
A Metascheduler For The Grid�

Sathish S. Vadhiyar
Computer Science Department

University of Tennessee
vss@cs.utk.edu

Jack J. Dongarra
Computer Science Department

University of Tennessee
dongarra@cs.utk.edu

Abstract

With the advent of Grid Computing, scheduling strate-
gies for distributed heterogeneous systems have either be-
come irrelevant or have to be extended significantly to
support Grid dynamics. In this paper, we describe a
metascheduling architecture for a Grid system that takes
into account both the application and system level consider-
ations. Results are presented to demonstrate the usefulness
of the metascheduler.

1. Introduction

There have been number of efforts in devising and/or
implementing scheduling strategies for heterogeneous dis-
tributed computing systems since the advent of Network of
Workstations (NOWs) [5], [14], [21], [8], [17], [18],
[2]. The Grid [6] is an abstraction of distributed heteroge-
neous systems and investigating the relevance of scheduling
strategies for heterogeneous systems to Grid environment
is a worthwhile effort. The work by Khaled Al-Saqabi et.
al [14] considers a 2D array of processors and time slices
and assigns the Virtual Processes (VPs) of the jobs to the ar-
ray. Scheduling based on time slices will lead to huge over-
head for the scheduling system when the scheduling strate-
gies have to be invoked frequently in response to frequent
Grid dynamics. The Load Sharing Facility [21] lays empha-
sis on distributing the jobs among the available machines
based on the workload on the machines. The assumption
that load sharing leads to good response times is not valid
in a Grid scenario where the network heterogeneity can sig-
nificantly affect the execution time of the application.

MARS [8] and more recently AppLeS [2] provide good
approaches for application level scheduling in meta com-
puting environments. AppLeS is more suitable for Grid en-
vironment with its sophisticated NWS [19] mechanism for
collecting system information. However, both MARS and

�This work is supported in part by the National Science Foundation
contract GRANT #E81-9975020, SC R3605-29200099, R01-1030-09.

AppLeS do not have powerful resource managers that can
negotiate with applications to balance the interests of differ-
ent applications. The absence of these negotiating mecha-
nisms in a Grid can lead to various problems like the bushel
of AppLeS problem [2].

In this paper, we describe a metascheduling architecture
that we have been building in the context of the GrADS
project [1]. The metascheduler receives candidate sched-
ules of different application level schedulers and imple-
ments scheduling policies for balancing the interests of dif-
ferent applications. The goals of the metascheduler include:

1. Verifying that the applications made their schedul-
ing decisions based on conditions of the system when
competing applications are executing.

2. Accommodating short running jobs by temporarily
stopping long running and resource consuming jobs.

3. Facilitating new applications to execute faster by stop-
ping certain competing applications.

4. Minimizing the impact that new applications can cre-
ate on already running applications.

5. Migrating running applications to new machines in re-
sponse to system load changes to improve the perfor-
mance or to prevent performance degradation.

In Section 2, we give a brief overview of the existing
GrADS project that utilizes application level scheduling. In
Section 3, we describe the metascheduler that we have been
building for GrADS environment. We explain in detail the
different components of the metascheduler and the mech-
anisms in the components to achieve the goals mentioned
above. In Section 4, we present experiments and results
to validate the usefulness of the metascheduler. In Section
5, we compare our metascheduler with related efforts. In
Section 6, we present some conclusions. In Section 7, we
mention some of the future plans for our metascheduler.

Figure 1. GrADS Architecture for Numerical
Libraries

User Grid Routine Resource
Selector

MDS

NWS

Performance
Modeler

Contract
Developer

Application
Launcher

Contract
Monitor

Application

2. The GrADS system

GrADS [1] is an ongoing research involving number of
institutions and its goal is to simplify distributed heteroge-
neous computing in the same way that the World Wide Web
simplified information sharing over the Internet. The Uni-
versity of Tennessee investigates issues regarding integra-
tion of numerical libraries in the GrADS system. In our
previous work [11], we demonstrated the ease in which nu-
merical libraries like ScaLAPACK can be integrated into the
Grid system and the ease in which the libraries can be used
over the Grid. We also showed some results to prove the
usefulness of a Grid in solving large numerical problems.
The architecture that was used in the work is illustrated by
Figure 1.

