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ABSTRACT
The effective use of GPUs for accelerating applications de-
pends on a number of factors including effective asynchronous
use of heterogeneous resources, reducing memory transfer
between CPU and GPU, increasing occupancy of GPU ker-
nels, overlapping data transfers with computations, reduc-
ing GPU idling and kernel optimizations. Overcoming these
challenges require considerable effort on the part of the ap-
plication developers and most optimization strategies are
often proposed and tuned specifically for individual applica-
tions. In this paper, we present G-Charm, a generic frame-
work with an adaptive runtime system for efficient execu-
tion of message-driven parallel applications on hybrid sys-
tems. The framework is based on Charm++, a message-
driven programming environment and runtime for parallel
applications. The techniques in our framework include dy-
namic scheduling of work on CPU and GPU cores, maxi-
mizing reuse of data present in GPU memory, data man-
agement in GPU memory, and combining multiple kernels.
We have presented results using our framework on Tesla
S1070 and Fermi C2070 systems using three classes of ap-
plications: a highly regular and parallel 2D Jacobi solver,
a regular dense matrix Cholesky factorization representing
linear algebra computations with dependencies among par-
allel computations and highly irregular molecular dynamics
simulations. With our generic framework, we obtain 1.5 to
15 times improvement over previous GPU-based implemen-
tation of Charm++. We also obtain about 14% improve-
ment over an implementation of Cholesky factorization with
a static work-distribution scheme.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming
; D.3.4 [Programming Languages]: Processors—Opti-
mization, Run-time environments
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1. INTRODUCTION
GPU-based hybrid systems have become highly preva-

lent for high performance computing with about 62 sys-
tems in the Top500 [1] list, including the #1 Titan sys-
tem of Oak Ridge National Laboratory, being powered us-
ing accelerator/co-processor technology. However, effective
use of a GPU system for high performance requires over-
coming several challenges including effective asynchronous
use of heterogeneous resources, reducing memory transfers
between CPU and GPU, increasing occupancy of GPU ker-
nels, overlapping data transfers with computations, reduc-
ing GPU idling and kernel optimizations. Overcoming these
challenges require considerable effort by the users. Many
optimization strategies have been proposed and tuned for
specific applications [14, 15, 6, 10, 5].

In this paper, we present G-Charm, a generic framework
with an adaptive runtime system for efficient execution of
message-driven parallel applications on hybrid systems. The
framework is based on Charm++ [7], a message-driven pro-
gramming environment and runtime for parallel applications.
Charm++ is an object oriented parallel programming frame-
work in which the application domain is partitioned among
several migratable objects called chares, and the chares are
distributed among allotted processors. By employing over-
decomposition, dynamic load balancing using migration of
chares, and asynchronous communications overlapped with
computations, Charm++ has been used to provide high
performance for different scientific applications including NAMD
[10], a molecular dynamics application, ChaNGa [5], a cos-
mological simulator and ParFUM [9], a framework for un-
structured mesh applications. These principles are highly
needed for executions on hybrid systems consisting of a num-
ber of heterogeneous CPU and GPU units.

Obtaining high performance for Charm++ message-driven
parallel applications on GPU systems is challenging. Charm++
chares are usually small in size dealing with small subdo-
mains to promote data locality and cache benefits, and to
provide communication-computation overlap among chares.
An existing GPU task library for Charm++, HybridAPI
[17], does not provide a way to automatically merge units
of data across multiple chares into blocks that would pro-
vide good occupancy on the GPU. The user must perform
this agglomeration manually [6], or expect poor occupancy
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if each chare issues its own kernels. Invocations of kernels
by each chare also results in large number of kernel invo-
cations. Also, in HybridAPI, it is the users’ responsibility
to specify when to allocate, copy, and delete GPU buffers,
so as to reuse buffers over execution of multiple kernels. It
is also the users’ responsibility to schedule work on either
GPU or CPU. This places significant burden on the pro-
grammer since the code for making scheduling decisions has
to be written in addition to the main logic.

As an example, consider the case of a 2D Molecular dy-
namics (MD) simulations. In this application, two types of
chare objects are used. The molecules or particles are dis-
tributed among a 2D array of chares called patches. Force
calculations between particles present in a pair of patch
chares is calculated by an element of a chare array called
compute object. The particle coordinates change only at the
end of an iteration. A patch needs to be transferred to GPU
only once for an iteration, and can be used for force calcula-
tion with each of its neighbors. In HybridAPI, ensuring that
the patch is transferred only once to the GPU, and merging
the data for separate kernels to invoke a smaller number of
kernels with better occupancy require significant program-
ming effort by the user. Finally, in HybridAPI, the user has
to decide if the force calculation for a compute object has
to be done on either CPU or GPU.

Our G-Charm framework includes important set of tech-
niques for achieving high performance on GPUs in a trans-
parent and generic manner. G-Charm performs dynamic
scheduling of work units to CPU or GPU based on the cur-
rent loads and the estimated run time of the work units on
CPU and GPU. Our framework also dynamically combines
multiple kernels corresponding to the work units to reduce
the number of kernel invocations. The G-Charm runtime
system also minimizes CPU-GPU data movement by keep-
ing track of the location of data of GPU chares in GPU
device memory and avoiding redundant data transfers for
work units. G-Charm also performs data management to
maximize the reuse of most frequently used data in the GPU
device memory. Our techniques are generic and require min-
imal overhead from the application programmers.

