
Adaptive Hybrid Queue Configuration for
Supercomputer Systems

1Vineetha Kondameedi, 2Sathish Vadhiyar
1Nvidia Graphics Private Ltd, Pune, India

2Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, India

vkondameedi@nvidia.com, vss@cds.iisc.ac.in

Abstract—Supercomputers have batch queues to which par-
allel jobs with specific requirements are submitted. Commercial
schedulers come with various configurable parameters for the
queues which can be adjusted based on the requirements of
the system. The employed configuration affects both system
utilization and job response times. Often times, choosing an
optimal configuration with good performance is not straightfor-
ward and requires good knowledge of the system behavior to
various kinds of workloads. In this paper, we propose a dynamic
scheme for setting queue configurations, namely, the number of
queues, partitioning of the processor space and the mapping of
the queues to the processor partitions, and the processor size
and execution time limits corresponding to the queues based
on the historical workload patterns. We use a novel non-linear
programming formulation for partitioning and mapping of nodes
to the queues for homogeneous HPC systems. We also propose
a novel hybrid partitioned-nonpartitioned scheme for allocating
processors to the jobs submitted to the queues. Our simulation
results for a supercomputer system with 35,000+ CPU cores show
that our hybrid scheme gives up to 74% reduction in queue
waiting times and up to 12% higher utilizations than static queue
configurations.

I. INTRODUCTION

Supercomputer centers aim to provide minimum response
times for the jobs submitted to the HPC systems and maximum
utilization for the systems. The HPC systems have batch
queues to which jobs with specific processor size and exe-
cution time requirements are submitted. Strategies including
backfilling and advanced reservation systems [1] have been
proposed for the batch queues to achieve the goals of high
system utilization and minimum job response times. However,
the effectiveness of these strategies are constrained by the
configuration of queues in the system.

Commercial schedulers for batch systems including PBS
provide various configurable parameters to customize the
queues of the system according to the customer’s needs. Based
on our studies, following are some of the essential queue
configuration parameters for homogeneous high performance
computing clusters:
• Number of queues
• Partitioned vs Non-partitioned: In a non-partitioned type
of queuing system, all the queues share the processor space,
whereas in a partitioned type of queuing system, processor
space is partitioned among the queues. In a partitioned queuing
system, each queue has ownership of a particular disjoint set
of processors to which it can schedule its jobs for execution.

This work is supported by Department of Science and Technology (DST),
India via the grant SR/S3/EECE/0095/2012.

• Request Size and Runtime Range: Each queue can have
a range for the number of processors and/or execution time
duration that a job submitted to the queue can request for
execution.
• Upper limit of the queue: The limit beyond which a queue
cannot further schedule its jobs.
Based on the number of nodes allotted for running jobs: A
queue can have an upper limit on the total number of processor
cores used by all of its jobs that are in execution at a given
point of time. In this type of queuing system, as many jobs
in the queue can be scheduled for execution as long as the
total number of processors used by the jobs of the queue in
the execution or running state does not exceed the upper limit.
Based on the maximum allowable running jobs: A queue can
have an upper limit on the number of its jobs that can be in the
running state simultaneously. Production systems also employ
finer controls including the maximum number of jobs per user
in a queue in the running or queued state etc.

Studies of Lawson et al. [2] show that using backfill-
ing over multiple queues results in less makespan for jobs
compared to using a single queue. Multiple queues help in
separating the long and short jobs to different queues based
on the user estimated job execution time. This reduces the
likelihood of a short job being overly delayed in the queue
behind a very long job, thereby reducing the expected job
slowdown. Given that using multiple queues is beneficial over
having a single queue, it is non-trivial to determine the optimal
number of queues to be employed and the parameters of each
queue.

The system administrators may choose particular subset
of configurations, based on their prior knowledge or expe-
rience, that may not be well-defined. This configuration in
general, tends to be static over a period of time irrespective
of the workload fluctuations, and thus cannot yield good
utilization and response times under all workloads. Also, the
effectiveness of the strategies such as backfilling is better
realized for queue configurations that are optimal. An optimal
queue configuration is a configuration that yields the minimum
response time and/or maximum system utilization among all
the configurations. Determining an optimal configuration for
the system is not straightforward and requires good experience
and knowledge of the system behavior. It is also practically
not possible to test all possible configurations of the system in
order to determine the best configuration.

In this paper, we have devised strategies that automatically
derive a queue/system configuration for a given batch system
based on the history of job submissions for reducing the

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5090-6611-7/17 $31.00 © 2017 IEEE

DOI 10.1109/CCGRID.2017.80

90

2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5090-6611-7/17 $31.00 © 2017 IEEE

DOI 10.1109/CCGRID.2017.80

90

overall average wait time of jobs. By invoking our strate-
gies periodically, the queue configuration can be adapted to
changing workloads. In our work, we first consider/construct
a partitioned type of queuing system. We propose methods
to automatically determine the number of queues, partition
size, request size and runtime range for each queue. We begin
with a base queue configuration and determine a new queue
configuration for a future period based on the workload data for
the earlier period. Our process of auto tuning has two phases:

• Phase 1 – Determining the partition sizes for the set
of queues in the previous base configuration: We have
devised a novel non-linear programming (NLP) model
formulation to determine the partition size for the
previous set of queues based on the previous workload.
In our NLP, we express the wait time of the system
as a function of the processor nodes allotted to the
queues, and minimize this function.

• Phase 2 – Determining the number of queues: Using
the partitioning determined in Phase 1, we perform
split and merge operations over the partitioned queues
to obtain the number of queues which may be different
from the number of queues in the base configuration.

