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Abstract: The reconstruction methods for solving the ill-posed inverse problem of photoacoustic
tomography with limited noisy data are iterative in nature to provide accurate solutions. These
methods performance is highly affected by the noise level in the photoacoustic data. A singular
value decomposition (SVD) based plug and play priors method for solving photoacoustic inverse
problem was proposed in this work to provide robustness to noise in the data. The method was
shown to be superior as compared to total variation regularization, basis pursuit deconvolution
and Lanczos Tikhonov based regularization and provided improved performance in case of noisy
data. The numerical and experimental cases show that the improvement can be as high as 8.1
dB in signal to noise ratio of the reconstructed image and 67.98% in root mean square error in
comparison to the state of the art methods.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photoacoustic tomography (PAT) is a hybrid imaging modality providing optical absorption
contrast at high ultrasonic resolution [1–4]. It involves usage of a pulsed laser (temporal duration
in nanoseconds) in the range of 600 - 1000 nm (near-infrared (NIR)) for irradiating the tissue.
The absorbed light by the tissue chromophores tends to increase the temperature which leads to
thermoelastic expansion. The photoacoustic (PA) waves are generated because of light absorption
and propagate inside the tissue, to be acquired by the transducers placed at the boundary of tissue.
The captured measurements by transducers are then used as an input to the various reconstruction
algorithms for estimating the initial pressure rise distribution inside the tissue. The strength of
PAT lies in the fact that the attenuation and scattering of acoustic waves is far less compared to
light propagation and thus the propagation inside the tissue without significant scattering can be
achieved. Photoacoustic imaging has been widely used for revealing functional and structural
information in clinical and pre-clinical applications, non-invasive monitoring of traumatic brain
injury [5], oncology [6,7], pathology, molecular imaging [3] and enables deep tissue monitoring
because of higher light penetration in the NIR-window [8].

One of the bottlenecks for translation of PAT to pre-clinical/clinical applications is the lack of
robust reconstruction methods being available for generating accurate images in photoacoustic
tomography. The present analytical methods for computing the result of the inverse problem are
composed of filtered backprojection and Fourier transform based methods [9,10]. Analytical
algorithms are generally computationally efficient but require large number of ultrasonic sensors
around the imaging domain. These algorithms also require more number of ultrasonic transducers
or acquiring more number of time samples, which increases the data acquisition time. In general,
the analytical or time reversal based methods have limited quantitative accuracy [11–13].

The term quantitative in here refers to the reconstructed initial pressure distribution being more
close to the true pressure distribution in terms of contrast recovery. Since the reconstruction step
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is performed with limited number of transducer elements and limited number of time samples, it
results in inferior contrast recovery and in here we deal only with the acoustic inverse problem.
The model based techniques have gained wide importance in the recent past to solve the inverse
problem and get quantitatively accurate images for limited data cases [9,14]. The term limited
data refers to the limited amount of the measurement data being acquired utilizing photoacoustic
experimental setups. There are clinical experimental setups with the number of acoustic sensors
being as high as 512 and the number of time samples could be 2048 [15]. In this work, the
number of time samples used were only 512 and the maximum number of acoustic detectors
being only 100, thus being limited data in nature. The limited data case utilizes comparatively
less number of detectors than the full data cases. Here, we have utilized 100 detectors as an
example, but the detectors can be decreased further to show the utility of the proposed method.
Here, we have not included the limited view cases which cover only part of the simulation grid as
the focus is only on limited data cases.

The conversion efficiency of light to sound in photoacoustic effect is quite low and the signal
to noise ratio (SNR) of photoacoustic signals in case of thick tissues is also limited, many
methods have been proposed to improve the SNR of these signals. In Ref. [16], a method was
proposed combining the empirical mode decomposition and mutual information to reduce noise
in photoacoustic imaging. Another work introduced exponential filtering of the SVD coefficients
to improve the reconstruction and mitigating the effects of the modeling errors present during the
reconstruction [17]. Even application of total least squares to compensate the modelling errors
and tackle the low SNR of raw data was also investigated [18]. In Ref. [19], a SVD based model
was introduced for analysis of photoacoustic imaging system and utilized denoised imaging
operator for estimating the number of measurable singular vectors for the system. Another
investigation to identify and remove laser noise in photoacoustic images utilizing an ultrasound
clinical scanner using SVD was also carried out [20]. Compressed sensing (CS) and deep
learning (DL) based methods for cases of sparse data were also applied to the problem at hand
[21–23]. Various other methods, such as l1 minimization, total variation have also been utilized
as a sparsity regularizer for denoising as well as reconstruction scenarios [24]. Total Variation
(TV) measures the gradient of the image for getting the variations in an image and has been
shown as an effective regularization method for solving linear inverse problem [25]. In Ref. [26],
an adaptive steepest descent projection onto convex sets (ASD-POCS) involving the TV step
for limited data reconstruction was investigated. In similar line, Ref. [27] proposed a gradient
descent algorithm based on TV for undersampled measurements, and Ref. [28] proposed a TV
regularization enhanced by bregman iterations for solving the PAT sub-sampling problem for
increasing the acquisition speed and achieving good resolution. In Ref. [29] deep learning
was applied to improve the reconstruction result obtained by truncated SVD. On the data side,
a deep learning based method was proposed for super-resolving the sinogram (photoacoustic
raw data) from undersampled measurements to obtain super-resolved, denoised and bandwidth
enhanced sinogram for improving the photoacoustic image reconstruction [30]. In Ref. [31],
a deep learning method based on learned regularizer was proposed for mitigating the aliasing
artifacts obtained in limited data photoacoustic problem.