We have presented results using our framework on Tesla
S1070 and Fermi C2070 systems using three classes of ap-
plications: a highly regular and parallel 2D Jacobi solver,
a regular dense matrix Cholesky factorization representing
linear algebra computations with dependencies among par-
allel computations and a highly irregular molecular dynam-
ics simulation. We performed comparisons with the Hybri-
dAPI framework [17]. We also compared our adaptive exe-
cutions of Cholesky factorization with MAGMA [14], an im-
plementation of Cholesky factorization for GPUs that per-
form static distribution of work and data units to CPU and
GPU cores. With our generic framework, we obtain 1.5 to
15 times improvement over HybridAPI and about 14% im-
provement over MAGMA.

Following are the primary contributions of our paper.
1. A novel runtime system for message-driven parallel ap-
plications on GPUs.
2. Strategies to automatically compose and dynamically
schedule work to CPU and GPU units, and maintain load
balance.
3. Novel techniques to manage GPU global memory auto-
matically for minimizing CPU-GPU data transfers and max-
imizing the reuse of data in GPU memory.

4. Demonstration of improvements with our generic adap-
tive techniques over static strategies for three important
classes of applications.

The rest of the paper is organized as follows. Section 2
gives background on Charm++ and an existing GPU man-
agement framework in Charm++ called HybridAPI upon
which our runtime system has been implemented. Section 3
describes the different components of the G-Charm frame-
work. In Section 4, the various optimization strategies ap-
plied by our framework have been discussed. Section 5
presents the experimental results for Jacobi, Cholesky and
Molecular dynamics applications comparing G-Charm with
existing methods. Section 6 presents related efforts. Finally,
in Section 7, we conclude and present some future works.

2. BACKGROUND
Charm++ is a message-driven object oriented parallel

programming framework based on C++ [7]. A parallel ap-
plication written using Charm++ divides the data among
an array of migratable objects called chares. The chares are
mapped to physical processors, and can be migrated among
processors by the Charm++ runtime system to provide load
balance. Typically, the number of chares are much larger
than the number of physical processors, resulting in over-
decomposition. The chares are associated with specialized
methods called entry methods. Entry methods of a chare
object can be invoked from chares present in same or other
processors. Remote entry methods invoked by a chare are
queued as messages in a message queue at the destination
processor. An instance of Charm++ runtime system runs
on each processor. The runtime system dequeues a mes-
sage and invokes the corresponding chare’s entry method
upon arrival of all inputs of the entry method from the other
chares. Thus, while input data for a chare is communicated
from a remote processor, a processor can perform compu-
tation on some other chare for which inputs have already
arrived. This enables Charm++ to effectively overlap com-
munication with computations.

HybridAPI [17] is a GPU execution framework available
in Charm++. In this framework, application programmers
create a work request structure specifying the data to be
transferred between CPU and GPU before and after kernel
invocation, the kernel to be invoked and a callback function
provided by the user that will be invoked on the CPU once
the work request is processed by the GPU. The HybridAPI
runtime system performs the necessary data transfers based
on the specifications in the work request structures. The
runtime system also checks for the progress of GPU oper-
ations related to data transfers and kernel executions, and
effectively overlaps kernel execution of one work request with
output data transfer for the previous work request and input
data transfer for the next work request. Figure 1 depicts the
control flow of a HybridAPI based Charm++ application.
In the figure, the green, blue and black boxes denote oper-
ations that are performed by the application programs, Hy-
bridAPI and the Charm++ runtime system, respectively.

3. G-CHARM ARCHITECTURE
As mentioned, using HybridAPI without manual agglom-

eration of kernels and data, and manual data management
leads to a large number of kernels, large number of CPU-
GPU data transfers, and low GPU occupancies. Our G-
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Charm framework addresses these limitations. G-Charm is
based on HybridAPI and consists of a runtime that performs
various optimizations including minimizing data transfers,
data management, dynamic scheduling and work agglomer-
ation. The overall architecture is illustrated in Figure 2.

The application begins execution with the creation of chare
objects. Each chare operates on a subset of data and exe-
cutes its entry methods to update its own data on the arrival
of input data from other chares and also to invoke entry
methods of other chares. When a chare needs to invoke
a kernel on the GPU, it creates a workRequest object and
invokes a scheduler function in G-Charm runtime that per-
forms dynamic scheduling of the workRequest to either CPU
or GPU.

Otherwise, the workRequest is enqueued to GPU workRe-
questQueue. The queued workRequest object is processed
by the G-Charm runtime. Specifically, the runtime checks
the data region in the application domain represented by
the workRequest data, and tries to avoid redundant data
transfers to GPU by transferring only the data not already
present in GPU. The G-Charm runtime then adds the workRe-
quest to a node of a linked list called workGroupList, in
which each node represents a set of workRequest objects that
can be combined. G-Charm periodically combines workRe-
quest objects from this list and creates objects of type workRe-
questCombined. The G-Charm runtime then schedules these
objects for GPU execution. Thus the G-Charm runtime per-
forms work agglomeration dynamically by combining ker-
nels of multiple work requests for GPU execution. Once
a workRequestCombined object finishes execution on the
GPU, the runtime system transfers the output data back
to the CPU and then invokes a callBack function on the
CPU for each workRequest. The callBack functions enable
the CPU chares to proceed with further computations by
making use of the result computed on the GPU.