We also present a novel hybrid partitioned/non-partitioned
approach where we maintain a common pool of nodes which
can be used by any job whose slowdown has exceeded a thresh-
old. Our simulation results for a supercomputer system with
35,000+ CPU cores show that our proposed hybrid strategy
along with dynamic queuing gives up to 74% reduction in
queue waiting times and up to 12% higher utilizations than
static queue configurations.

The rest of the paper is organized as follows. In Section
II, we describe our queue reconfiguration methodology for
partitioned system including our NLP model for partitioning,
and splitting and merging algorithm to form different number
of queues. In Section III, we describe our hybrid partitioned-
nonpartitioned queuing strategy. Section IV presents our ex-
periments and results. In Section V, we give details of related
work. We present conclusions and give future plans in Section
VI.

II. DETERMINING QUEUE CONFIGURATION FOR

PARTITIONED SYSTEM

We first determine the partitioning of the processor space
across a given set of queues, and then use these partitions to
form a new set of queues. Our methodology considers as input
a base queue configuration followed in the supercomputer
system and workload data. The queue configuration specifies
the number of queues and maximum request size and execution
time duration of the jobs for each queue. The workload data is
related to job submissions to the queues made in the history,
namely, job parameters including the number of processors
requested (request size) and the user estimated runtime, the
time of submission, time of execution start and completion,
and the wait time for each job of each queue. Our method
assumes that the workload pattern for the prediction period
will be similar to the pattern in the history.

A core component in our framework is an event driven
simulator, parsim, we have developed to simulate a partitioned

queueing system with a given queue configuration and partition
sizes for the queues. parsim simulates submission of jobs
in the workload data to the queues and their executions in
the system, following specific scheduling policies. Using the
simulator, we can obtain as output the start and the completion
of executions of the jobs, and thus calculate waiting times
and system utilization. The simulator is based on the Python
Scheduler Simulator (pyss) developed by the Parallel Systems
Lab in Hebrew University [3]. We configured the simulator to
use the EASY backfilling algorithm [4] to schedule jobs at the
individual systems.

A. An NLP-based Partitioner

The first step in our framework is to determine the partition
sizes for a given set of queues in the base queue configuration.
We propose a novel NLP (Non-Linear Programming) based
method for determining the partition sizes. In our NLP method,
we solve the problem of determining partition sizes as an
optimization problem of distributing nodes among the queues
with the objective of minimizing the overall average wait time,
W , of the jobs in the system. For a given queue configuration
with NQ queues, W is expressed as a function of the nodes
allotted to the various queues. The objective function is then
given as

min(W = f(P1, P2, P3....PNQ)) (1)

where Pi the partition size or the nodes allotted to queue i. This
function is non-linear due to the inter-dependence between the
nodes allotted and the wait times of the different queues. In
general, as we increase the number of nodes of a given queue i,
the average wait time wi of jobs in queue i decreases. However,
this increase of nodes for queue i is counter balanced by the
decrease of nodes in some other queue j, which in turn will
lead to increase in the average wait time wj of queue j. This
increase in wj may be worse than the decrease in wi which is
not desirable. Figure 1 shows the effect on average wait time
of the jobs with increase in the number of nodes allocated to
four queues in our department’s Cray cluster 1.

To determine the function, f , we use our simulator with
different queue configurations with different sets of partition
sizes. For each configuration with a set of partition sizes, we
run the jobs submitted to the queues in the history through
the simulator and obtain the average waiting times of the jobs.
We thus obtain a set of average waiting times for different
sets of partition sizes. We then interpolate a polynomial to
fit the average wait times with the partition sizes and obtain
the function, f . We used MATLAB’s polyfitn to construct
multivariate nonlinear polynomial. For simplicity, we confine
ourselves to polynomials not exceeding degree 3. For our work,
we ran our simulator with 100 different partition sets.

Weighted NLP: To take into account the recent trends in job
submissions to the queues, we divide the history into fixed
size epochs and give different weights to the different epochs
in the history. For each epoch, i, we perform simulations to
derive the interpolation function, fi, for average wait time,
Wi, in terms of partition sizes. We then formulate our NLP as
weighted NLP as follows.

min(w1 ∗ f1 + w2 ∗ f2 + ...+ wi ∗ fi) (2)

1Details of the cluster are provided in the experiment section.

9191

Fig. 1: Effect on waiting times with increase in number of
nodes. Each curve corresponds to a different queue.

where wi is the weight and fi = f(P1, P2, P3....PNQ) is the
interpolation function for the epoch, i. The weights to the
polynomials are given based on the recency, where the most
recent epoch is given more weightage.

Equality constraint: The sum of the nodes given to individual
queues should be equal to the total number of nodes available
in the system.

NQ∑

i=1

Pi = P (3)

where P is the total size or the total number of nodes in the
system.

Lower bounds: We fix a lower bound, lbi for the partition
size for each queue i.

Pi ≥ lbi, {1 ≤ i ≤ NQ} (4)

This lower bound is to disallow the NLP solver from choosing
a partition size that is smaller than the largest job size
submitted to the corresponding queue. Hence, one option for
the lower bound is to choose the largest job size. However,
this is a strict lower bound since this can result in small-
sized partitions that limit the number of simultaneous job
executions. Thus, the smaller the lower bound, the longer the
jobs spend waiting in the queue. However, very large partition
sizes can result in under-utilization of the partition and hence
low CPU/system utilization. Using our simulator with the
given history jobs, we simulate different partition sizes for the
queues and find the relationship between system utilization and
partition sizes, as shown in Figure 2 for three queues in our
institute’s Cray cluster. We can notice that as the number of
nodes increase, the CPU utilization remains constant initially
with minor fluctuations and then starts to decrease. We choose
the partition size for each queue above which the utilization
falls below a threshold, τutil.