As a first step, the user invokes a Grid routine with
the problem he wants to solve along with the problem pa-
rameters. The Grid routine invokes a component called
Resource Selector. The Resource Selector accesses the
Globus MetaDirectory Service(MDS) to get a list of ma-
chines that are alive and then contacts the Network Weather
Service(NWS) to get system information for the machines.
The Grid routine then invokes a component called Perfor-
mance Modeler with problem parameters, machines and
machine information. The Performance Modeler through
an execution model built specifically for the application,
determines the final list of machines for application exe-
cution. By employing the application specific execution
model, GrADS follows the AppLeS approach to schedul-
ing. The problem parameters and the final list of machines
are passed as a contract to a component called Contract
Developer. The Contract Developer is primitive in that it
approves all the contracts that are passed to it. The Grid
routine then passes the problem, its parameters and the fi-
nal list of machines to Application Launcher. The Appli-
cation Launcher spawns the job on the given machines us-
ing Globus job management mechanism and also spawns a
component called Contract Monitor. The Contract Monitor
through an Autopilot mechanism [13] monitors the times

Figure 2. Metascheduler and interactions

Metascheduler

 Applications

Permisson
 Service

 Contract
 Negotiator

permission to execute on the Grid
Requests from applications for

from the applications
Application level schedules

the states of applications
Storing and retrieval of

Database
Manager

Expander

taken for different parts of applications and displays the ac-
tual and predicted times. Eventually the Contract Monitor
will be used for sending information about contract viola-
tions to a rescheduler which can in turn take corrective mea-
sures on the application execution.

3. Metascheduling in the GrADS architecture

The architecture shown in Figure 1 implements applica-
tion level scheduling through the use of execution model
built specifically for the application. The execution model
does not take into account the existence of other applica-
tions in the system. There are a number of potential prob-
lems with the application level scheduling implemented by
the architecture. First, when two applications are submitted
to the Grid at the same time, scheduling decisions will be
made for each application assuming the absence of the other
application. Second, in the above architecture, if, through
the performance model, a new job submitted to the Grid
system detects that the Grid resources are not sufficient for
it to execute, it cannot make further progress. Similarly,
a long running job that was submitted to the system can
severely impact the performance of new jobs that enter the
system. The root cause of the above and other problems is
the absence of a metascheduler that obtains the candidate
schedules from different applications and try to balance the
needs of different applications. The metascheduler is imple-
mented by the addition of four new components, namely,
database manager, permission service, contract negotiator
and expander, to the architecture shown in Figure 1. The
interactions between these different metascheduler compo-
nents and the interactions between the applications and the
metascheduler are illustrated by Figure 2.

The following subsections describe each of the
metascheduler components.

3.1. Database Manager

The database manager maintains a record for each appli-
cation submitted to the Grid system. The record contains
the state of the application, the resource information of the
Grid resources when the application entered the system, the
final list of machines on which the application executes, the
predicted time for the application etc. This information is
queried by the other components of the metascheduler to
make scheduling decisions.

3.2. Permission Service

Permission Service is a daemon that receives requests
from the applications to grant them permission to proceed
with the usage of the Grid system. The Permission service
checks if the Grid resources have adequate free memory to
execute the application. If the free memory of the Grid re-
sources is less than the free memory required by the appli-
cation, then executing the application on the resources will
lead to large execution time of the application due to fre-
quent access to local disks. Hence in this case, the Permis-
sion Service either denies permission for the request or tries
to accommodate the application by stopping an already exe-
cuting resource and time consuming application. The func-
tions of the Permission Service are illustrated by the pseudo
code in Appendix A.