The model based regularization techniques are more robust for noisy cases and the reconstruc-
tion obtained is quantitative in nature. Several model based methods, including Tikhonov based
regularization, promote smoothness in the resultant reconstructed photoacoustic image. In simple
words, the result is generally blurred and advanced computational methods utilize deblurring
techniques, such as Basis Pursuit Deconvolution (BPD) [32] to provide sharper images. All
these methods result in a solution which is biased to the choice of regularization parameter.
Regularization methods such as total variation based regularization which minimizes the variation
in the solution can provide sharper features in the reconstructed image, but also requires careful
choice of regularization parameter [33]. Generally noise is present in the measurement data
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which necessitates regularization to mitigate the effect of noise and often this regularization
can induce smooth features (blurriness) in the reconstructed photoacoustic image. The iterative
methods are effective in removing the noise as compared to the analytical techniques and getting
a reconstruction close to the ground truth and hence provide more meaningful solutions.

Recently proposed method, framed in Plug and Play (P & P) framework, uses the existing
denoising algorithms for getting a solution of various tasks particularly to improve and accelerate
the image reconstruction [34]. These P & P methods propose a way to decouple the image
prior with the measurement model. The image prior is handled using a standard denoising
operation such as total variation etc. The major advantage of using such a model is that the prior
is not defined explicitly (it is implicitly defined by the denoiser [35,36]). The technique of P
& P has found many application areas as in post-processing of compressed image [37], bright
field electron tomography [38], and Poisson denoising [39]. In Ref. [40] another technique
was proposed to reduce the number of iterations as well as less parameter tuning to achieve the
same. The cost function was transformed into a novel optimization problem and solved using
efficient techniques to get the solution. The problem with this technique is that for large matrices
the inverse needs to be calculated explicitly, which is a time consuming process having high
computational complexity. Also it is not always possible to get an inverse for an ill-conditioned
matrix. The computation of a pseudo-inverse often requires the use of regularization parameter
e.g. in case of SVD it is the number of singular values to get the accurate pseudo-inverse. Here a
SVD [41] based form of the Iterative Denoising and Backward Projection based method was
utilized to get the pseudo-inverse.

The proposed Singular Value Decomposition based Iterative Denoising and Backward Projec-
tion (SVD-IDBP) method is a novel technique to include any state of the art denoising technique
to be utilized as priors for solving the inverse problems and can be easily included in all inversion
schemes without any overhead [34]. Here, total variation denoising was deployed as a denoising
prior, but other models such as Non local Means [42], Guided filter [43], and wavelet thresholding
(soft and hard) can also be seamlessly utilized. The proposed technique is agile and effortless to
be integrated into the reconstruction framework (software’s) to provide improved solution of
inverse problems, examples include image reconstruction and image inpainting [34].

In the proposed Plug & Play based method, the optimization problem is split into two parts
- one is the prior term where the denoising is involved using state of the art denoisers and the
other is the forward model used for getting the sinogram domain data. These are decoupled
(solved independently) and hence provide improved solution to the inverse problem. The benefit
of decoupling is that one branch composed of denoising is directly dependent on the prior, while
the other branch only depends on the forward model comprising the model based reconstruction
using SVD and l2 regularization. The derived SVD based inversion in the model also helps in
computation of the pseudo-inverse for ill-conditioned matrices (common in ill-posed inverse
problems like photoacoustic tomographic imaging).

Specifically, the SVD [41] based reduced dimension plug and play model for improving the
image reconstruction for photoacoustic tomography was introduced in this work. This iterative
SVD based model can be used for solving ill-conditioned linear equations, where the direct
computation of inverse is not plausible [44]. The advantages of using the SVD based iterative
plug and play model (SVD-IDBP) are as follows:

• A SVD based model was derived for the iterative plug and play model for improving
the photoacoustic image reconstruction, so it still retains all advantages of model-based
reconstruction methods.

• This iterative model involves the pseudo-inverse of system matrix, well suited for ill-
conditioned problem, which can be calculated easily using the SVD of the matrix for
ill-conditioned matrix.
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• The proposed method is computationally efficient as compared to the other techniques
such as Basis Pursuit Deconvolution, Lanczos Tikhonov, and Total Variation based
reconstruction.

• The prior term can incorporate any other denoisers such as Non Local Means denoising
[42,45] and the model can be applied to other image reconstruction problems for improving
the reconstruction, making it very generic.

2. Photoacoustic (PA) image reconstruction

The acoustic waves that are generated due to heating of the tissue by irradiation of laser source are
modeled by the photoacoustic wave equation. The forward model computes the pressure waves
which are captured by the transducers placed at the boundary. These PA waves that propagate
inside the tissue follow the equation: [4]

∇2P(z, t) −
1
c2
∂2P(z, t)
∂t2

=
−β

Cp

∂E(z, t)
∂t

. (1)

Here, P(z, t) : the pressure at position z and time t, c : the speed of sound, Cp : specific heat
capacity, β : the thermal expansion coefficient, and E(z, t) : the energy deposited per unit volume
per unit time.