4. OPTIMIZATIONS

4.1 Dynamic Scheduling
G-Charm dynamically decides the allocation of a chare

to either CPU or GPU for tasks for which kernel functions
exist for both CPU and GPU. The workrequest object, af-
ter creation, is passed to the G-Charm runtime to check if
it can be executed on the GPU. The decision is based on
the estimated times of the corresponding task on CPU and
GPU. The estimated time of a task in a time step is obtained
as the average time taken by the task in the previous time
steps.

The G-Charm runtime stores the average time taken by
each kernel on GPU and CPU. Initially, the estimated time
for each kernel on CPU and GPU is set to zero. The first
workRequest for each kernel type is assigned to GPU and
the second kernel is assigned to CPU to obtain the initial
estimate for CPU and GPU execution time for each kernel.
The estimation is for a single CPU or GPU kernel that is
associated with a fixed amount of data (number of chares).
For example, in a Jacobi application, a kernel corresponds
to a certain rows of chares. When combining multiple GPU
kernels (described in Section 4.4), the time for the combined
kernel is scaled suitably based on the number of chares.

As mentioned in Section 3, the G-Charm runtime main-
tains a workGroupList where each node represents a set of
workrequest objects that will be combined for execution on
GPU. For the current workRequest for which the G-Charm
runtime decides the allocation to CPU or GPU, the runtime
compares the estimated CPU time of the current work re-
quest with the combined time of all the work requests in
the workGroupList. The combined time is calculated by
summing up the estimated GPU times of the workRequest
objects in the list. If this combined time exceeds the es-
timated CPU time for the current work request, then the
work request is assigned to CPU. Before execution of the
current workrequest on the CPU, the workRequestCombined
objects formed using the nodes in the workGroupList are
scheduled for GPU execution using different CUDA streams.
The control is then returned to the CPU chare to process
the workRequest on the CPU. Thus, the G-Charm runtime
attempts to maximize asynchronous execution of tasks on
both GPU and CPU.

If the estimated time of the current work request is more
than the combined estimated time, it is assigned to the GPU.
In this case, it is added to the workRequestQueue and pro-
cessed by the G-Charm runtime, which optimizes data trans-
fers and adds it to the workGroupList for combined execu-
tion of multiple work requests on the GPU. The objective
is to avoid GPU idling due to assigning a work request that
can consume large amount of time on the CPU.

In the Molecular Dynamics (MD) example, G-Charm main-
tains the estimated average execution time of force compu-
tations between a pair of patches for CPU and GPU. These
estimated times are updated after every execution on the
corresponding unit, and are used for dynamic allocation to
either CPU or GPU.

4.2 Memory Management
Each chare is associated with a region of data in the appli-

cation domain. A chare maintains Nbuf buffers, where Nbuf

is the total number of input and output data for the appli-
cation. All the Nbuf buffers of the application are divided
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among the chares. At a given instant, when the GPU work
queue has a certain number of chares for scheduling to GPU,
the G-Charm runtime allocates the maximum number of
chare buffers that can fit into the GPU device memory. We
divide the GPU device memory into two parts: a large pri-
mary region where memory management is performed, and
a small scratch space where chare buffers for a workRequest
are freed once the kernel of the workRequest completes. We
use this scratch space when consecutive free memory cannot
be found for a workRequest buffer in the primary region.
For our work, we use 80% of the GPU device memory as the
primary region and the rest as the scratch space.

For matrix applications, the G-Charm runtime divides
GPU global memory into Nbuf buffer pools. Each buffer
pool is divided into slots of equal size. A slot is a placeholder
for a chare buffer in GPU memory, and the size of the slot is
equal to the size of the chare buffer. The size of a buffer pool
i depends on the size of the primary region, primarySize,
and the size of the chare buffer i, sizeBufferi, as shown in
Equation 1.

bufPoolSizei = Min(Nchares × sizeBufferi,
primarySize

Nbuf
)

(1)

where, Nchares is the total number of chares. In the equa-
tion, the first term denotes the case when all chare buffers of
all chares can be accommodated in the primary region, and
the second term denotes the case when the primary region
is insufficient to accommodate all the chare buffers and is
shared among the Nbuf buffer pools. In the former case,
each buffer pool will be divided into Nchares slots, while in
the latter case, the number of slots will be less than Nchares

and memory is managed using replacement and migration
of chare buffers between CPU and GPU. The allocation of
a large buffer pool for storing buffers from different chares
for a given input or output array allows for dynamically
combining multiple kernels of multiple chares into a single
kernel for GPU execution, as discussed in Section 4.4 and
also supports coalesced data access.

The G-Charm runtime keeps track of the mapping of chare
buffers to slots in the device memory using a chare table.
An entry in the table corresponding to a chare indicates the
slots in the device memory that are occupied by each of
the buffers in the chare. The runtime also periodically frees
GPU memory, reclaiming the space used by chares that have
not been used recently. Figure 3 illustrates the concepts of
buffer pools, slots and chare table with Nbuf = 2, Nchares =
16, and only 12 slots have been allocated in each buffer pool
due to insufficient GPU memory. The figure indicates that
the buffers in chares (0,0), (1,0), (1,2), (1,3), (2,0), (2,1) and
(3,3) are currently in GPU memory occupying the respective
slots in both the buffer pools.