3.3. Contract Negotiator

The Contract Negotiator component of the metasched-
uler is a daemon that receives application level schedules
from the applications. An application level schedule of an
application is the final list of machines that the application
obtains from the Performance Modeler through the employ-
ment of the application specific execution model. These are
the list of machines on which the application can potentially
execute. The application passes the problem parameters and
the application level schedule in the form of a contract to
the Contract Developer. The Contract Developer, instead of
approving the contracts of the applications under all con-
ditions, contacts the Contract Negotiator for obtaining ap-
proval of the application contract. The Contract Negotiator
acts as a queue manager controlling different applications of
the Grid system. The Contract Negotiator either approves
the contract in which case the application can proceed to
the application launching phase, or rejects the contract in
which case the application restarts from the resource selec-
tion phase. The Contract Negotiator rejects the contract un-
der the following conditions:

1. When the application has got its resource information
from NWS before an executing application started ex-
ecuting.

Figure 3. Life cycle of an application in the
Grid

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

User

Selection
Resource

the grid, machine parameters
current list of machines in

Requesting
Permission

Problem and machine
parameters

Permission

Selector
Resource

Permission
Service

Permission? Abort
No

Yes

The Permission Service
stopped another application,

Get new resource information

Application
Specific

Scheduling

Problem and machine
parameters

Modeler
Performance

Contract
Development

Contract output

Application specific schedule

Negotiator
Contract

Contract
approved?

No
Get new resource information
and develop a new contract

Application
Launching

Problem parameters,

final schedule

Application
Completion? Completed

Application Exit

Application
Launcher

Application was stopped
by Permission Service

Initial list of machines

Problem
Parameters

Permission

Application
specific schedule

Problem parameters,
final schedule

or by Contract Negotiator or by expander

Application specific schedule

signal
Wait for restart

Yes

2. If the performance of the new application can be im-
proved significantly in the absence of an executing ap-
plication. An executing application may have large re-
maining execution time and may be consuming large
number of resources, the availability of which can
significantly enhance the performance of the new ap-
plication. In this case, the contract negotiator either
waits for the executing application to complete or pro-
actively stops the executing application to accommo-
date the new application.

3. If the already executing applications can be severely
impacted by the new application.

1 and 2 have already been implemented while 3 is a work
in progress. The working of the Contract Negotiator is il-
lustrated by the pseudo code in Appendix B.

3.4. Expander

Expander is a daemon that tries to improve the perfor-
mance of the already executing applications. It queries the
database manager at regular intervals for completed appli-
cations. When an application completes, the expander de-
termines if performance benefits can be obtained for an al-
ready executing application by expanding the application to
utilize the resources freed by the completed application. If
the expander detects such an executing application, it stops
the application and continues the application on the new set
of resources. The pseudo code of the expander is given in
Appendix C.

The life cycle of an application and its interactions with
the metascheduler is shown in Figure 3.

Table 1. Machine specifications
Machine
name

Processor
type

Speed
(MHz)

Memory
(MByte)

Network

torc Pentium
III

550 512 100 Mb
switched
Ethernet

msc Pentium
III

933 512 100 Mb
switched
Ethernet

cypher Pentium
III

500 512 1 Gbit
switched
Ethernet

opus Pentium II 450 256 1.28
Gbit/sec
full duplex
myrinet

4. Experiments and Results

ScaLAPACK LU and QR factorization codes were in-
strumented such that the time taken for each iteration cor-
responding to a block of the matrix is measured and moni-
tored. Mechanisms have been implemented in the ScaLA-
PACK code that will enable the ScaLAPACK application
to be stopped and restarted on possibly different number
of processors. We use the Internet Backplane Protocol
(IBP) [12] for storage of the checkpoint states. IBP depots,
where storage can be allocated, are started on the processors
of the Grid System.

The GrADS experimental testbed consists of about 40
machines that reside in institutions across the country in-
cluding University of Tennessee, University of Illinois, Uni-
versity of California at San Diego, Rice University etc. For
the easy demonstration of our experimental results, our ex-
perimental testbed consists of a cluster in UIUC calledopus
consisting of 8 machines, a cluster in University of Ten-
nessee calledtorc consisting of 8 machines, another cluster
in University of Tennessee calledmscconsisting of 8 ma-
chines and another cluster in University of Tennessee called
cypherconsisting of 16 machines. Theopuscluster is con-
nected to the other 3 clusters clusters by Internet.torcs,
mscsandcyphersare connected to each other 100 Mb Eth-
ernet links. Table 1 gives the specification of the machines.

The total execution times reported in the following sub-
sections include the time for Grid overhead and not just the
time taken by the actual application. The time for the Grid
overhead is reported in our previous work [11].