2.1. Building the system matrix

The numerical framework utilized in here for the computation for forward and backward problems
here is similar to previously used one (available in Refs. [ [46]]). Here it is reviewed briefly for
completeness. The dimensions of the imaging domain utilized here for the framework is n × n
which is reshaped to make a long vector of dimensions n2 × 1. The dimensions of the obtained
system matrix A is m × n2. Here the variable m represents the product of the total number of
ultrasonic detectors and the number of time samples acquired. The response of each pixel is
computed using the forward model and is stacked as a column vector to make the complete
system matrix. The measurement vector obtained by collecting the data using the detectors
at the boundary is denoted as y having dimension of m × 1 [46]. The forward model for the
photoacoustic imaging is given as

Ax = y. (2)

2.2. Linear back projection (LBP) Method

The simplest linear back projection (LBP) output can be obtained as [32,47]

x = ATy. (3)

Here T denotes the transpose of the matrix. The backprojection technique is only qualitative
in nature and hence not used for quantitative imaging [14]. The backprojection based output is
generally used as the initial point for starting the iterations for the iterative methods [46].

2.3. Lanczos Tikhonov regularization method

The inverse problem arising in photoacoustic tomography is ill-conditioned for limited data (the
number of sensors used are comparatively less) case. In general, Tikhonov regularization has
been popular for solving this ill-posed problem of photoacoustic imaging. The plot of the singular
values of the system matrix is shown in Fig. 1. A large fraction of the obtained singular values are
close to zero owing to the ill-condition of the matrix. The solution obtained is computationally
expensive as it takes O(n6) operations. To reduce the computational complexity of this method,
Lanczos bidiagonalization for the above problem was proposed [48]. This method has been



Research Article Vol. 12, No. 3 / 1 March 2021 / Biomedical Optics Express 1324

previously used for providing optimal solution and has been the standard method to be deployed
for solving the inverse problem of photoacoustic tomography [18,32,48]. For more details, the
readers are encouraged to refer to Ref. [48].

Fig. 1. Example plot of the magnitude of singular values of the corresponding system
matrix.

2.4. Basis pursuit deconvolution (BPD) method

Basis Pursuit Deconvolution (BPD) [32] was employed as an additional post-processing method
to deconvolve and get an improved solution as compared to the one obtained using the Lanczos
Tikhonov regularization method. The regularization often blurs the obtained pressure distribution
and thus the resulting regularization effect can be minimized using the BPD method. It deblurs
the solution xLTH obtained using the Lanczos Tikhonov Regularization method. This is achieved
by utilization of Split Augmented Lagrangian Shrinkage Algorithm (SALSA) [36] algorithm for
minimizing of the cost function, which typically uses ℓ1-norm based regularization for promoting
sharp features in the reconstructed solution (when the TV term in Algorithm 1 replaced with
ℓ1-norm, it will lead to the form utilized in Ref. [32]).

2.5. Total variation regularization method

The Tikhonov regularization promotes smooth features in the reconstructed image due to the
presence of the l2 norm of regularization part. Other standard method for solving this ill-
conditioned problem is to minimize the variation obtained in the solution along with the residual
term. This method comprising the variation and the residual term is called as total variation (TV)
regularization technique [49,50]. The function to be minimized for the total variation case can be
written as

Γ = ∥Ax − y∥2
2 + η∥x∥TV . (4)

Here, η denotes the regularization parameter and ∥.∥TV represents the isotropic total variation
[51].

Here, ϕ denotes the TV functional ∥.∥TV and Alternating Direction Method of Multipliers
(ADMM) framework was utilized here for TV regularization which has the same form as
given in Ref. [52]. The Split Augmented Lagrangian shrinkage Algorithm (SALSA) (given in
Algorithm-1), was utilized in this work. The LBP reconstruction was utilized as an initial guess
of x and the variables l0 and w0 were initialized to zero for the SALSA algorithm.
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Algorithm 1: SALSA Algorithm.
1 Input: A, η, y, i = 0, w0, l0
2 Output: xi+1
3 Repeat till the convergence criteria is satisfied
4 xi+1 = arg minx ∥Ax − y∥2

2 + η∥x − wi − li∥2
2

5 wi+1 = arg minw τϕ(u) + (η/2)∥xi+1 − w − li∥2
2

6 li+1 = li − (xi+1 − wi+1)
7 i = i + 1

2.6. Singular value decomposition based iterative denoising and backward projection
(SVD-IDBP) method [proposed]

The forward problem of the photoacoustic imaging is given in Eq. (2). If noise is present in the
data, the equation is modified to

Ax = y + e (5)
where e represents the noise in the data (dimension: m×1) with zero mean and standard deviation
(σe). The cost function generally comprises of the penalty and the fidelity terms. The fidelity
term helps in making the solution x consistent with the measurements obtained, and the penalty
term gives the benefits of regularizing the cost function using the prior image model p(x). The
typical cost function for this model can be given as

f (x̃) =
1

2σ2
e
∥y − Ax̃∥2

2 + p(x̃). (6)