4.3 Minimizing Data Transfers
In G-Charm, a workRequest object contains the indices

of the chare buffers representing subregions in the applica-
tion domain. Chares typically need data from other chares
for their computations. When a workRequest for a chare is
created, the G-Charm runtime uses the buffer indices of the
workRequest to check if the buffers are already located in
the GPU primary region due to the prior execution of ker-
nels of other chares on the GPU (e.g., data generated from
previous iterations). If located, the buffers are not copied to
GPU, thus facilitating reuse of buffers and minimizing data
transfers. In the MD example, if a buffer containing parti-
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Figure 3: Chare table, Device Slots and GPU Buffer
pools. In each slot in the buffer pools, the top en-
try corresponds to the slot number and the bottom
entry denote the chare currently occupying the slot.
Shaded slots are currently occupied.

cle coordinates for a patch is present in GPU memory, it is
reused by the workRequest objects corresponding to force
calculations with the neighboring patches, thus avoiding re-
dundant transfers.

If the buffers are not located in the GPU primary region,
the G-Charm runtime finds the required number of free slots
in the buffer pool. Chare buffers for a chare with chare index
i are mapped to GPU slots using a simple hash function,
slot = i mod Nslots, where Nslots is the number of slots
in the buffer pools (12 in Figure 3). If a slot is already
occupied, then the runtime scans all the slots in the buffer
pool to check for a free slot, and assigns to a chare buffer.
If a free slot is not found, memory from scratch space is
assigned. Memory allocated from the scratch space is freed
on completion of the workRequest.

The G-Charm runtime also uses LRU policy for buffer
replacement in the GPU slots. Whenever the percentage
of free slots becomes less than a threshold (in our work,
10%), the buffers corresponding to the least recently pro-
cessed chares are reclaimed by the runtime, thus enabling
the recently used chare buffers to stay in the GPU primary
region for as long as possible. In addition to the strate-
gies for reducing the amount of CPU-GPU data transfers
by data reuse, G-Charm also reduces the data transfer la-
tencies by combining workRequests of multiple chares into a
single large kernel, and transferring contiguous data needed
by the chares in a single step instead of multiple individual
transfers. This is discussed further in the next section.

4.4 Combining Kernels
Combining multiple kernels of different chares into a sin-

gle large kernel results in smaller number of kernel invoca-
tions, smaller CPU-GPU data transfer costs and larger GPU
occupancy. Our G-Charm framework dynamically selects
the workRequests objects of different chares for combining
into a single kernel. In G-Charm, for each workRequest ob-
ject, information is maintained about whether the kernel in
the workRequest object reads from or writes to each chare
buffer. This allows the G-Charm runtime to resolve depen-
dencies among workRequests. workRequests for the same
task that are independent can be potentially combined into
a single kernel.

We refer to the chares with adjacent indices as adjacent

352



Chare 1

Buffer 1 Buffer 2

Chare 2

Buffer 1 Buffer 2

(a) Non Contiguous

Chare 1

Buffer 1 Buffer 2

Chare 2

Buffer 1 Buffer 2

(b) Contiguous
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chares. In Charm++ applications, adjacent chares are as-
signed adjacent regions in the application domain. The sim-
ple hash function described in the previous section allows
allocation of the buffers of adjacent chares to adjacent slots
or a continuous region in the GPU device memory irrespec-
tive of whether the buffers are stored contiguously in the
CPU memory or not. This in turn enables combining mul-
tiple kernels of the different chares into a single kernel with
single set of input data corresponding to large continuous
regions in GPU memory instead of passing multiple sets of
data corresponding to the buffers of the different chares lo-
cated in different non-contiguous regions. Since G-Charm
combines kernels only when the corresponding data regions
are contiguous in GPU memory, the combined kernel oper-
ates on contiguous buffers.

The buffers for all the workRequest objects that are com-
bined will have to be transferred to GPU memory before ker-
nel invocation, if they are not already present in the GPU
memory. If each buffer is transferred to GPU separately,
though the number of kernels invoked decreases as a result
of combining or agglomeration, the average number of mem-
ory transfers per kernel invocation increases. This results in
GPU idling since the memory transfer time per kernel invo-
cation is more than the kernel execution time. In order to
reduce the memory transfer overhead, the buffers will have
to be combined on the CPU before transferring to GPU.

G-Charm allows the chares to share memory allocated in
the main chare in shared memory systems. In these sys-
tems, buffer i of individual chares can be either allocated
within each chare at different locations in CPU memory as
shown in Figure 4(a) or a single large buffer can be allo-
cated in the main chare and then the individual chares can
access their buffers using offsets into the contiguous region as
shown in Figure 4(b). The latter approach is advantageous
when combining multiple workRequests of different chares
since the buffers needed by all the chares can be sent from
a contiguous region in CPU memory using a single CPU-
GPU data transfer, instead of multiple individual transfers.
For example in Figure 4(b), instead of transferring Buffer 1
corresponding to Chare 1 and Chare 2 separately, a single
buffer starting at address of Buffer 1 of Chare 1 and of size
equal to the combined sizes of Buffer 1 in Chare 1 and Chare
2 can be transferred in a single step.