Figure 4. Free memory available on a opus
machine during the execution of app1 and app2

No processes running on
the system

13000 problem uses
the system

13000 problem
is stopped

5000 problem uses the system

5000 problem completes

13000 problem continues

13000 problem completes

4.1. Experiment 1

In this experiment, we demonstrate the functionality of
the Permission Service. For the experiments in this section,
ScaLAPACK LU factorization code was used. A large ap-
plication,app1, was introduced into the system consisting
of 4 opusmachines, 1torc machine and 2cyphermachines.
Ten minutes afterapp1 started, a relatively small applica-
tion, app2, that intended to use only the 4opusmachines
was introduced into the system.app2 was chosen such
that its memory requirements were greater than the memory
available in theopussystem whenapp1 was executing. In
the following experiment, a linear algebra problem with ma-
trix size 13000 was chosen forapp1. The Permission Ser-
vice evaluated the performance benefits of stoppingapp1,
accommodatingapp2, and restartingapp1 after the comple-
tion of app2. The functionality of the Permission Service,
when the matrix size of the linear algebra problem,app2,
is 5000, is illustrated on a singleopusmachine in Figure 4.
The graph was generated in the NWS web site.

In Figure 5, we observe the percentage performance loss
incurred byapp1 due to the accommodation ofapp2 in the
system. The x-axis represents different matrix sizes for
app2 and the y-axis represents the percentage performance
loss incurred byapp1. Two points can be observed from
Figure 5. First, for less than 20% of performance loss for
app1, the system was able to accommodateapp2. Without
the Permission Service mechanism,app2 would not have
been able to use the system. Second, the performance loss
increases with the increase in problem size ofapp2. When
the problem size ofapp2 is comparable with the problem
size ofapp1, the Permission Service determines that perfor-

Figure 5. Performance loss for app1

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

4500 5000 5500 6000 6500 7000 7500 8000

%
 P

er
fo

rm
an

ce
 L

os
s

Matrix Size

Permission Service Utility

mance benefits cannot be achieved for the system by accom-
modatingapp2. In order to prevent continuous preemption
of app1 by small applications, the scheduling strategy is im-
plemented such thatapp1 is ensured to make at least 20%
of progress between preemptions.

4.2. Experiment 2

In this experiment, we demonstrate the utility of the con-
tract negotiator in accommodating a new application by
stopping an already running application, if significant per-
formance benefits can be obtained for the new application.
The stopped application is restarted after the new applica-
tion completes its execution. For this experiment, ScaLA-
PACK LU factorization code was used on onlycypherma-
chines. In this experiment, an application,app1 is executed
on N processors. 3 minutes afterapp1 started its execution,
an application,app2 is introduced in the Grid system.app2
is intended to use (N+1) processors. Since N of the pro-
cessors were occupied byapp1, only a single processor is
available forapp2. The Contract Negotiator analyzes the
performance benefits that can be obtained by stoppingapp1
and making (N+1) processors available forapp2. In the ex-
periments, matrix size 7500 was used forapp2. The total
execution time of a 7500 matrix size ScaLAPACK problem
when executed on a single processor is 818.11 seconds.

We define

1. Execution time of app1 without rescheduling,
exec1without re

2. Execution time of app1 with rescheduling,
exec1with re

3. Execution time of app2 without rescheduling,
exec2without re

Table 2. Utility of Contract Negotiator
Matrix
Size of
app1

Processors
N

Number of
Processors
used byapp2

util val

15000 4 5 2.13
17000 5 6 5.11
18500 6 7 2.27
20000 7 8 2.04
21000 8 9 2.05
22500 9 9 2.36
24000 10 9 1.72

4. Execution time of app2 with rescheduling,
exec2with re

5. Performance loss forapp1, perf loss

perf loss =
exec1with re � exec1without re

exec1without re

6. Performance gain forapp2, perf gain

perf gain =
exec2without re � exec2with re

exec2without re

7. Utility value, util val

util val =
perf gain

perf loss

util val > 1 indicates that the rescheduling strategy is
useful for the entire system. utilval < 1 indicates that the
rescheduling strategy can cause an overall loss in perfor-
mance for the entire system. Greater the value of utilval,
more the usefulness of the rescheduling strategy.