Proportional Allocation Constraint: We also allocate the
nodes to the queues in proportion to the CPU hours consumed

Fig. 2: Effect on CPU utilization with increase in number of
nodes

by the jobs of the queues in the history. The CPU hours of a
job is equal to the product of the number of processors used
by the job for execution and the time taken by the job. Thus
the CPU hours of a queue is given by:

CPUhrQi =

Ji∑

j=1

(CPUij × Tij) (5)

where Ji is the number of jobs in queue i, CPUij is the
number of processors used by job j submitted to queue i, and
Tij is the execution time of the job. We then have the following
proportional allocation constraint for a pair of queues, i and
j.

Pi

Pj
>

CPUhrQi

CPUhrQj
(6)

We used the function fmincon [5], [6] in the optimization
toolbox of MATLAB to solve our non-linear optimization
function. fmincon helps to find the local minimum of con-
strained nonlinear multivariate function.

B. Determining Number of Queues

After the partition sizes are determined for the queues in the
given base configuration in Phase I using the NLP method, the
next step is to determine the number of queues that will result
in the reduction in the average response time. Thus, in Phase
II, the queue configuration including the number of queues
can be changed from the base configuration. We achieve this
by splitting and merging the queues in the base configuration.
We use the queues in the base configuration to form the new
queues since the workload pattern in the history, that we use
for determining the number of queues, is to an extent dictated
by the base queue configuration.

1) Splitting of queues: In this method, we arrange the
queues in random order or based on adjacency in terms of
request size and/or runtime range in a list and perform splitting
starting from the first queue of the list. After a split, we obtain
a new queue configuration that we evaluate with the workload
in history using our simulator. If splitting a queue results in
reduced average wait time of the system, as determined by
our simulator, we further split the resulting split queues until
splitting gives higher average waiting time when compared to

9292

Fig. 3: Splitting of queues

the previous stage. We then visit the next queue and perform
the same.

Figure 3 illustrates the splitting method for two queues q1
and q2. q1(1) and q1(2) represent first and second split sub
queues of q1. The green lines represent cases where splitting
has resulted in reduction of average wait times of jobs. In these
cases, the method replaces the original queue from the list with
two sub-queues and further split the first sub-queue. The red
lines represent cases where splitting has resulted in increase of
average wait times of jobs. In these cases, no further splitting
of sub queues is performed, the list of queues remains the
same, and the method proceeds to split the next queue in the
list.

For splitting a parent queue into two subqueues, we use
three methods and dynamically choose the method that gives
the minimum average waiting time of the jobs. Following are
the three methods.

• Based on run-time: In this method, we use the
runtime limit of the original parent queue. We assign
jobs whose runtimes are less than half of the runtime
limit to the first subqueue, and the other jobs to the
second subqueue. The two subqueues will have the
same request size range as the parent queue, but with
different runtime ranges.

• Based on CPU hours: The objective of this method
is to create new partitions such that the resulting CPU
hours of the two subqueues, formed due to splitting,
is about the same. We sort the jobs of the original
queue in the ascending order based on the CPUs used,
i.e., the request size of the job. Starting from the job
with the smallest request size in the sorted list, we
keep adding the jobs to the first partition until the
CPU hours of the first partition is greater than or equal
to half the CPU hours of the original queue. For the
remaining jobs, all the jobs having the same request
size as the last job in the first partition are added to
the first partition. The resulting two subqueues will
have the same run time range as the parent queue, but
different request size ranges as given by the ranges of
the request sizes of the jobs assigned to the subqueues.

• Based on the number of jobs: The objective of
this method is to create new partitions such that the

resulting number of jobs in the two subqueues is about
the same. We sort the jobs in the ascending order
based on their request sizes. Starting from the job with
the smallest request size in the sorted list, we keep
adding the jobs to the first partition until the number
of jobs in the first partition is greater than or equal
to half the total number of jobs in the original parent
queue. Similar to the previous method, the resulting
two subqueues will have the same run time range as
the parent queue, but different request size ranges.

After the jobs are partitioned into two sub queues by any of
the above methods, the original nodes Pi of the parent queue
are allocated proportionally to the two sub-queues based on
the ratio of the CPU hours of the sub queues.

2) Merging of queues: After splitting the queues, we per-
form merge operation over the split queues. First, we find all
possible subsets of two queues that can be formed from the
original list. Next, for each subset, we check the feasibility of
merging. Following are the conditions for merging two queues.

1) The request size ranges of the two queues should
either be adjacent or overlapping, i.e., maximum
of minimum request size limit of both queues ≤
minimum of maximum request size limit of both
queues.

2) The runtime ranges of the two queues should either be
adjacent or overlapping, i.e., maximum of minimum
runtime of both queues ≤ minimum of maximum
runtime limit of both queues.

3) Previously split queues should not be merged, i.e.,
the parent of the two queues must not be the same.