The G-Charm runtime maintains a workGroupList into
which workRequest objects are added. Each node in the
list contains a set of workRequest objects that do not have
data access conflicts and can be executed concurrently. The
workRequest objects of a node are eventually combined to
form a single combinedWorkRequest and executed with a
single kernel execution. The G-Charm runtime executes the
workRequestObjects in the order maintained in the work-
GroupList. A workRequest, wr, is inserted into the work-
GroupList based on the following conditions.

1. If wr reads from buffer B, wr is inserted after the last
node containing a workRequest that writes to this buffer.
This is done to preserve Read After Write (RAW) data in-
tegrity constraint.
2. If wr writes to the buffer B, wr is inserted after the
last node containing a workRequest that uses this buffer for
read or write operations. This is done to preserve Write
After Read(WAR) and Write After Write(WAW) data in-
tegrity constraints.
3. If there exists a node in the list that contains workRe-
quests with same kernel as wr, then wr is added to the same
node, otherwise a new node is inserted in the list and wr is
added to it.
The G-Charm runtime periodically calls a combine routine
to create workRequestCombined objects from the nodes of
the workGroupList and enqueue them for GPU execution.

In the MD example, the workRequests for different com-
pute objects do not have dependencies since the force calcu-
lations between different pairs of patches can be performed
independently. Hence any set of workrequest objects can be
combined into a large kernel that deals with multiple pairs of
patches. However, in linear algebra operations like Cholesky
decomposition, a column may be updated by several other
columns, and the workrequests corresponding to these col-
umn updates have dependencies. In this case, the G-Charm
runtime combines workrequest objects corresponding to a
single column, since the updates of elements within a col-
umn can be performed independently.

4.5 Programming Interface
The GPU environment supported by G-Charm is CUDA.

The application programmer writes a separate GPU CUDA
kernel and CPU Charm++ function for each task, and these
are compiled separately using nvcc compiler and charmc
program, respectively, and then linked using charmc pro-
gram. G-Charm provides some functions for use by ap-
plications to provide information to G-Charm runtime for
memory management and dynamic scheduling. Each chare
object in the chare array that owns a part of data has to
initialize G-Charm runtime by invoking the initGM method
with various information including chare array dimension,
the number of chares along each dimension, the number of
buffers in each chare (Nbuf ), if the application involves ma-
trix operations, row and column dimensions of the subma-
trices assigned to each chare and whether chares share CPU
memory. One instance of the G-Charm runtime runs per
processor. Since each instance has to be initialized and the
chares are distributed among all processors, each chare is re-
quired to call initGM method and only the first invocation
on each processor actually initializes the G-Charm runtime.
The initialization involves GPU memory allocation includ-
ing allocation of buffer pools and slots, and initialization of
the chare table.

The application also calls a checkGPURun function to de-
cide whether a workRequest has to be run on CPU or GPU.
If this function returns true, the G-Charm runtime adds
the workrequest to workRequestQueue and invokes the GPU
kernel specified in the workrequest. If the function returns
false, the user program explicitly invokes the corresponding
CPU function.

5. EXPERIMENTS AND RESULTS
We demonstrate the benefits of our G-Charm framework
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with three classes of applications: a highly regular and par-
allel 2D Jacobi solver, a regular dense matrix Cholesky fac-
torization representing linear algebra computations with de-
pendencies among parallel computations and highly irregu-
lar molecular dynamics simulations. The experiments were
run on a Tesla cluster with each node of the cluster con-
taining 4 quad-core AMD Opteron 8378 cores and one Tesla
S1070 GPU, and a Fermi cluster with each node containing
one 4-core Intel Xeon W3550 processor and one Tesla C2070
GPU. The Tesla S1070 GPU system is composed of 4 GPUs
with each GPU made up of 240 GPU cores. The Fermi
C2070 GPU system is composed of a single GPU consisting
of 448 GPU cores. All our experiments were performed on
single GPU systems.

5.1 Jacobi application
This is a standard 2-D Jacobi Poisson’s equation solver in-

volving 5-point stencil computations. Optimizing such sten-
cil computations on GPU systems is essential for high per-
formance of large-scale multi-dimensional grid problems [4,
16]. In the Charm++ Jacobi implementation, the 2-D grid
is divided among a 2D array of chares. Each chare initial-
izes its own data and in each iteration exchanges boundary
information to its four neighboring chares, performs com-
putations of local data and sends error values to the main
chare. The main chare is responsible for computing the over-
all residual error for initializing the next iteration.

Figures 5(a) and 5(b) compare the performance using G-
Charm with the performance using the other approaches,
namely CPUOnly and HybridAPI, on both the Tesla and
the Fermi systems. The CPUOnly approach denotes the
execution using only a CPU core. We have included com-
parison to CPU only version, since an inefficient implemen-
tation on GPU can result in even slower performance than
CPU only execution due to GPU overheads including kernel
invocations and memory transfers. In the HybridAPI frame-
work, each chare, after receiving the boundary data from
the neighboring chares, creates a workRequest object and
enqueues it into GPU workRequest queue for GPU compu-
tations of the local data. The G-Charm framework automat-
ically performs asynchronous computations of parts of the
2-D domain on both the CPU and the GPU cores, manages
the data, and combines multiple kernels. In order to isolate
the advantages obtained using each of the three primary op-
timizations performed by G-Charm, we also show the results
obtained by G-Charm-combker-only, involving only the op-
timization of combining kernels and reducing the number
of kernel invocations, G-Charm-(combker+datareuse)-only,
involving only the optimizations of combining kernels and
data reuse, and G-Charm, also involving asynchronous CPU
executions.