Table 2 shows the matrix sizes ofapp1, the number of
processors N, the number of processors eventually used by
app2 and the utilval. Note that the eventual number of pro-
cessors used byapp2 depends on system conditions and ex-
ecution time model and is not always the (N+1) processors
available toapp2.

We observe from Table 2, that the values of utilval are
consistently high for the above experiments. This showed
that the scheduling strategy of compromising long running
jobs for short running jobs is beneficial to the entire system.
The value of utilval depends on a number of factors includ-
ing the times for the long and short jobs and the times for
checkpointing the states of the long job. As in the Permis-
sion Service, mechanisms have been implemented to avoid
continuous preemptions ofapp1.

4.3. Experiment 3

In this set of experiments, we illustrate the utility of Ex-
pander. For the experiments in this section, ScaLAPACK
QR factorization code was used. An application,app1, was
introduced into the system such that it consumed most of
the memory of 8mscmachines. During the execution of
app1, an app2, that intended to use 11 machines, 3torcs
and 8mscswas introduced into the system. Since the 8msc
machines were occupied byapp1, app2 was able to utilize
only the 3torc machines. Whenapp1 completed, the 8msc
machines were freed andapp2 was able to utilize the extra
resources to reduce its remaining execution time. The Ex-
pander evaluated the performance benefits of allowingapp2
to utilize the extra 8 processors.

ScaLAPACK problems of sizes 20000 and 21000, de-
pending on the available memory onmscswhen the experi-
ments were run, were used forapp1. ScaLAPACK problem
of size 11000 was used forapp2.

We define

1. Total execution time ofapp2 on 3 torcs without
rescheduling,execwithout re

2. Total execution time ofapp2 with rescheduling,
execwith re

3. Percentage rescheduling gain for app2,
percentagegain

percentage gain =
execwithout re � execwith re

execwithout re

app2 was introduced at various points of time after the
starting ofapp1. Hence additional resources will be avail-
able forapp2 at various points of time into its execution.
The total number of iterations needed by the ScaLAPACK
problem of size 11000 was 275. Figure 6 illustrates the util-
ity of rescheduling as a function of the remaining number
of iterations left forapp2 whenapp2 was rescheduled. We
observe that the percentage rescheduling gain forapp2 in-
creases when the remaining execution time left forapp2
at the time of rescheduling increases. The rescheduling
gain depends on a number of parameters like the time taken
for redistribution of data and the number of additional re-
sources available etc. These parameters depend on the spe-
cific application for which rescheduling is done. Work is in
progress to build interfaces for the application library writer
by which the system can determine the rescheduling param-
eters for the applications.

5. Related Work

There are number of ongoing research efforts in Grid
Computing [7], [9], [10], [4], [3], [16]. There are

Figure 6. Rescheduling gain for app2

0

2

4

6

8

10

12

14

16

18

20

200 205 210 215 220 225 230 235 240 245

%
 P

er
fo

rm
an

ce
 G

ai
n

du
e

to
 r

es
ch

ed
ul

in
g

Remaining number of iterations for problem of size=11000 when it was rescheduled

Expander Utility

number of similarities in the scheduling systems of Con-
dor [10] and our metascheduler. Condor also supports pre-
emption of executing jobs to either accommodate other jobs
[20] or to transfer the control of the resources to the re-
source owners. Moreover, on a broad level, the function-
ality of our Contract Negotiator in our metascheduler is
similar to the functionality of thenegotiator in the Con-
dor system in that these negotiator components negotiate
between the applications and the resources. But the dif-
ferences between the Condor scheduling system and our
metascheduler lie in both the overall objectives and the ca-
pabilities of the systems. While the main motivation of the
scheduling decisions in Condor is to utilize idle resources,
the motivation for our metascheduler is to improve the per-
formance of the individual applications. In Condor, jobs are
preempted from utilizing the resources when the resources
are reclaimed by the owners, whereas in the metascheduler,
jobs are preempted from resources when the the availabil-
ity of the resources can significantly improve the perfor-
mance of other jobs. Moreover, at present, Condor does not
support checkpointing of parallel jobs. The objectives of
Nimrod-G’s [3] scheduling policies are similar to those of
our metascheduler where different users’ requirements are
balanced. Nimrod-G uses grid economies to implement its
scheduling policies while our metascheduler uses predicted
application times for our scheduling policies. Though the
Ninf [16] team had evaluated their scheduler when multiple
clients run their jobs, no substantial mechanism has been
implemented to guarantee performance for each client. The
metascheduler adheres to the definition of the Super Sched-
uler described in the Global Grid Forum working document
[15]. In addition, the metascheduler acts as a Super Super
scheduler that negotiates the decisions made by the different
Super Schedulers described in the working document.