Here ∥.∥2 represents the l2 norm of the vector and x̃ is the solution vector. The cost function is
formulated in with a small change for deriving the proposed algorithm:

f (x̃) =
1

2σ2
e
∥y − Ax̃∥2

2 + p(x̃)

=
1

2σ2
e
∥A(A†y − x̃)∥2

2 + p(x̃)

=
1

2σ2
e
∥(A†y − x̃)∥2

ATA + p(x̃)

(7)

where A† is the pseudo-inverse of A and ∥x∥2
ATA

∆
= xTATAx and can be calculated for rank

deficient matrices. Eq. (7) consists of the residual term and the prior image model term. Since

AA† = A†A = I, (8)

the term y − Ax̃ can be written as

y − Ax̃= A†Ay − Ax̃

= A(A†y−x̃).
. (9)

Knowing ∥x∥2
ATA

∆
= xTATAx and (AB)T = BTAT, the term ∥(A†y − x̃)∥2

ATA
can be rewritten

using these properties as

∥(A†y − x̃)∥2
ATA = (A†y − x̃)TATA(A†y − x̃)

= (A(A†y − x̃))T (A(A†y − x̃))

= ∥(A(A†y − x̃))∥2
2

= ∥(y − Ax̃)∥2
2

. (10)
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Using the SVD decomposition [41] of matrix A, the matrix A can be decomposed as

A=USVT (11)

where U and V are orthogonal matrices and S is a matrix with the diagonal elements representing
the singular values of the matrix A. The column of the orthogonal matrix U are called the left
singular vectors while the columns of the orthogonal matrix V are called the right singular vectors.
The left singular vectors of the matrix A are eigenvectors of AAT while the right singular vectors
the matrix A of are eigenvectors of ATA. S is a diagonal matrix consisting of the decreasing
singular values. The U and V matrices satisfy the following properties:

UTU = I (12)

and
VTV = I. (13)

The pseudo-inverse of A can be written as:

A† = (USVT)−1 = (VT)−1S−1U−1. (14)

Using Eqs. (12) and (13), the Eq. (14) can be written as

A† = (V−1)−1S−1UT = V S−1UT. (15)

Thus, the product of pseudo-inverse and the matrix can be simplified using Eq. (12) as

A†A = VS−1UTUSVT = VS−1SVT (16)

and
ATA = VSTUTUSVT = VSTSVT. (17)

Thus Eq. (7) can be modified as

f (x̃) =
1

2σ2
e
∥(V S−1UTy − x̃)∥2

VSTSVT + p(x̃). (18)

This cost function of minimizing f (x̃) over x̃ can be also written as

min
x̃,b̃

1
2σ2

e
∥b̃ − x̃∥2

VSTSVT + p(x̃) s.t. b̃ = V S−1UTy. (19)

Similar to Ref. [53], here in order to get x̃, freedom is required on how to chose b̃. Hence we
relax the above term by relaxing the constraint b̃ = V S−1UTy to y = USVTb̃ such that no inverse
is involved in this term. Since b̃ is always multiplied by A, the null space of A is always ignored.
Thus they will disagree with the prior p(x̃) as they are not controlled by these terms. To solve this
problem, the term 1

2σ2
e
∥b̃ − x̃∥2

VSTS VT is replaced with another term 1
2(σe+δ)2

∥b̃ − x̃∥2
2 , where δ

is another regularization parameter. Higher value of δ tends to reduce the effect of the fidelity
term, while lower value of (δ + σe)

2 will penalize the solution more. The problem of choosing
an optimal δ is discussed in Ref. [53]. Thus the Eq. (19) is modified to

min
x̃,b̃

1
2(σe + δ)

2 ∥b̃ − x̃∥2
2 + p(x̃) s.t. USVTb̃ = y. (20)

This equation can be solved in an iterative manner by using Alternating Direction Method of
Multipliers technique. The x̃k is obtained using

x̃k = argmin
x̃

1
2(σe + δ)

2 ∥b̃k−1 − x̃∥2
2 + p(x̃). (21)

This equation tries to find the solution x̃k with a denoiser for the white Gaussian noise having
variance σ2 = (σe + δ)

2. This denoiser is applied iteratively on the input image b̃k−1 and can be
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written in the compact notation as given

x̃k = D(b̃k−1;σ) (22)

and b̃k is obtained using

b̃k = argmin
b̃

∥b̃ − x̃k∥
2
2 s.t. US VTb̃ = y. (23)

This equation defines a projection of x̃k onto the subspace and has a closed form solution

b̃k = VS−1UTy + V(I − S−1S)VTx̃k. (24)

Thus the solution of the Eq. (19) can be written as

b̃∗ = VS−1UTy + V(I − S−1S)VTx̃. (25)

Using this solution and plugging it in Eq. (19) will result

min
x̃,b̃

1
2(σe + δ)

2 ∥VS−1UTy − VS−1SVTx̃∥2
2 + p(x̃). (26)

In the original equation (Eq. (6)), the fidelity term tries to provide better fit between the
measurements y = Ax̃ + e and Ax̃. Here the new problem aims at better fit between the terms

VS−1SVTx̃ = PAx̃ (27)

and
VS−1UTy = A†y. (28)

Here PA
∆
= A†A is the orthogonal projection onto the row space of A. Assuming that the

matrix A is of full low rank, the matrix PA and ATA have rank m, even though they may have
very different eigen values. The eigen values of PA can be only 1 in the row space of A while 0
in the null space of A.