The average speedup of G-Charm over HybridAPI is about
10. The primary benefit with G-Charm is due to the com-
bined kernel execution, as seen in the difference between
G-Charm-combker-only and HybridAPI results. Combining
kernels not only reduces the number of kernel invocations
but also reduces the total number of data transfers due to
concatenating and sending the large data needed for the
combined kernel in a single step. The G-Charm-combker-
only version gives a speedup of 2 in Tesla and 10 in Fermi
System since data transfer rate between CPU and GPU is
much larger in Fermi (144 GB/sec) compared to Tesla sys-
tem (12.8 GB/sec). However, in the G-Charm-combker-only
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Figure 5: Jacobi Execution Time

version, the same data can get transferred back and forth
between the CPU and GPU across different iterations. As
the matrix size becomes larger, the amount of data trans-
fer increases. The G-Charm-(combker+datareuse)-only ver-
sion, involving data reuse and management, gives an aver-
age benefit of about 5 times over the HybridAPI version
in Tesla and about 16 times in Fermi systems. G-Charm-
(combker+datareuse)-only gives best performance when the
matrix completely fits in GPU as shown for sizes up to
15000 × 15000 in Tesla and 25000 × 25000 in Fermi. For
matrix size of 40000× 40000, the performance of G-Charm-
(combker+datareuse)-only is the same as G-Charm-combker-
only, i.e. without data reuse, since for this size, only one
GPU chare could be accommodated in GPU at a time and
the data corresponding to the chare has to be swapped out
of the GPU memory to make way for another GPU chare
execution. The optimization due to asynchronous CPU ex-
ecutions brings about 6% additional improvement in perfor-
mance. Asynchronous CPU utilization has been employed
only when a matrix cannot be fit completely in GPU mem-
ory.

We also compare the G-Charm and the HybridAPI ap-
proaches in terms of the number of kernels invoked, the
amount of data transferred, and the percentage of time CPU
is utilized for useful computations during application execu-
tion. Figure 6 shows these results for the Fermi system.
Similar results were obtained on the Tesla system. We find
that G-Charm invokes about 30 times lesser number of ker-
nels, and transfers about less than half the amount of data
than the HybridAPI for matrix size 40000×40000 for which
G-Charm has maximum number of migrations as well as
maximum number of kernel invocations. We also find that
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G-Charm, due to the optimization of asynchronous CPU
executions, gives about 5% increased CPU utilization over
HybridAPI. In our HybridAPI implementation, matrix up-
date with neighbor values is performed on GPU and error
calculation is performed on CPU. These error calculations
constitute about 45% CPU utilization in the HybridAPI im-
plementation. In G-Charm, asynchronous CPU utilization
is employed only when matrices do not fit in GPU mem-
ory. Figure 6(c) shows the increase in CPU utilization for
G-Charm as the matrix size increases.

The execution profiles of the different implementations on
the Tesla system are illustrated in Figure 7. This figure
shows the execution timeline for GPU and CPU for matrix
size 25000 × 25000 for the first ten iterations for all imple-
mentations. The patterns are found to persist across all
iterations. The CPU time shown in this figure corresponds
to only performing useful computations. Figure 7(a) shows
HybridAPI execution which involves large number of kernel
invocations and memory transfers. The continuous CPU-
GPU memory transfers for large number of small kernels in
HybridAPI can be seen by the almost continuous green bar.
Figure 7(b) illustrates the profile of G-Charm-combker-only
in which the combination of kernels results in reduced num-
ber of CPU-GPU data transfers as shown by the vertical
lines in the bars. The optimization related to data reuse is
shown in Figure 7(c) in which the frequency of data transfers
is smaller. This is illustrated by the larger gaps between the
data transfers. Finally, Figure7(d) illustrates asynchronous
CPU-GPU executions, in which the CPU is sufficiently uti-
lized.

5.2 Cholesky Decomposition
Cholesky decomposition factorizes a real, symmetric, pos-

itive definite matrix A = LLT , where L is a lower triangular
matrix. Cholesky factorization primarily involves updates
or multiplication (cmod), division (cdiv) and factorization
steps. We have implemented a subcolumn Cholesky fac-
torization using G-Charm in which the factorization step is
performed on CPU, and the cdiv and cmod steps are per-
formed on GPU.

We compare the G-Charm implementation of double pre-
cision Cholesky factorization with MAGMA [14], a highly
tuned dense linear algebra library for GPUs. In G-Charm
implementation, a main chare allocates memory for the en-
tire input matrix and creates a set of chares, with each chare
being responsible for factorization of a portion of the input
matrix. Chares in a column perform the cmod operation
using all the previous columns to update their submatrices.
Once cmod is complete for the diagonal chare element of that
column, it proceeds to the factorization step. After factor-
ization, all the chares below the diagonal chare perform the
cdiv operation. The application begins with cmod operation
for the first column and ends with cdiv operation for the last
column.