Conditions 1 and 2 are employed to avoid the formation
of any redundant queues due to the merging of two queues
whose request size and/or runtime ranges are disjoint. If any
of the above condition is not satisfied for a subset, the subset
is discarded. For the remaining feasible subsets, we perform
merge operations individually on each of them, evaluate the
new configuration using our simulator, and select the subset
having the minimum average wait time. If the average wait
time of jobs of the new configuration is less than that obtained
from the previous configuration, we merge both the queues in
that subset, and replace the two queues in the original list
with the new merged queue. The new configuration will now
act as a parent configuration in the next iteration. We repeat
the above process until there is no feasible subset for merging
or no new configuration’s average wait time is less than the
previously achieved average wait time.

III. HYBRID PARTITIONED-NONPARTITIONED STRATEGY

Our methods of NLP, splitting and merging result in a
partitioned queue system in which the processor space is
partitioned among the queues. Partitioned system can result
in low utilization if the workloads of the different queues are
skewed and the queues corresponding to some of the partitions
have low workloads. Figure 4 shows the workloads in the form
of CPU hours of three queues in our institute’s Cray cluster.
As can be seen, there are instances when the workload of one
queue are much higher than the workload of another queue.
In a partitioned system, each queue has ownership of disjoint

9393

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 10
6

11
3

12
0

12
7

13
4

14
1

14
8

15
5

16
2

16
9

17
6

18
3

19
0

19
7

20
4

21
1

21
8

22
5

23
2

23
9

24
6

25
3

26
0

26
7

27
4

28
1

28
8

CP
U

 h
ou

rs
 p

er
 d

ay

Day

Variation of CPU hours per day

day small72 small medium

Fig. 4: CPU hours per day over the period of nine months

set of nodes which can only be used to schedule the jobs of
that queue. Having rigid boundaries will have adverse affects
when the workload is skewed. While in one queue, the queue
length increases with incoming jobs, the nodes in the other
queue are under-utilized. On the other hand, a non-partitioned
system can result in starvation of jobs with certain ranges of
request sizes and runtimes. For example, jobs of large queues
with large request sizes can fill up the processor space, starving
the smaller jobs of processors.

In order to overcome the challenges due to such skewed
workloads, we propose a hybrid partitioned/non-partitioned
model in which a part of the processor space is partitioned
among the queues and the remaining processor space forms a
common pool for use by jobs of all the queues. We begin with a
partitioned system and carve out processors from the partitions
to form a common pool of processors. We traverse the queues
in the increasing order of partition sizes in a round-robin
manner. In each round for each queue, we remove processors
from its partition for adding to the common pool. We remove a
fixed chunk of size chunkSize of processors from the partition
and evaluate the new partitioned queue configuration using our
simulator. Reducing the partition size can increase the average
waiting time of the jobs in the queue. If the average wait time
of the jobs in the queue with the reduced partition does not
exceed the average wait time for the queue with the original
partition by more than a degradation percentage, degPercent,
we add the chunk to the common pool. Else, we stop shrinking
the partition for the queue any further. We then move to the
next queue. In this way, we keep adding the chunks to common
pool from the queues until no queue can further be shrunk or
until the overall average wait time of all the jobs in all the
queues itself has exceeded degPercent.

The nodes from the common pool can be used by a job
submitted to a queue based on a priority factor of the job. The
priority factor considers both the current slowdown of the job
and the priority of the queue.

slowdown =
(current time− submit time)

min(est run time, queue max wallT ime)

priorityfactor = (slowdown) ∗ (priority of queue)

If the priority factor is greater than a threshold, τpf and if
sufficient nodes are not available in the queue to schedule the
job, then the scheduler tries to schedule the job using the nodes
of the common pool.

Fairness to Jobs: Our techniques provide fairness to jobs
in a number of ways. We set starvation time for each queue,
exceeding which a job is given higher priority. If any queue
has starving jobs, the nodes allocated to the queue are not
considered for scheduling of large jobs in the partitioned
system. Further, in the case of hybrid system, nodes of the
common pool are allocated based on the priority factor, as
mentioned above.

Practicality of our Solution: Our method is intended for
the supercomputer installations that are willing to adapt the
queue configurations of their local queue managers like PBS
based on the outputs from our methods. In the worst case, this
will involve draining out the system of all the current jobs and
restarting the job manager with the new queue configuration.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

We performed simulations using the queues and workload
data of our institute’s Cray XC40 cluster located in and
maintained by Supercomputer Education and Research Centre
(SERC). It has three kinds of nodes:

• 1468 CPU-only nodes with each node consisting of
dual Intel Xeon E5-2680 v3 (Haswell) twelve-core
processor at 2.5 GHz for a total of 35232 CPU cores,

• 48 Intel Xeon Phi nodes with each node consisting
of an Intel Xeon E5-2695 v2 (Ivybridge) twelve-core
processor CPU at 2.4 GHz and an Intel Xeon Phi
5120D for a total of 576 CPU cores and 50 Xeon
Phis, and

• 44 GPU nodes with each node consisting of an Intel
Xeon E5-2695 v2 (Ivybridge) twelve-core processor
CPU at 2.4 GHz and an NVIDIA Kepler K40 GPU
for a total of 528 CPU cores and 50 GPUs.

The nodes are connected by Cray Aries interconnect using
DragonFly topology.

The Cray system follows non-partitioned type of queuing
system with seven queues as shown in Table I. As shown in
the table, the system has five CPU-only and two accelerator
queues. We confine our experiments to the CPU-only queues.
The queues employ aggressive backfilling and starvation with
starvation period of 24 hours. The upper limits of each queue
are defined by the maximum allowable running jobs from the
queue.