It is a well known that if the singular values of the linear operator are not spread over a wide
range, then the linear least square optimization methods perform better [54]. Thus if the prior
p(x̃) gives a strong restriction on (In −PA)x̃ given PAx̃, then solving c∥A†y − PAx̃∥2

2 + s(x̃) might
be more stable than solving c∥y − Ax̃∥2

2 + s(x̃). When the noise is low and good image priors are
highly non convex, a numerical optimization process for

c∥PAx − PAx̃∥2
2 + s(x̃) = c(x − x̃)TPA(x − x̃)T + s(x̃) (29)

will provide a better approximation of the solution as compared to the numerical optimization
process for

c∥Ax − Ax̃∥2
2 + s(x̃) = c(x − x̃)TATA(x − x̃)T + s(x̃). (30)

Thus, the replacement provides a solution which is more close to the actual solution. The
proposed SVD based method eliminates the need of the prior function p(x). The prior function is
chosen depending on the denoiser D(.;σ). Here total variation denoiser was used and combined
with the SVD based method for improved performance. As D is an operator involving the image
with the threshold parameter, can be used as a black box for denoising, other popular techniques
such as Non local Means [42], Guided filter [43], and wavelet thresholding (soft and hard) can
also be easily deployed in this framework. The output b̃k is a better approximation to the ground
truth signal as compared to the raw observations y obtained. Thus it iteratively switches between
reconstructing the signal and iteratively using this reconstruction to improve. Overall, it provides
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better estimates of the measurements. The proposed algorithm, which was termed as Singular
Value Decomposition based Iterative Denoising and Backward Projections (SVD-IDBP), was
presented in Algorithm 2. The benefits of the proposed algorithm are that the offset can be
chosen for the singular values below which they are assumed to be zero (or noise floor). It helps
in removing the noise which was assumed to be present in the high frequency components and in
the lower singular values of the SVD matrix. For very large matrices the effect of these noisy
singular values can be mitigated using the proposed method as seen in the noisy cases (20 dB
SNR) presented in this work [55].

Algorithm 2: Singular Value Decomposition based Iterative Denoising and Backward
Projections (SVD-IDBP)
Input :A, y,σe, denoising operator D(:,σ), b̃0 : initialization, k=0, δ satisfying the

condition given in Ref. ?
Output
:

Solution vector: x̂

1 Repeat 2-4 till stopping criteria is met
2 k = k + 1
3 x̃k = D(b̃k−1;σe + δ)

4 b̃k = VS−1UTy + V(I − S−1S)VTx̃k
5 x̂ = x̃k

3. Figures of merit

For comparing the performances of the reconstructed initial pressure distributions in the numerical
phantom cases obtained using the proposed technique and other standard techniques, Root Mean
Square Error (RMSE), Pearson Correlation (PC) and Contrast to Noise Ratio (CNR) were utilized.
Since ground truth was not available for the experimental phantom and in-vivo case, the criteria
used for comparison is the Signal to Noise Ratio (SNR). These figures of merit are defined as
given below.

3.1. Root mean square error (RMSE)

It is a commonly used metric to predict the accuracy of the proposed method. It is defined as
[56,57]

RMSE(xT , xR) =

√︄
Σ(xT − xR)

2

N
(31)

where xT is the target reconstruction, xR is the reconstruction obtained and the total number
of pixels are represented by N. The image reconstruction quality is better when the RMSE is
smaller.

3.2. Pearson correlation (PC)

PC (range -1 to 1) measures the correlation between the reconstructed image and the target image
and is defined as follows [58,59]:

PC(xT , xR) =
COV(xT , xR)

σ(xT )σ(xR)
(32)

where xR : the reconstructed initial pressure distribution, xT : the expected initial pressure
distribution, COV : covariance, and σ : the standard deviation. The higher the value of the PC
(close to 1), the better is the correlation between reconstructed and expected image.
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3.3. Contrast to noise ratio (CNR)

CNR is defined as follows [15,60–62]:

CNR =
meanroi − meanback

(variance2
roiarearoi + variance2

backareaback)1/2
(33)

where variance and mean denotes the variance and the mean for the background (back) and the
region of interest (roi) for the initial pressure distribution reconstruction. The arearoi =

Aroi
Atotal

and areaback =
Aback
Atotal

represents the ratio of the area of the background (pixel value is 0) and the
region of interest (pixel value is 1) with the total area with Aroi being the area of the region of
interest, and Aback being the area of the background. The pixel value of 1 corresponds to the
initial pressure value of 1, while the pixel value of 0 corresponds to the initial pressure value of 0.
An improved contrast of the reconstructed image results in larger value of CNR.