Figure 8 shows the results with G-Charm and MAGMA
on Tesla and Fermi systems. We have tested for matrix sizes
up to 40000×40000 in Tesla and 29760×29760 in Fermi sys-
tem, the maximum sizes that can be accommodated in the
CPU memory of these systems. The Tesla and Fermi sys-
tems can accommodate matrices of size up to 19840×19840
in the GPU device memory. We find that up to these ma-
trix sizes, both MAGMA and G-Charm give similar results
since for these smaller matrices, GPU data management

functionality of G-Charm is not exercised, and MAGMA
also performs careful data management and composition of
large kernels. For larger matrix sizes, G-Charm performs up
to 9% and 15% better than MAGMA for double and sin-
gle precision computations, respectively. The higher perfor-
mance is because G-Charm performs efficient GPU memory
management, reduced number of kernel invocations, and re-
duced CPU-GPU data transfers by reuse of GPU data, while
MAGMA performs large amount of CPU-GPU data migra-
tions for these large matrix sizes.
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Figure 8: Cholesky Decomposition Execution Time

We also performed comparisons with HybridAPI and StarPU
[3] frameworks for Cholesky factorization. We obtained about
8x speedup with G-Charm over HybridAPI. Similar to G-
Charm, StarPU [3] also performs dynamic scheduling of
work to both CPU and GPU, and data management of
GPU data. We found that StarPU gave very large execu-
tion times. For example, for matrix size of 29760 × 29760,
the execution time with StarPU was 137 seconds on the
Fermi system, while the execution times with G-Charm and
MAGMA were 31.8 and 34.7 seconds respectively. The large
execution times with StarPU is because StarPU invokes cdiv
and cmod operations for each individual block of the matrix
resulting in 11991 kernel invocations while G-Charm invokes
a single kernel for contiguous chares resulting in only 1825
kernel invocations.

We also compared the G-Charm and the MAGMA ap-
proaches in terms of the number of kernels invoked, and the
amount of data transferred. Figure 9 shows these results for
the Fermi system. We find that G-Charm invokes about 2.5
times lesser number of kernels for matrix size 29760×29760,
since it allocates adjacent chares in adjacent GPU slots and
invokes a single kernel to process all chares that are con-
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Figure 7: Jacobi Execution Profile on the Tesla System

tiguous in GPU memory. For smaller matrices, we find that
both MAGMA and G-Charm invokes similar number of ker-
nels. G-Charm also transfers about 3 times lesser data than
MAGMA due to dynamic data reuse and shared memory
implementation when matrix size does not fit entirely in
GPU memory. This efficient data management and reuse
in our generic G-Charm framework results in improved per-
formance of G-Charm (31810 milliseconds) over MAGMA
(34740 milliseconds) for matrix size 29760 × 29760.
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Figure 9: Cholesky Decomposition Execution Statis-
tics on the Fermi System

5.3 Molecular Dynamics
We have also conducted experiments on a non-matrix ap-

plication, namely, molecular dynamics. Molecular dynamics
is a highly irregular application for simulating the interac-
tions between molecules over a period of time. We consider
a two-dimensional molecular dynamics application in which
the 2D space is partitioned into patches. Each patch owns
the particles present in the region. In each timestep, force
on each particle due to other particles within a cutoff dis-
tance is calculated and the position of the particles are up-
dated. Particles migrate to neighboring patches according to
new positions and the application proceeds to next timestep.
This is repeated for a fixed number of timesteps.

In the Charm++ implementation, a compute object cal-
culates force between a pair of patches, as mentioned in Sec-

tion 1. The entry method interact takes two vectors of parti-
cles belonging to two patches and updates force components
of each particle. The widely-used NAMD [10, 12] molecu-
lar dynamics framework based on Charm++ also adopts
a similar parallelization scheme based on compute objects.
The interact method has been implemented as a CUDA ker-
nel for the HybridAPI and G-Charm implementations. The
G-Charm framework automatically performs asynchronous
computations of interaction calculations on both the CPU
and the GPU cores.

Figure 10 compares the performance using G-Charm with
the performance using the other approaches, namely CPUOnly
and HybridAPI, on both the Tesla and the Fermi systems.
The CPUOnly approach denotes the execution using only a
CPU core. We find that the average performance improve-
ment of G-Charm over the cpu-only version is about 33%
and over HybridAPI is about 21%.

Figure 11 shows the number of kernels invoked, the amount
of data transferred, and the percentage of time CPU is uti-
lized during application execution, for the cpuOnly, Hybri-
dAPI and the G-Charm implementations on the Fermi sys-
tem. We find that G-Charm invokes about 20% lesser num-
ber of kernels and transfers about 30% lesser data than Hy-
bridAPI. We also find that G-Charm gives 2.5 to 5 times
increased CPU utilization over HybridAPI. Both in Hybri-
dAPI and in G-Charm, updating particle coordinates after
each iteration and subsequent migration of particles were
performed on CPU. These contribute to nearly 10% of CPU
time for HybridAPI. In G-Charm, apart from these com-
putations, force calculation for some compute objects are
dynamically assigned to CPU for asynchronous execution,
resulting in improved CPU utilization.

