
FU L L AR T I C L E

Guided filter based image enhancement for focal error
compensation in low cost automated histopathology
microscopic system

Navchetan Awasthi1,2,3 | Prateek Katare4 | Sai Siva Gorthi4 |

Phaneendra K. Yalavarthy1*

1Department of Computational and Data
Sciences, Indian Institute of Science,
Bangalore, India
2Cardiovascular Research Centre,
Massachusetts General Hospital, Boston,
Massachusetts
3Harvard University, Cambridge,
Massachusetts
4Department of Instrumentation and
Applied Physics, Indian Institute of
Science, Bangalore, India

*Correspondence
Phaneendra K. Yalavarthy, Department of
Computational and Data Sciences (CDS),
Indian Institute of Science, Bangalore
560012, India.
Email: yalavarthy@iisc.ac.in

Funding information
IFTAS-CDS Collaborative Laboratory of
Data Science and Engineering; DST-ICPS,
Grant/Award Number: T-851

Abstract

Low-cost automated histopathology

microscopy systems usually suffer from

optical imperfections, producing images

that are slightly Out of Focus (OoF). In this

work, a guided filter (GF) based image

preprocessing is proposed for compensating focal errors and its efficacy is dem-

onstrated on images of healthy and malaria infected red blood cells (h-RBCs

and i-RBCs), and PAP smears. Since contrast enhancement has been widely

used as an image preprocessing step for the analysis of histopathology images,

a systematic comparison is made with six such prominently used methods,

namely Contrast Limited Adaptive Histogram Equalization (CLAHE),

RIQMC-based optimal histogram matching (ROHIM), modified L0, Morpho-

logical Varying(MV)-Bitonic filter, unsharp mask filter and joint bilateral filter.

The images enhanced using GF approach lead to better segmentation accuracy

(upto 50% improvement over native images) and visual quality compared to

other approaches, without any change in the color tones. Thus, the proposed

GF approach is a viable solution for rectifying the OoF microscopy images

without the loss of the valuable diagnostic information presented by the

color tone.
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1 | INTRODUCTION

Access to timely and affordable diagnosis of medical dis-
orders is a prerequisite for quality healthcare. However,
such diagnostic facilities are often unavailable to more
than a billion low-income residents of developing coun-
tries. For this reason, the World Health Organization
(WHO) has prioritized development of methods that can

enable affordable and rapid diagnostic procedures. A
promising way of achieving this goal is automation of
sample and data processing. One routinely conducted
diagnostic examination that could vastly benefit from this
is the microscopic observation of slide smears [1]. A typi-
cal smear of a biological specimen, such as human blood
or cervical cells, requires a trained technician to observe
the slide under a microscope at multiple fields of view
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(FoV) for qualitative and quantitative assessment. For
instance, WHO recommends that a blood smear should
be observed at 800 different FoV before a negative diag-
nosis of Malaria is established [2]. Such a laborious pro-
cess is inherently time consuming as well as prone to
human errors. This problem can be alleviated by auto-
mated microscopy image acquisition and image analysis
methods. Systems that can acquire a complete micros-
copy image of a slide smear without any human involve-
ment would vastly reduce the workload of the pathologist
and thus improve the diagnostic accuracy too. Such sys-
tems, termed as whole slide imaging (WSI) systems, form
a crucial part of the paradigm of digital pathology [3–5].
These systems can be subsequently coupled with auto-
mated image analysis to produce standalone diagnostic
devices, which are useful for point-of-care diagnostics.

Unfortunately, the current available commercial
products for this purpose are not aimed at low-resource
settings and are typically priced above US $ 100 000 [6].
Some research groups have attempted to develop more
affordable alternatives by using low-cost components and
fabrication methods. These provide acceptable quality of
imaging while excluding all frills to arrive at a substantial
cost reduction [6]. However, imperfections in their linear
translation mechanisms lead to images that are Out of
Focus (OoF), requiring a focal stack to be acquired at
each FoV for selection of one best focused image. This
reduces the throughput of the system, rendering them
useful only for research purposes.