3.4. Signal to noise ratio (SNR)

SNR of the reconstructed image is defined as [63]:

SNR r(in dB) = 20 × log10

(︃
PPressure

sdI

)︃
(34)

where PPressure : peak initial pressure distribution, and sdI : standard deviation of the image. A
higher value of the signal to noise ratio represents less noise in the reconstruction and hence
improved quality of the reconstructed image. The term SNRr was used for representing the signal
to noise ratio in the reconstructed image and distinguish it from SNR of the measurement vector
(y).

4. Numerical and experimental studies

Figure 2 shows the schematic of the acquisition geometry used for the collection of photoacoustic
data along with the hundred ultrasonic/acoustic transducers which were positioned at the border
of the domain to be imaged. The computational grid comprises of 100 ultrasonic/acoustic
detectors, which were positioned at a length of 22 mm from the center of the imaging domain.
The computational grid used for the imaging had a dimension of 50.1 mm × 50.1 mm and
the reconstruction grid had dimension of 20.1 mm × 20.1 mm. The computational grid is the
complete grid comprising the data generation and the reconstruction grid including the ultrasound
transducers. The photoacoustic data for these was generated on a grid having dimension of 401 ×

401, while a grid of dimensions 201 × 201 was utilized for performing the reconstruction of the
photoacoustic image data. The dimension of the grid was same for generation and reconstruction,
but the grid lines are changed as 401 × 401 for data generation while 201 × 201 for data
reconstruction for mimicking the real experimental scenarios. Here, only the ring-scanning setup
was utilized and other geometries for data acquisition including handheld probes such as linear
arrays, curvilinear arrays, or hemispherical arrays are not utilized in this work [64,65].

Two different numerical phantoms having different characteristics were utilized for comparison
of the proposed reduced dimension plug and play method with other standard techniques.
Figure 3(a) shows the blood vessel phantom used which consists of thick and thin blood vessels.
A phantom having letters ‘PAT’ with sharp edges (Fig. 3(b)) was also utilized. The performance
of the proposed method was investigated by utilizing photoacoustic data with varying SNR levels
from 20 dB to 60 dB and random white Gaussian noise was added for obtaining the prescribed
SNR. The levels of 20 dB, 40 dB and 60 dB SNR corresponds to approximately 10%, 1% and
0.1% of the amount of noise present in the measurement data. Noise level of 40 dB SNR (1%
noise) is the normal noise level generally present in the measurement data. The experiments
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Fig. 2. Schematic diagram depicting geometry of photoacoustic data acquisition. The
position of the hundred ultrasonic transducers are shown by dots around the imaging domain.
The size of the computational imaging grid is 50.1 mm × 50.1 mm while the size of the data
reconstruction grid is 20.1 mm × 20.1 mm.

were also performed for higher noise levels of 20 dB SNR (10%) and improved results were
obtained as compared to the other state of the art methods. Previous studies have shown that
the noise levels of 7% in the measurement data [29,31] being taken as the limit. Since at 20 dB
SNR, the noise level is already 10% (representing the worst-case scenario), the studies pertaining
to the proposed method failing with increasing further noise level were not performed. The
ultrasonic transducers positioned on the boundary have a center frequency of 2.25 MHz with 70
% bandwidth were utilized in collection of this raw data. The photoacoustic data was collected at
a sampling rate of 20 MHz and the number of time samples acquired by the transducers were
512. The dimension of system matrix A is 51200 × 40401. The assumption is that system is
homogeneous, non absorptive and non-dispersive. The k− wave toolbox [66] was utilized for the
generation of data for all the numerical simulations.

Fig. 3. The target numerical phantoms that were utilized in this work consists of the
following: (a) Blood Vessel phantom and (b) ‘PAT’ phantom.

The sinogram of the in-vivo mouse brain and the horse-hair phantom (that has triangular
shape) has been acquired using Nd:YAG laser setup. This photoacoustic data obtained using the
experimental setups has been used for knowing the utility of the proposed method in real time
scenario. The details for the experimental setup used for acquiring data of the triangular-shaped
horse hair phantom and the in vivo data was provided in Ref. [67]. It is pertinent to mention that the
experiments conducted on animals as part of this work, the guidelines and regulations accepted by
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the institutional Animal Care and Use committee of Nanyang Technological University, Singapore
(Animal Protocol Number ARF-SBS/NIE-A0263) were followed. Here, the reconstruction grid
has a size of 40 mm × 40 mm containing 200 × 200 pixels. The photoacoustic data was acquired
at a sampling frequency of 25 MHz (1024 samples), and subsampled at half to get 512 samples.

5. Results and discussion

The initial pressure distribution using the LTH method for the blood vessel phantom is shown
in Fig. 4(a) for 20 dB SNR in the data. The reconstruction using Basis Pursuit Deconvolution
(BPD) and Total Variation are shown in Fig. 4(b) and (c) respectively for the same SNR in the
data. The proposed method result is shown in Fig. 4(d). The figures of merit (RMSE, CNR, and
PC) discussed in this work for these results are shown as a bar plot in the first row of Fig. 6. The
proposed reconstruction method improved the RMSE, CNR and PC by 14.15 %, 254.80 % and
112.79 % respectively for the 20 dB SNR case. For low noise level the improvement obtained is
very high as can be seen from the Fig. 4. Similarly for the SNR of 40 dB, the proposed method
gave an improvement of 26.65 %, 14.15 % and 3.34 % in RMSE, CNR and PC as compared to the
other reconstruction methods. The figures for the LTH, BPD, TV and the proposed method are
given in Figs. 4(e), (f), (g) and (h) respectively for the 40 dB SNR of the data. The artifacts are
significantly reduced for this case. For SNR of 60 dB, the improvement using proposed method
is relatively lower and is 8.51 %, 7.01 % and 0.85 % in RMSE, CNR and PC as compared to the
other reconstruction methods. The corresponding reconstruction results are presented in the last
row of Fig. 4.