Figure 12 shows the profiling output of G-Charm and Hy-
bridAPI executions for 10 iterations on the Fermi system.
We find that GPU remains idle for some time after every it-
eration during which CPU updates particle coordinates and
migrates particles to other chares. This idle time can be
reduced by providing kernel function for updating particle
coordinates. We find that the primary reason for higher per-
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Figure 11: Molecular Dynamics Execution Statistics on the Fermi System
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Figure 10: Molecular Dynamics Execution Time

formance of G-Charm in molecular dynamics application is
due to the efficient use of CPU for useful computations.

5.4 Discussion
In general, we find that combining kernels is beneficial

not only in reduction of number of kernel invocations, but
also in reducing the latencies of CPU-GPU data transfers.
Data management and reuse of GPU data can provide sig-
nificant benefits for large problem sizes in which the entire
data cannot fit in the GPU memory. Finally, asynchronous
CPU-GPU executions can provide added benefits, but the
extent of the benefits is application-dependent and specifi-

(a) HybridAPI (b) G-Charm

Figure 12: Molecular Dynamics Execution Profile
on the Fermi System

cally depends on the CPU-GPU performance ratio obtained
for the computations and the ability to estimate the perfor-
mance to apportion the appropriate work to CPU.

Overall, we find higher gains of 10X and 8X in Jacobi
and Cholesky applications, respectively, and smaller gains of
about 21% in molecular dynamics application with G-Charm
over HybridAPI implementation. The higher gains in Ja-
cobi application is due to non dependency among chares in
an iteration combined with very less CPU-GPU data trans-
fers, and the higher gains in Cholesky factorization is due
to more opportunities for efficient data management. The
smaller gain in molecular dynamics application is because
of non-shared memory implementation, memory copy over-
heads and less data reuse.

6. RELATED WORK
The AMM system [11] aims to reduce memory transfer

between CPU and GPU automatically by avoiding transfer
of non stale data between CPU and GPU, eager transfer of
data to CPU and transfer of GPU only data to CPU by
performing compiler analysis. Compiler analysis has limita-
tions in identifying all non-stale data. Our framework, by
relying on the user input, can reduce the amount of trans-
fers of such data. Our framework also reduces the number
of kernel invocations by agglomeration of kernels and the
associated data. As shown in our results, combining multi-
ple kernels provides clear performance benefits. The work
by Ashwin Prasad et al. [13] maps a MATLAB basic block
to either CPU or GPU at compile time using estimated run
time of the block obtained through profiling. In our ap-
proach, work assignment to CPU and GPU is determined
dynamically at runtime using information such as average
times taken by CPU and GPU to process a kernel, and the
number of messages waiting to be processed in CPU and
GPU queues.

Some recent efforts have focused on efficient GPU compu-
tations of stencil computations [4, 16]. The work by Ban-
dishti et al. [4] partitions the iteration space using hyper-
planes for concurrent and load balanced executions. The
work by Venkatasubramanian et al. [16] avoid synchro-
nization delays at the end of the iterations using highly
asynchronous computations. Our work is on providing a
general framework based on asynchronous message-passing
principles. Heterogeneous tiled algorithms implemented for
Cholesky and QR factorizations [14] uses a static partition-
ing scheme to effectively utilize all CPU and GPU cores. In
our work, the heterogeneous tile sizes are determining dy-
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namically by agglomerating data and kernels. NAMD [10]
is a widely used scalable molecular dynamics application
that has GPU extensions [12] for calculating short range
non bonded forces. However, this work does not attempt to
reduce non-stale data and does not combine multiple kernels
to reduce the number of kernel invocations.

Our runtime system is similar to StarPU [3] in which
the application programmer creates CPU and GPU kernels
and the runtime system decides whether to schedule a task
to CPU or GPU. StarPU also automatically manages and
moves data between CPU and GPU [2]. Our framework, in
addition to data management, also automatically performs
asynchronous CPU-GPU executions of non-dependent tasks
and agglomeration of work.

Our work is closely related to the work by Kunzman [8]
that has developed a unified programming model for ab-
stracting different types of accelerators, with the runtime
system performing various tasks such as load balancing, work
agglomeration and data management . In this work, the
user has to explicitly specify if a given data should be per-
sistent in GPU memory across kernel invocations to avoid
redundant data transfers, while in our work, such data man-
agement is performed automatically by the runtime system.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a framework called G-Charm

for efficient execution of message-driven parallel applications
on hybrid systems. G-Charm focuses on optimizing mem-
ory transfers to GPU by reusing data present in GPU mem-
ory, reducing the number of kernels by invoking a single
kernel on the combined data of multiple chares and reduc-
ing CPU and GPU idle times by dynamic work distribu-
tion. By conducting experiments with three different ap-
plications belonging to three different categories, we found
that the adaptive strategies in G-Charm provide a speedup
of about 1.5 to 15 over a previous GPU-based implemen-
tation of Charm++, and about 14% improvement over a
highly tuned dense linear algebra routine. Currently, we
have focused on effectively using single CPU and GPU for
applications. In our future work, we plan to scale G-Charm
to multi-GPU systems. We also plan to improve our pro-
gramming abstractions, and explore more classes of large
applications.
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