and 12b show the results for accuracy and

performance, respectively (speedup calculated w.r.t single node

baseline). We find that the combined approach gives similar

accuracy as baseline. As shown in the performance results,

the combined approach with 16 nodes gives 35X speedup

when compared to a single-node baseline, 6X speedup when

compared to 16-node baseline and more than 2X speedup

when compared to reduced communication approach.

6) Results with TransH Model: The results presented till

now for all sections were performed using TransE model. But

the approaches proposed in Section IV are not specific to

TransE only. These techniques can be applied to other KGE

models as well. Here we show the results of experiments per-

formed on TransH [11] model using the Combined approach.

Figure 13a shows the Hits@10 comparison for baseline vs

181

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:44:47 UTC from IEEE Xplore. Restrictions apply.

(a) TransE with WK1M - Accuracy comparison of Base-
line and Combined Approach

(b) TransE with WK1M - Speedup comparison of proposed
models

Fig. 12: TransE with WK1M - Accuracy and Speedup

combined approach. We observe that the combined approach

gives better accuracy than the baseline. Figure 13b shows the

speedup comparison for reduced communication approach vs

combined approach. We observe that combined approach gives

better speedup than the reduced communication approach.

VI. CONCLUSIONS AND FUTURE WORK

In this work we proposed three strategies to decrease

the training time of KGE models. The fundamental strategy

is the reduced communication strategy which significantly

reduces the All-Gather size (and hence All-Gather time) as

training progresses. Variable margin strategy increases the

margin dynamically to decrease the All-Gather size. DistAdam
algorithm proposes changes to be made to Adam optimizer

such that it can be used accurately on large scale with multiple

workers. Experiments show that it leads to faster convergence

as compared to the default linear scaling rule for multiple-

workers. Finally, we combine these three techniques and obtain

a speedup of 28 on 32 nodes for TransE and 12.4 on 16 nodes

for TransH on FB250K dataset. As future work, we plan to

decrease the size of All-Gather even further, explore more

robust techniques for variable margin and compare different

methods of scaling the learning rate in DistAdam algorithm.

REFERENCES

[1] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed machine
learning with the parameter server,” in 11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14), 2014, pp.
583–598.

(a) TransH - Accuracy comparison of Baseline and Com-
bined Approach

(b) TransH - Speedup comparison of proposed models

Fig. 13: TransH - Accuracy and Speedup

[2] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce algorithms for
clusters of workstations,” Journal of Parallel and Distributed Comput-
ing, vol. 69, no. 2, pp. 117–124, 2009.

[3] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

[4] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[5] D. Zhang, M. Li, Y. Jia, Y. Wang, and X. Cheng, “Efficient parallel
translating embedding for knowledge graphs,” in Proceedings of the
International Conference on Web Intelligence. ACM, 2017, pp. 460–
468.

[6] X.-F. Niu and W.-J. Li, “Paragraphe: a library for parallel knowledge
graph embedding,” arXiv preprint arXiv:1703.05614, 2017.

[7] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: training
imagenet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[8] W. Gropp, W. D. Gropp, A. D. F. E. E. Lusk, E. Lusk, and A. Skjellum,
Using MPI: portable parallel programming with the message-passing
interface. MIT press, 1999, vol. 1.

[9] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” ACM Computing Surveys
(CSUR), vol. 52, no. 4, p. 65, 2019.

[10] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Ad-
vances in neural information processing systems, 2013, pp. 2787–2795.

[11] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes.” in AAAI, vol. 14, 2014, pp. 1112–1119.

[12] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[13] B. Mohr, A. D. Malony, J. E. Cuny, and B. M. A. D. Malony, “Tau-
tuning and analysis utilities for portable parallel programming,” 1995.

[14] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: a collaboratively created graph database for structuring human
knowledge,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. AcM, 2008, pp. 1247–1250.

[15] Wikimedia, “Wiktionary RDF extraction,” https://wiki.dbpedia.org/
wiktionary-rdf-extraction, 2014, [Online; accessed 20-Sep-2019].

182

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on December 23,2022 at 11:44:47 UTC from IEEE Xplore. Restrictions apply.