Consider, for instance, the standard microscope glass
slide, of specimen area 50 mm x 25 mm, used for prepar-
ing smears. Scanning an entire slide of this dimension
will result in a set of about 14 000 microscopy images,
using a typical low-cost camera with a 36.8 mm2 sensor
area at a modest magnification of ×20. At a scan rate of
30 frames per second (FPS), obtaining the WSI would be
accomplished in about 8 min for an optically perfect sys-
tem. But, for an imperfect system, acquisition of a focal
stack consisting of 10 images or so at each FoV will be
necessary for selecting the image with best focus. As a
result, the time required for a WSI will be more than
80 min along with added computational complexity for
selection of best focused image. This defeats the purpose
of rapid and affordable diagnostics by decreasing the
throughput of the system.

Importantly, the optical imperfections may not be a
matter of concern if native images could be enhanced to
become suitable for further automated image analysis
and hence arrival at a viable diagnostic result. Such an
enhancement method will aim at sharpening features in
the image so as to mimic better focus and thus allow fur-
ther image processing to achieve accurate results. Image
enhancement has been a topic of wide interest and the

available literature in this regard is either centered
around enhancing the depth of focus of the imaging sys-
tem [7] or fusing a stack of images with different sections
in focus to achieve a single well-focused image [8, 9].

In this work, a guided filter (GF) [10, 11] based
approach is introduced to enhance the OoF images, lead-
ing to significantly increased visual quality. This
improvement is demonstrated through results of further
image processing via segmentation (an essential step in
most bio-medical image processing pipelines). six other
methods for image enhancement are also compared with
the proposed GF technique. These are Contrast Limited
Adaptive Histogram Equalization (CLAHE) [12] based
on histogram equalization, RIQMC-based optimal histo-
gram matching (ROHIM) [13], modified L0 [14], Morpho-
logical Varying(MV)-Bitonic based method [15], unsharp
mask filtering [16], and joint bilateral filter [17]. The
CLAHE is a standard local contrast enhancement tech-
nique which enhances the minute details of the image
effectively and hence was a natural choice for compari-
son with GF method. Since it over-enhances the image,
ROHIM was chosen as it is a more refined method. How-
ever, it was found to alter the color tone of the image and
thus modified L0, another well-known enhancement
method was used. Another technique MV-Bitonic filter-
ing was used to enhance the image quality, which gave a
slightly visually improved output without improvement
in the segmentation results. Another important class of
filtering techniques used here is unsharp masking, used
for enhancement of blurred images. This class includes
the widely used bilateral filter, which is an explicit
weighted average filter. It averages neighboring pixels,
weighted by Gaussian of intensity and spatial distance to
get the filtering output. It smoothens the image while
maintaining the edges and has been widely used for noise
reduction and image enhancement [18]. It has been
already shown that GF performs better than the bilateral
filter [10, 11], so a joint bilateral filter has instead been
utilized in this work for comparison [17]. However, for
completeness, comparisons with a simple unsharp mask
have been included. Comparison results with these six
methods suggest that GF based approach is more suitable
for improving accuracy of automated algorithms that are
typically deployed for segmentation. It does not require
any additional information, other than the source image,
and uses the implicit regularization scheme to enhance
the features with an added advantage of being computa-
tionally efficient.

The GF based enhancement was shown to make even
low quality OoF images suitable for clinical assessment.
Moreover, the enhancement in the visual quality of
microscopy images is helpful for inspection by trained cli-
nicians. Their feedback would be a necessary step in
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developing and improving the accuracy of machine learn-
ing based image processing algorithms. This would com-
plete the development loop toward an automated,
affordable diagnostic device. Thus, this work demon-
strates an affordable solution for solving an universal
healthcare puzzle and might greatly help in lowering the
diagnostic costs by providing accurate results even with
sub-optimal equipment.