Table II and Figure 5 summarize the workload data of
the Cray system over a period of nine months considered in
our experiments. The table shows the workload in terms of
the number of jobs submitted to the queues and the figure
shows the CPU hours of the jobs in the various queues. As
shown in the figure, the workload variation is drastic for
two instances: from November to December 2015, and from
January to February 2016.

9494

Queue min cpus max cpus min wall time max wall time

idqueue 8 256 NA 2:00:00

small 24 1032 NA 24:00:00

small72 24 1032 24:00:00 72:00:00

medium 1033 8208 NA 24:00:00

large 8209 22800 NA 24:00:00

gpu 1 60 NA 24:00:00

xphi 1 60 NA 24:00:00

TABLE I: Queue Configurations in the Cray System

month idqueue small small72 medium large

July’15 3013 1066 238 324 19

Aug’15 4205 1171 245 1101 13

Sep’15 4161 978 207 454 10

Oct’15 2917 1441 244 640 19

Nov’15 2996 1122 290 454 13

Dec’15 2162 943 179 332 4

Jan’16 2938 844 191 352 2

Feb’16 5198 1410 233 433 8

March’16 6449 1588 216 503 3

TABLE II: Workload in the Cray System: Number of Jobs

The simulation experiments were performed using our
parSim simulator. Inputs to parSim are queue manager file and
system logs. It initializes queues of the system and system
scheduling policies based on the parameters in the queue
manager file. For partitioned system with the CPU-only queues
of the Cray system, the sizes of the partitions for the queues
should be at least equal to the maximum request sizes for the
queues. However, as shown in Table I, the maximum request
size for the large queue is 22,800 cores. Allocating a large
partition of size at least equal to 22,800 cores is not desirable
since that leaves small number of processors for the jobs of the
other queues and will also lead to inefficient system utilization
due to small number of large jobs. Hence for jobs of the large
queue, the partitioned system employs advanced reservations.

Our methodology employs a number of parameters. One of
the important parameters is the history period after which the
queues are considered for reconfiguration. Unlike continuous
learning and corrections employed in many applications of
machine learning, in HPC systems it is practically not pos-

Fig. 5: Workload in the Cray System: Average CPU hours of
each queue

Parameter Value
Weighted NLP:
Number of epochs of the previous one-month history 3 10-day epochs
Weights for the epochs (in chronological order) 1/3, 2/3, 3/3
τutil threshold for lower bound constraint 90% of max utilization

Hybrid Strategy:
chunkSize 5 processors
Degradation percentage, degPercent 30%
τutil threshold for priority factor 0.5*priority of the

medium queue

TABLE III: Parameters used in our method

sible for the system administrators to reconfigure the queues
frequently since reconfiguration involves flushing out the jobs
in the existing queues, a period of potential shutdown of the
system, and advanced notifications to the users. As shown in
Figure 4, the workload in the Cray system queues show high
variations from one day to another. Thus, a day’s workload
cannot be reliably used as the history period. Figures 6(a)
and 6(b) show the workload variations for intervals of 10
days and for every month, respectively. We find that similar
to per day interval, the workload shows highly varying non-
deterministic pattern for ten-day intervals. However, as we
aggregate the data over the period of one month, we can
observe that the noise is significantly reduced and the pattern is
also noticeable. This suggests that for the Cray system, we can
assume that the workload data of a previous month is a reliable
indicator for the workload in the upcoming month. Hence our
methods use workload data for a month as the history period,
and reconfigure the queues for the subsequent month’s usage.
Such monthly reconfiguration of queues is also practical and
advisable in some supercomputer systems. We performed such
sensitivity studies and set the values for the other parameters
as shown in Table III.

We evaluate and compare the following strategies for queue
configurations:

1) Proportional Partitioning (PP): This method parti-
tions the processor nodes proportionally among the
queues based on the fraction of CPU hours of the
jobs in each queue in the history. Thus, the partition
size for a queue, Pq , is defined as:

Pq = (

∑Jq

j=1(CPUqj × Tqj
∑NQ

i=1(
∑Ji

j=1 CPUij ∗ Tij)
)× P (7)

where P is the total number of processors, NQ is
the number of queues, Jq is the number of jobs in
q, CPUij is the number of processors used by job j
submitted to queue i, and Tij is the execution time
of the job j submitted to queue i. While this simple
method considers the dynamic workloads, it does not
use the arrival rates and the wait times of the jobs in
the workload.

2) Static Configuration: This method follows one
queue configuration, that is fixed initially, for all the
months. For fixing the initial configuration, we use
the output of proportional partitioning for the first
month of simulation.

3) Dynamic partitioning (DP-NLPM): Here, the num-
ber of queues and queue parameters including the run
time limits/request size limits etc are maintained the

9595

0

2E+09

4E+09

6E+09

8E+09

1E+10

1.2E+10

1.4E+10

1.6E+10

1.8E+10

10 30 20 10 30 20 10 30 20 10 30 20 10 30

CP
U

 h
ou

rs
 P

er
 In

te
rv

al

Interval

Variation of CPU hours of queues per 10 day interval

small72 small medium

(a) CPU hours per interval of ten days

0

1E+10

2E+10

3E+10

4E+10

5E+10

6E+10

7E+10

8E+10

jun jul aug sep oct nov dec jan feb

CP
U

 h
ou

rs
 p

er
 m

on
th

Month

Variation of CPU hours of queues per month

small72 small medium

(b) CPU hours per month

Fig. 6: Workload Variations for a nine-month period in the
Cray System

same as the original configuration. Only the partition
size of each queue is varied based on the output of
our NLP method.