6. Conclusion

In this paper we have explained the implementation of
a metascheduler for the Grid that takes into account both
the application level and system level considerations. We
have explained in detail, the different components of our
metascheduler, viz., the Permission Service, Contract Ne-
gotiator and the Expander. These components provide valu-
able scheduling services that play important roles in provid-
ing scalability of the Grid system. We have demonstrated
the utility of these scheduling decisions with encouraging
results.

7. Future Work

Our immediate plans are to demonstrate the usefulness
of our metascheduler in a large Grid system when large
number of applications execute on the system. Capabili-
ties like evaluating the impact of new applications on ex-
isting applications and migration under performance degra-
dation will be added to the metascheduler. After the com-
plete implementation of the metascheduler, the issue of re-
producibility of numerical results in the Grid will be inves-
tigated.

References

[1] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Fos-
ter, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman,
J. Mellor-Crummey, D. Reed, L. Torczon, and R. Wolski.
The GrADS Project: Software Support for High-Level Grid
Application Development. International Journal of High
Performance Applications and Supercomputing, 15(4):327–
344, Winter 2001.

[2] F. Berman and R. Wolski. The AppLeS Project: A Status
Report. Proceedings of the 8th NEC Research Symposium,
May 1997.

[3] R. Buyya, D. Abramson, and J. Giddy. Nimrod-G Resource
Broker for Service-Oriented Grid Computing.IEEE Dis-
tributed Systems Online, 2(7), November 2001.

[4] H. Casanova and J. Dongarra. NetSolve: A Network Server
for Solving Computational Science Problems.The Inter-
national Journal of Supercomputer Applications and High
Performance Computing, 11(3):212–223, Fall 1997.

[5] T. Casavant and J. Kuhl. A Taxonomy of Scheduling in
General-Purpose Distributed Computing Systems.IEEE
Transactions on Software Engineering, SE-14(2):141–154,
February 1988.

[6] I. Foster and C. K. eds.The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, ISBN 1-55860-
475-8, 1999.

[7] I. Foster and C. Kesselman. Globus: A Metacomputing
Infrastructure Toolkit. Intl J. Supercomputer Applications,
11(2):115–128, 1997.

[8] J. Gehring and A. Reinefeld. MARS - A Framework
for Minimizing the Job Execution Time in a Metacomput-
ing Environment. Future Generation Computer Systems,
12(1):87–99, 1996.

[9] A. Grimshaw, W. Wulf, J. French, A. Weaver, and
J. P. Reynolds. Legion: The Next Logical Step Toward a
Nationwide Virtual Computer. Technical Report CS-94-21,
Department of Computer Science, University of Virginia,
1994.

[10] M. Litzkow, M. Livney, and M. Mutka. Condor - a Hunter
for Idle Workstations.Proc. 8th Intl. Conf. on Distributed
Computing Systems, pages 104–111, 1988.

[11] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg,
K. Roche, and S. Vadhiyar. Numerical Libraries and the
Grid: The Grads Experiments with Scalapack.Journal
of High Performance Applications and Supercomputing,
15(4):359–374, Winter 2001.

[12] J. S. Plank, M. Beck, W. R. Elwasif, T. Moore, M. Swany,
and R. Wolski. The Internet Backplane Protocol: Storage in
the Network.NetStore99: The Network Storage Symposium,
1999.

[13] R. Ribler, J. Vetter, H. Simitci, and D. Reed. Autopilot:
Adaptive Control of Distributed Applications.Proceed-
ings of the 7th IEEE Symposium on High-Performance Dis-
tributed Computing, July 1998.

[14] K. Saqabi, S. Otto, and J. Walpole. Gang Scheduling in
Heterogeneous Distributed Systems. Technical report, OGI,
1994.