2 | MATERIALS AND METHODS

2.1 | Setup for acquiring microscopy
images

The microscopy images used in this work were acquired
from a low-cost automated microscopy setup as detailed
in Section 2 of this work. A low-cost microscopy setup
was built with a choice of a ×20 or a ×40 PLAN objective
lens (Lawrence & Mayo) to magnify the biological sample
under illumination with a 3 W white LED, along with
suitable optics. The sample was imaged with a 1.3 Mega-
pixel CMOS camera (Ximea GmbH) delivering raw pixel
data to a computing unit, via a USB-3 connection, at a
frame rate of over 20 FPS. A digital logic board was used
to control the actuation along all the three axes, provid-
ing control over the area being observed as well as the
focus on the specimen. All components were chosen with
the objective of keeping the cost and footprint of the
device as low as possible. A close-up view of the imaging
section of the setup can be seen in Figure 1A. Focal sta-
cks were acquired at multiple FoVs to retrieve the best
focused images as well as OoF images for the purpose of

experiments performed here. The typical process involved
in the focal stack acquisition is given in Figure 1B. The
acquired images undergo an image enhancement step
before any processing to enrich the diagnostic informa-
tion present in the microscopy images. The six standard
image enhancement methods and the one proposed in
this work are detailed below.

2.2 | Contrast limited adaptive
histogram equalization based
enhancement

It is a standard local contrast enhancement technique
which enhances the minute details of the image effec-
tively. The main steps of contrast limited adaptive histo-
gram equalization (CLAHE) include [12] -

• Partitioning of the image into patches that are non-
overlapping and continuous.

• Clipping the histogram for each tile above a threshold
level and distributing the clipped pixels to all gray levels.

• Applying histogram equalization on each tile
separately.

• Interpolation of the mapping between separate tiles. In
general, the intensity mapping of four neighboring tiles
is used for interpolation to get the resultant mapping
at each pixel.

The disadvantages of CLAHE based enhancement are
excessive enhancement leading to image distortion [12],
significant computation time required by the histogram
equalization (HE) and the noise also being enhanced

FIGURE 1 A, Photograph of

the imaging section in the setup

used for acquiring human blood and

PAP smear microscopy images, B,

flowchart of the major steps

involved in focal stack acquisition
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significantly [12]. Further, since the method optimizes
the contrast, there is no one-to-one relationship between
the pixel values of the original and the enhanced image.
Hence, the CLAHE enhanced images are not suitable for
quantitative measurements which depend on the physical
meaning of the image intensity [12].

2.3 | Reduced reference image quality
metric for contrast change-based optimal
histogram matching for automatic
enhancement

An alternative approach to enhancing the contrast of
microscopy images is to frame it as an optimization prob-
lem. However, this methodology requires tuning of the
parameters to result in best output; thus, there is a need
for devising an automatic method for contrast enhance-
ment. Such a method has been proposed [13] using a
quality metric called as Reduced-reference Image Quality
Metric for Contrast Change (RIQMC). This correlates the
human visual perception to image contrast as the target
image. The same work has further proposed an automatic
contrast enhancement based approach, reference optimal
histogram matching (ROHIM) based on RIQMC. Images
having better visual quality and better contrast can be
generated by using a compound function that consists of
mean shifting followed by logistic transfer. The contrast
enhancement procedure is a blind process, which does
not require any reference image quality assessment met-
ric, and requires short execution time to find the optimal
histogram mapping in the optimization function. ROHIM
essentially consists of two steps:

• Adjusting the input image histogram based on the
compound function.

• Finding the optimal parameter maximizing the target
function for calculating RIQMC.

The RIQMC metric consists of fusion of information
to integrate the difference of phase congruence based
entropy and the fourth order statistics. It has been
applied successfully to improve contrast in the natural
images [13]. For more details, the readers are encouraged
to refer to ref. [13].

2.4 | Modified L0 based enhancement

Automatic enhancement of contrast is time consuming
and computationally demanding. This can be aided by
local filters which have a low computational complexity,
but they suffer from halos near the edge. These can be

overcome by using global optimization filters. In ref. [19],
a L0 norm based algorithm was proposed, which was
used to fuse images having different exposure [19], and
art-photographic detail enhancement [20]. The disadvan-
tage of L0 based algorithm is that it suffers from reversal
halos near edges. In ref. [21], a model was proposed
which can solve this problem, though with a large com-
putational overhead. Therefore, a new modified L0 based
algorithm, that can amplify the fine details by enlarging
the gradients of the source image without disturbing the
pixels at the edges was proposed in ref. [14]. The optimi-
zation problem consists of a data fidelity term and a regu-
larization term, given by

min
xE

X
p

xpE−xpO
� �2

+ λ�C xE−K∘xOð Þ
( )