4) Dynamic queue reconfiguration (DQR): In this
method, the queue configuration including the num-
ber of queues are changed using the split and merge
operations over the dynamically partitioned queues.

5) Hybrid System: This is the hybrid partitioned/non-
partitioned queuing system, using our method, con-
taining partitioned queues along with a common pool
of nodes.

B. Results

1) Comparison of Dynamic Methods with Static Configura-
tion: Figure 7 shows comparative analysis of dynamic methods
with respect to the static configuration in terms of average
waiting times of the jobs. The dynamic partitioning methods,
namely, proportional partitioning (PP), dynamic partitioning
(DP-NLPM) and dynamic queue reconfiguration (DQR) give
better performance than the static configuration in almost all

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

Jul Aug Sep Oct Nov Dec Jan Feb Mar

Av
er

ag
e

W
ai

t T
im

e(
se

c)

Month

Performance of Static Vs Dynamic Queue Reconfiguration

static PP DP-NLPM DQR

Fig. 7: Comparison of Dynamic Strategies over Static Config-
uration in terms of Average Waiting Times

the cases except for a few months, especially for January’16.
Leaving the results for January, the DP-NLPM method gives
average reduction of 16% and maximum reduction of 44% in
the average waiting time of jobs when compared to the static
configuration. The DP-NLPM method performs better than
the proportional partitioning (PP) method for all the months.
The DP-NLPM method gives average reduction of 12% and
maximum reduction of 26% in the the average waiting time
of jobs when compared to the PP method. The reason for
this is that unlike proportional partitioning where we have
tight bounds, the constraints in NLPM are not rigidly fixed.
The optimizer has a larger search space to find an optimal
solution. Also, the weighted NLPM gives more weightage to
the last week of the month than the first week. There is higher
probability that the pattern followed in the last week is repeated
in the next month.

Dynamic queue reconfiguration (DQR) further reduces the
average waiting time by 12% average and 59% maximum
reduction when compared to DP-NLPM, and performs the best
in almost all the months. The method, by performing splitting
and merging over the queues, reconfigures the whole queue
configuration to suit the underlying workload distribution. This
suggests that it is advisable to even change the number of
queues based on the workloads.

Figure 8 shows the system utilization due the different
methods. The utilization values are plotted between 0 to 1,
with 1 representing 100% utilization. We find that our dynamic
methods not only gives reduced average wait times, but also
higher utilizations than the static configuration, thus providing
fairness to both short (small wait times) and long running
jobs (high utilization). The dynamic queue reconfiguration
method with change in the number of queues gives the highest
utilization values in most cases.

The lower performance of our dynamic methods for Jan-
uary’16 is due to drastic reduction in CPU hours of medium
queue from the previous month which can be noticed in
Figure 5. Considering the previous month’s workload, the

9696

0.5

0.65

0.8

0.95

Jul Aug Sep Oct Nov Dec Jan Feb Mar

Av
er

ag
e

U
til

iza
tio

n

Month

Utilization rates of dynamic models wrt Static

static PP DP-NLPM DQR

Fig. 8: Comparison of Dynamic Strategies over Static Config-
uration in terms of System Utilization

model allocated more nodes to medium queue when compared
to the other queues. A closer look at the percentage of
nodes allocated show that for January’16, the proportional
partitioning method allocated 57% of the nodes to medium,
22% of the nodes to small and 21% of the nodes to small72.
So, while the jobs in small and small72 queues did not have
sufficient nodes for scheduling, the nodes in the medium queue
were being under utilized. This motivates the use of our hybrid
strategy, where we maintain a common pool of nodes, and
nodes in the common pool can be considered for scheduling
a job that undergoes starvation.

2) Hybrid Model: In this section, we compare our proposed
hybrid partitioned/non-partitioned model with respect to static
partitioned queuing system and static non-partitioned queuing
system. The Cray XC40 system follows non-partitioned type
of queuing system. Hence, the non-partitioned system config-
urations we have considered are of Cray XC40.

Figure 9 compares the performance of hybrid strategy
with the static queuing systems in terms of average waiting
times. The hybrid partitioned/non-partitioned queuing strategy
outperforms the static queuing in all the cases. When compared
to the static configuration, the hybrid system gives average
reduction of 46% and maximum reduction of 74% in average
waiting times. Note that the partitioned system using dynamic
queue reconfiguration (DQR) gave only an average reduction
of 24% over the static configuration, as shown earlier in Figure
7. This suggests that the hybrid strategy, which uses the parti-
tions created from the DQR method to form a hybrid system,
improves the performance of the dynamic partitioned system.
When compared to the non-partitioned queuing system, the
hybrid model gives average reduction of 55% and maximum
reduction of 83%.

Though reduction in average wait time of jobs
was our primary objective, bounded slowdown is
another metric which is widely used for evaluations
in job scheduling. It is defined as (waitT ime +
max(runT ime, threshold))/max(runT ime, threshold).