[15] J. Schopf. Super Scheduler Steps/Framework.http://www-
unix.mcs.anl.gov/�schopf/ggf-sched/, July 2001.

[16] S. Sekiguchi, M. Sato, H. Nakada, and U. Nagashima. Ninf:
Network based Information Library for Globally High Per-
formance Computing. Parallel Object-Oriented Methods
and Applications (POOMA), February 1996.

[17] C. Waldspurger and W. Weihl. Lottery Scheduling: Flexi-
ble Proportional-Share Resource Management.First Sym-
posium on Operating Systems Design and Implementation
(OSDI), pages 1–11, 1995.

[18] J. Weissman. The Interference Paradigm for Network Job
Scheduling.Proceedings of the Heterogeneous Computing
Workshop, pages 38–45, April 1996.

[19] R. Wolski, N. Spring, and J. Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing.Journal of Future Generation
Computing Systems, 15(5-6):757–768, October 1999.

[20] D. Wright. Cheap Cycles from the Desktop to the Dedicated
Cluster: Combining Opportunistic and Dedicated Schedul-
ing with Condor. Proceedings of the Linux Clusters: The
HPC Revolution conference, Champaign - Urbana, IL, June
2001.

[21] S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: a
Load Sharing Facility for Large, Heterogeneous Distributed
Computer Systems.Software – Practice and Experience,
23(12):1305–1336, December 1993.

A Appendix A - Permission Service

Input: problemParameters,
resourceRequirements,
currentResourceInformation

resourceCapacity =
getCapacity
(currentResourceInformation)

if (resourceCapacity >
resourceRequirements)

send (PERMISSION)
else

largeApplications =
get list of applications
whose memory requirements
are greater than the
memory requirement for
this application

if (largeApplications is empty)
send (NO_PERMISSION)

else
shortRemainingTimeAppl =

resource consuming applications
that are going to end in 3
minutes

if (shortRemainingTimeApp) then
waitForCompletion

(shortRemainingTimeApp)
send(PERMISSION)

else
ratio = remaining execution

time of
largeApplication /
predicted execution
time of new application
in the absence of
largeApplication

maxRatio = maximum value of
ratio for all
largeApplications

if (maxRatio >20 and
largeApplication is
checkpointEnabled)

stop largeApplication
send permission to new
application
wait for new application to
complete
resume largeApplication

B Appendix B - Contract Negotiator

Input: problemParameters,
finalListOfMachines,
predictedTime

rsTime = time of resource selection
for this application

executingList =
getListOfExecutingApplications()

if (rsTime < minimum starting time
of applications in
executingList)

send (CONTRACT_NOT_OK)
else

for each application i in
executingList

timeAbs = predicted time of new
application in the
absence of i

timePre = predicted time of new
application in the
presence of i

if (timePre/timeAbs > 1.5)
bigApplication = i
break out of for each loop

remainingExecAbs =
remaining execution time of
application i in the absence of
new application

remainingExecPre =
remaining execution time of
application i in the presence
of new application

impactTime = remainingExecPre -
remainingExecAbs

if (application i is
checkpointable and
2*timeAbs < 0.5*
min(remainingExecTime+timeAbs,

impactTime + timePre))
stop application i;
send (CONTRACT_NOT_OK) to new
application
wait for the new application to
complete
resume application i

else if ((impactTime + timePre)
> 1.2*(remainingExecTime+timeAbs))
Continue application i
Wait for application i to complete
Send (CONTRACT_NOT_OK) to new
application

else
Send (CONTRACT_OK) to new
application

C Appendix C - Expander

recentlyCompletedAppl =
applications that completed a minute
ago

if (recentlyCompletedApp)
executingList =

get list of executing applications
subsetList =

subset of executingList that
are well behaved, i.e., whose
actual performance is close
to predicted

for each application i in subset
reschedulingGain =

(remaining execution time of
i without rescheduling -

(remaining execution time of
i with rescheduling +
rescheduling time)

) /
remaining execution time of i
without rescheduling

maxReschedulingGain =
maximum of rescheduling gains

maxApplication =
application that has maximum
rescheduling gain

if (maxReschedulingGain > 0.5)
stop maxApplication
get new candidate schedule for
maxApplication
continue maxApplication on new
set of resources