The performance of the proposed reconstruction method in case of ‘PAT’ phantom case is
shown in Fig. 5 for varying SNR levels in the data. The figures of merit for these reconstruction
results were presented in the last row of Fig. 6. The same trend as observed in previous two cases
was recorded here as well. The proposed reconstruction improved the RMSE, CNR and PC by
67.98 %, 523.42 % and 135.33 % respectively for the 20 dB SNR case. Similarly for the 40
dB SNR case, the proposed method gave an improvement of 15.36 %, 11.89 % and 0.93 % in
RMSE, CNR and PC as compared to the other reconstruction methods. For 60 dB SNR case, the
improvement was 10.59 %, 15.08 % and 1.30 % in RMSE, CNR and PC as compared to the
other reconstruction methods.

Overall, in the numerical phantom cases, the improvement with utilization of plug and play
priors was significant (as high as 5 times in terms of figures of merit) especially in cases of noise
level being high (SNR of data being low). For the low noise case (SNR being close to 60 dB),
the plug and play priors did not improve reconstructed image quality significantly and performed
on par with TV regularization method.

Figure 7 shows the reconstruction results obtained in the case of experimental phantom of
triangular shaped horse hair. Figures 7(a), (b) and (c) show the reconstruction result using the
LTH based method, BPD and TV respectively. The reconstruction obtained using the proposed
method is shown in Fig. 7(d). The corresponding figure of merit (SNR) was given below each
of this result. The proposed reconstruction method improves the reconstruction by reducing
the artifacts as well as improving the SNRr by 8.1 dB. Here, the main aim was to show the
utility of the iterative SVD based plug and play priors for improving the photoacoustic image
reconstruction. As an extension to this work in future, the same technique can be applied
for phantoms having different absorption coefficients. Similarly, Figs. 8(a), (b) and (c) show
the reconstruction using LTH based method, BPD and TV respectively for the in vivo mouse
brain data. The reconstruction obtained using the proposed method is shown in Fig. 8(d). The
improvement in terms of figure of merit SNRr is 4.21 dB in comparison to TV-regularization
based method (which provides the best result among standard methods discussed in this work) for
this case. The results obtained using any iterative method depend on the regularization parameter,
which can be chosen using the GCV [68], L-curve [69] or another optimization technique [70,71].



Research Article Vol. 12, No. 3 / 1 March 2021 / Biomedical Optics Express 1332

Fig. 4. Compares various methods of photoacoustic image reconstruction detailed in this
work when applied on the blood vessel numerical phantom (Fig. 3(a)) data. The comparison
was preformed for three different SNR levels of sinogram mentioned against each row (20,
40, and 60 dB). The reconstructed photoacoustic image using (a) LTH based method (Sec.
2.3) (b) Basis Pursuit Denoising (BPD, Sec. 2.4) (c) Total Variation (TV) regularization (Sec.
2.5) (d) proposed Singular Value Decomposition based Iterative Denoising and Backward
Projections (SVD-IDBP) method (Sec. 2.6) for the SNR of data being 20 dB. Similar results
were shown for 40 dB and 60 dB SNR cases in the middle and last rows. The bar plots of the
figures of merit for the obtained results were given in the first row of Fig. 6

These methods are computationally demanding [71]. As the main aim of the work was to show
the utility of the iterative SVD based plug and play priors over other iterative techniques and hence
the regularization parameter was chosen heuristically and tuned to give the best performance for
any algorithm. The number of steps of bidiagonalization were chosen as 40 and α (regularization
parameter) as 0.3, while the regularization parameter for the BPD method was chosen as 1e-5
(and the maximum no of iterations are kept as 10000) and are obtained in the same way as in
Ref. [32]. The regularization parameters for the TV based regularization was 1e-3 and the rest
parameters were chosen utilizing the technique proposed in Ref. [36,72]. The regularization
parameters for the proposed SVD-IDBP method were chosen as β=0.5, lagrange parameter as 1,
and regularization parameter as 0.018 for the TV denoising. The regularization parameters for
the experimental reconstruction was also chosen in the same way as for the numerical phantoms.
The parameters tuned for one numerical experiment case were utilized in rest experiments to
avoid fine tuning of these parameters for every case.