0

20000

40000

60000

80000

100000

120000

Jul Aug Sep Oct Nov Dec Jan Feb Mar

Av
er

ag
e

W
ai

t T
im

e
(s

ec
)

Month

Performance comparison of static, dynamic and hybrid queues

static Partiitoned static NonPartitioned DQR Hybrid Reconfigured

Fig. 9: Comparison of Hybrid Strategy over Static Configura-
tions in terms of Average Waiting Times

0

500

1000

1500

2000

2500

Jul Aug Sep Oct Nov Dec Jan Feb Mar

Bo
un

de
d

Sl
ow

do
w

n

Month

Comparision of bounded slowdown

static partitioned static nonpartitioned hybrid_reconfigured

Fig. 10: Comparison of Hybrid Strategy over Static Configu-
rations in terms of Average Bounded Slowdown

It is one of the metrics that analyze fairness: jobs with
smaller run times should have smaller wait times for
the bounded slowdown values to be small. Figure 10
shows the comparative results of the bounded slowdown
using the three configurations, namely, static (partitioned),
static (non-partitioned)/Cray and hybrid reconfigured queue
configurations. Our proposed hybrid configuration outperforms
the static configurations in almost all the months. On an
average, the percentage reduction of bounded slowdown of the
hybrid system in comparison to the static partitioned system
is around 39% and in comparison to static non-partitioned
system is around 35%.

Figure 11 shows the utilization of the system using the
hybrid and the static methods. System utilization in hybrid
reconfigured queues is on an average 12% more than the static
partitioned queuing. In case of non-partitioned type of queuing

9797

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Jul Aug Sep Oct Nov Dec Jan Feb Mar

Av
er

ag
e

Sy
st

em
 U

til
iza

tio
n

Month

Comparision of utilization of static, dynamic and hybrid queues

static Partiitoned static NonPartitioned DQR Hybrid Reconfigured

Fig. 11: Comparison of Hybrid Strategy over Static Configu-
rations in terms of Utilization

system, though the average wait time experienced by the jobs
is higher than that of the hybrid system, the utilization in some
cases is comparable or greater than that of the hybrid queuing.
This is because of the contradictory nature of utilization and
average response time of the system. The primary reduction
in overall average wait time of the jobs in the system is
due to lower response times for small jobs, while the system
utilization improves due to long and large jobs. Our methods
aim to strike a balance between these two factors. In the Cray
system, high priority is given to large jobs when compared
to small jobs and hence results in higher utilization in some
cases.

Comparing these utilization results of the hybrid system
with the utilization results of the partitioned system due to
our dynamic queue reconfiguration (DQR), shown in Figure
8, we find that the utilization in the hybrid system is 3-4%
higher than the utilization in the DQR system in most cases.
As noted earlier, the hybrid system gives reduced waiting times
when compared to the DQR system. Thus, the hybrid system
provides both improved waiting times and utilization when
compared to the corresponding partitioned system. The waiting
time improvement is because the jobs with slowdowns beyond
a threshold are allocated nodes from the common pool, and
improved utilization is because the hybrid system, by reducing
the partitions for creating the common pool, does not cause
under-utilization of queues for skewed workloads unlike the
corresponding partitioned system.

3) Comparison with Existing Work: We also compared our
work with the existing work on multiple queue backfilling
scheduling by Lawson and Smirni. [7], [8] where they maintain
flexible partition boundaries2. Figure 12 shows that the average
waiting time due to our DP-NLPM approach is smaller than
that of the multiple queue backfilling by Lawson and Smirni
(marked as “MQB”) by an average of 50%. The main reason
for such poor performance of their work is because their
multiple queue backfilling scheduling hugely depends on the

2Details given in Related Work section

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

july aug sep oct nov dec Jan_16 Feb_16 Mar_16

Av
er

ag
e

W
ai

t T
im

e
(s

ec
)

Month

Performance comparison of dynamic models over MQB

Proportional Partitioning Non linear Programming Model Multiple Queue Backfilling

Fig. 12: Comparison with Existing Work in terms of Average
Waiting Times

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

july aug sep oct nov dec Jan_16 Feb_16 Mar_16

Av
er

ag
e

U
til

iza
tio

n

Month

Comparison of Utilization of dynamic models over MQB

Proportional Partitioning Non linear Programming Model Multiple Queue Backfilling

Fig. 13: Comparison with Existing Work in terms of Utilization

backfilling strategy and is adversely affected if the user run
time estimates are inaccurate. In the workload data which we
have used, the run time estimates in most cases are equal to
the maximum wall time of queues.

Figure 13 compares the utilizations of our work and the
multiple queue backfilling (MQB) method. We find that our
hybrid method gives up to 8% higher utilization than the MQB
method.

V. RELATED WORK

Prabhakaran et al. [9] distinguishes the dynamic and static
requests and introduces new fairness schemes for improved re-
source allocation. VARQ [10] (Virtual Advanced Reservations
for Queues) is a system that uses QBETS [1] to implement
an advanced reservation abstraction for HPC users. QBETS
computes a time bound on the delay a specific user job will

9898

experience. The partitioned system simulator that we present,
is based on the advanced reservations for large jobs. Our work
differs from all the above work by focusing on adaptive queue
reconfigurations.

Krishnamurthy et al. [11] provided a toolset that can help
a system administrator to automatically configure a scheduling
policy. Streit [12], [13] has proposed a self-tuning dynP job
scheduler which can tune queuing policy dynamically during
run time. Tang et al. [14] propose metric-aware scheduling
which enables the scheduler to balance scheduling goals rep-
resented by different metrics.

Lawson and Smirni [7] proposed multiple queue backfilling
strategies with priorities and reservations for parallel systems.
Their work emphasizes on dynamically changing the partition
size of the queue for effective backfilling of any of the
queued job, without delaying the high priority job of other
partitions. In their subsequent work [8], they proposed method
to automatically change the number of partitions on-the-fly,
to address transient workload fluctuations. Their work focused
on deriving optimal number of partitions once the slowdown
exceeds a predefined threshold. In their work, they perform
online simulation starting from one partition to Pmax (maxi-
mum number of allowable partitions) partitions of the system
using the currently queued jobs in the system. Finally the
configuration which gives best overall performance is adopted.

One of the major drawbacks of their work is that they
perform simulations on-the-fly and change the system con-
figuration every time the slowdown exceeds a predefined
threshold τ . Reconfiguring the queues on-the-fly has high
overheads since it involves waiting for all the queues to be
drained before reconfiguration, which also reduces the system
utilization. However, our work differs from their work in
several aspects. Instead of changing the number of partitions on
the fly, we consider a window period of one month. Based on
the observations of previous month workload data and system
behavior, we determine optimal system configuration. Unlike
their work [8], we do not perform our simulations starting from
one queue upto Pmax. Rather, we perform reconfigurations
over the previous partitions. This is because the workload
pattern in the previous month is influenced by the system
configuration of the month.

VI. CONCLUSIONS AND FUTURE WORK

Most of the super computing centers face the problem
of high wait time to the users and low utilization of the
the system. Our results obtained show that using a fixed
configuration affects both performance and utilization of the
system adversely. We have proposed a method based on NLP
to dynamically reconfigure the queue partition size based on
the workload of previous months. Our NLP-based method
(DP-NLP) gives up to 44% reduction in queue waiting times
when compared to static queue configurations. Using the
partitioned queues we perform split and merge operations over
the queues to determine the optimal number of queues. This
dynamic reconfiguration of queues (DQR) result in up to 59%
reduction in queue waiting times and higher utilizations over
the partitioned system obtained using DP-NLP. We have shown
the cases of non-determinism in the workloads and how this
can adversely affect the performance of the system. In order

to overcome the non-deterministic nature of the workload, we
have come up with a hybrid partitioned/non partitioned way
of queuing, where a common pool of nodes are maintained
apart from the normal partitioned queues. These common pool
of nodes can be used by jobs if their slowdown exceeds a
threshold. Our hybrid system gave further reductions in queue
waiting times and slowdowns, and higher utilizations over the
partitioned system due to the DQR method.

Currently, the parameters which we consider for auto tun-
ing are the number of queues, queue partition size, queue prior-
ity, queue run time limits, and queue CPU limits. Commercial
Maui schedulers have nearly 200 configurable parameters. In
future, we would like to develop a generic tool that works on
any type of queuing system, partitioned and Non-partitioned.
The tool will help reduce the difficult task of finding optimal
configuration of the system and help the HPC communities
reduce the waiting time of the jobs.

REFERENCES

[1] D. Nurmi, J. Brevik, and R. Wolski, “Qbets: queue bounds estimation
from time series,” in Job Scheduling Strategies for Parallel Processing.
Springer, 2007, pp. 76–101.

[2] B. G. Lawson, E. Smirni, and D. Puiu, “Self-adapting backfilling
scheduling for parallel systems,” in Parallel Processing, 2002. Proceed-
ings. International Conference on. IEEE, 2002, pp. 583–592.

[3] O. Peleg, “Python Scheduler Simulator,” Feb. 2010. [Online]. Available:
http://code.google.com/p/pyss/

[4] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel Job
Scheduling: a Status Report,” in Proceedings of the 10th Workshop on
Job Scheduling Strategies for Parallel Processing, ser. JSSPP’04, 2005,
pp. 1–16.

[5] “Constrained nonlinear optimization algorithms,” http://in.mathworks.
com/help/optim/ug/constrained-nonlinear-optimization-algorithms.
html.

[6] ”http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141 s03/Project/
Project1 solutions/fmincon.pdf”.

[7] B. G. Lawson and E. Smirni, “Multiple-queue backfilling scheduling
with priorities and reservations for parallel systems,” in Job Scheduling
Strategies for Parallel Processing. Springer, 2002, pp. 72–87.

[8] B. Lawson and E. Smirni, “Self-adaptive scheduler parameterization via
online simulation,” in Parallel and Distributed Processing Symposium,
2005. Proceedings. 19th IEEE International. IEEE, 2005, pp. 29a–29a.

[9] S. Prabhakaran, M. Iqbal, S. Rinke, C. Windisch, and F. Wolf, “A
batch system with fair scheduling for evolving applications,” in Parallel
Processing (ICPP), 2014 43rd International Conference on. IEEE,
2014, pp. 351–360.

[10] D. Nurmi, R. Wolski, and J. Brevik, “Probabilistic reservation services
for large-scale batch-scheduled systems,” Systems Journal, IEEE, vol. 3,
no. 1, pp. 6–24, 2009.

[11] D. Krishnamurthy, M. Alemzadeh, and M. Moussavi, “Towards auto-
mated hpc scheduler configuration tuning,” Concurrency and Compu-
tation: Practice and Experience, vol. 23, no. 15, pp. 1723–1748, 2011.

[12] A. Streit, “Enhancements to the decision process of the self-tuning
dynp scheduler,” in Job Scheduling Strategies for Parallel Processing.
Springer, 2004, pp. 63–80.

[13] ——, “Evaluation of an unfair decider mechanism for the self-tuning
dynp job scheduler,” in Parallel and Distributed Processing Symposium,
2004. Proceedings. 18th International. IEEE, 2004, p. 108.

[14] W. Tang, D. Ren, Z. Lan, and N. Desai, “Adaptive metric-aware
job scheduling for production supercomputers,” in Parallel Processing
Workshops (ICPPW), 2012 41st International Conference on. IEEE,
2012, pp. 107–115.

9999