Typical computational time recorded for the methods utilized in this work were presented in
Table 1. The proposed method does require additional computational time compared to standard
methods like Lanczos Tikhonov or other two-step approaches like BPD. Compared to TV-based
regularization, the computational time was reduced by ∼ 2.5 times, given the performance of
the proposed method the additional computational burden is justifiable. The computational
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Fig. 5. Compares various methods of photoacoustic image reconstruction detailed in this
work when applied on the ‘PAT’ numerical phantom (Fig. 3(c)) data. The comparison was
preformed for three different SNR levels of sinogram mentioned against each row (20, 40,
and 60 dB). The reconstructed photoacoustic image using (a) LTH based method (Sec. 2.3)
(b) Basis Pursuit Denoising (BPD, Sec. 2.4) (c) Total Variation (TV) regularization (Sec.
2.5) (d) proposed Singular Value Decomposition based Iterative Denoising and Backward
Projections (SVD-IDBP) method (Sec. 2.6) for the SNR of data being 20 dB. Similar results
were shown for 40 dB and 60 dB SNR cases in the middle and last rows. The bar plots of the
figures of merit for the obtained results were given in the first row of Fig. 6

Fig. 6. The bar plots for figures of merit, RMSE, CNR, and PC, are shown for the proposed
method and the state of the art techniques: (a-c) for blood vessel phantom (Fig. 3(a)), (d-f)
for ‘PAT’ phantom (Fig. 3(b)).
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Fig. 7. The reconstruction of initial pressure distribution in experimental horse hair
phantom with utilization of (a) Lanczos Tikhonov Regularization (Sec. 2.3), (b) Basis
Pursuit Denoising (BPD, Sec. 2.4 ),(c) Total Variation (TV) regularization (Sec. 2.5), and (d)
proposed Singular Value Decomposition based Iterative Denoising and Backward Projections
(SVD-IDBP, Sec. 2.6). The corresponding figure of merit, SNR of the reconstructed image,
is provided below each reconstructed image.

Fig. 8. The reconstruction of initial pressure distribution in experimental in-vivo mouse
brain with utilization of (a) Lanczos Tikhonov Regularization (Sec. 2.3), (b) Basis Pursuit
Denoising (BPD, Sec. 2.4 ),(c) Total Variation (TV) regularization (Sec. 2.5), and (d)
proposed Singular Value Decomposition based Iterative Denoising and Backward Projections
(SVD-IDBP, Sec. 2.6). The corresponding figure of merit, SNR of the reconstructed image,
is provided below each reconstructed image.
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complexity of all the methods is O(n2) not including the SVD complexity of O(n4) (since SVD
of system matrix is computed off-line as one time overhead).

Table 1. Recorded computational time (in seconds) for the
results presented in Fig. 4.

Method LTH BPD TV Proposed Method

Sub-Figure 4(e) 4(f) 4(g) 4(h)

Time (in sec.) 45.18 45.88 1119.86 456.18

The proposed plug and play prior method for improving the photoacoustic imaging is the
simplest of priors that could be utilized or in other terms, we are only utilizing the denoising
operator with TV regularization (step-3 in Algorithm-2). One could utilize advanced denoising
operators to provide improved performance, the main aim of this work is to introduce the plug
and play priors and show that these could provide significant improvement in the reconstruction
performance especially low SNR in the raw data. Note that the application of these priors does
increase the computational complexity, but in here, it has been cleverly applied with SVD making
it dimensionality reduced. Recently deep learning methods have been shown to be very effective
for image reconstruction in photoacoustic tomography [23,29–31,73]. The proposed plug and
play denoisers can easily be combined with the deep learning based methods for improving the
reconstruction. The same was attempted in Ref. [74], where the decoupling was achieved using
plug & play models and the prior image denoising operator was modeled using residual deep
learning networks. Another deep learning based prior multiple self-similarity net (MSSN) was
proposed, based on the recurrent neural network (RNN) with self-similarity matching using
multi-head attention mechanism and was shown to give excellent performance for reconstructing
three-dimensional (3D) magnetic resonance (MR) images [75]. By applying proposed method
slice by slice, the current method can easily be utilized for 3D photoacoustic tomographic image
reconstruction, in similar lines to Ref. [31]. Since development of plug & play models based on
the proximal gradient method (PGM) utilizes only subset of measurements at every iteration,
makes it scalable to very large datasets such as 3D image reconstruction [76].

Earlier there were attempts to utilize additional step of post-processing including deblurring
(like BPD and NLM) to provide the robustness to noise in the photoacoustic data [32,77]. The
method proposed here utilizes plug and play priors with denoising as a prior operator improving
the reconstructed photoacoustic images and can be seen as an iterative method as oppose to a
two-step approach. The only significant computational burden for this method is in terms of
SVD of system matrix. For a given data-acquisition geometry, the system matrix is typically
pre-computed and so is the SVD. The developed algorithms were provided as an open source
[78] for enthusiastic users.

6. Conclusion

A singular value based plug and play priors method was proposed for improving photoacoustic
imaging and the proposed method was shown to be more robust to noise, making it ideal to be
used in noisy data cases. The proposed method was compared with state-of-the-art methods such
as Lanczos Tikhonov, basis pursuit deconvolution and total variation based regularization. The
improvement obtained in CNR, PC and RMSE is as high as 914.97%, 135.33% and 67.98%.
For in vivo cases the improvement obtained was as high as 8.1 dB with reduction of artifacts.
Methods of this type, which provide improved performance irrespective of noise level in the data
are universally appealing especially in real-time scenarios. This can further be applied for other
image reconstruction problems where the computational complexity is high owing to the large
dimensionality of the system matrix.
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