ð1Þ

where, xE represents the enhanced image, xO represents
the OoF input image, p is the pixel index of the image, ∘
denotes the element-wise product operator and λ is the
Lagrangian factor which is used to control the degree of
enhancement. Here, C(xE − K ∘ xO) is the L0 norm of the
gradient field which equals the number of nonzero ele-
ments of the gradient field, and Kp is defined as

Kp =1+
k

1+ eη� Vp− �Vpð Þ ð2Þ

where, k denotes the detail layer enhancement, Vp is the
variance of the pixels in the 3×3 neighborhood of the pth

pixel, �Vp is the mean value of all the local variances and
η is calculated as ln 0:01ð Þ= min Vp

� �
− �Vp

� �
. In the experi-

ments conducted in this work, the value of λ was set to
0.16 and k was set to 4. Note that this method has been
successfully deployed for enhancement of natural
images.

2.5 | MV bitonic filter based
enhancement

A bitonic sequence is one which monotonically increases
to the maximum value and then monotonically
decreases, that is, it has atmost one local maxima. Alter-
natively a signal can be said to be bitonic, if it has either
only one local maxima, or only one local minima, or no
maxima or minima [22].

The concept of bitonicity is associated with the order-
ing of the data instead of the actual value and hence the
concept of rank filters or order-statistic filters was utilized
for the purpose. A rank filter is a generalization of the
median filter where any centile can form the output and
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thus creating different filters based on the different
centile. These filters are monotonic in sense that they
preserve signals which are monotonically increasing
or decreasing leading to reduction in the impulsive
noise as the impulses are bitonic rather than mono-
tonic. Similarly for a two-dimensional (2D) data or
image, the shape of the window used to form the set of
ranked data is known as the “structuring element”
which defines the features preserved after the filtering
operation. In case of bitonic filter a circular disk was
deployed as mask for 2D image data to ensure isotro-
pic behavior [23].

The Bitonic filtering uses only circular masks
which can be further improved by introducing masks
of other shapes and hence the performance of the
filter can be improved. This concept of using structur-
ally varying masks has been a subject of research and
recently, structurally varying bitonic filter with
multi-resolution was introduced showing an
improvement over the performance of the bitonic fil-
ter. The spatial mask utilized for processing of images
is typically circular. As structure varies, the MV
Bitonic filter adapts the mask without following the
patterns in the noise. MV Bitonic filter uses robust
structurally varying morphological operations and a
novel formulation of Gaussian filtering. For a
detailed explanation, the readers may refer to the ref.
[15]. This filter was combined with the multi-
resolution steps and the noise threshold is added and
named as MV Bitonic filters. The main steps of the
filter are as follows:

• The mask radius an initial centile are set to a threshold
level of 4%. The details of how to set the mask set and
centile are given in ref. [15].

• The degree of anisotropy and the local direction for the
desired filtering are calculated for the grayscale image
or the gray scale version of the colored image. The
optimal set of mask shapes and the orientation is cal-
culated using trialing.

• The degree of anisotropy and the local direction are
updated using the values of optimal masks and the
orientation.

• Perform the structurally varying opening and closing
operations on each image channel.

• The optimal set of masks and the orientation is used to
improve the degree of anisotropy and the local
direction.

• The smoothed errors for each channel and the anisot-
ropy and orientations are calculated.

• The smoothed errors are combined with the structur-
ally varying opening and closing with m = 3.

2.6 | Unsharp mask filter based
enhancement

Unsharp masking is a process where an image is sharp-
ened by subtracting a blurred (unsharp) version of the
image from the original image. It is being used by the
publishing and the printing industry for a number of
years [16]. It falls in the class of bilateral filters, which
are known to be providing denoised images with preser-
vation of edges. Please refer to ref. [16] for more details
about the filter. It consists of the following steps:

• Blur the original image using a Gaussian kernel
• Create a mask which is the difference of the blurred

image from the original image.
• Final image is the sum of the mask and the original

image.

It consists of two parameters to control the blur and
the weight of the filter:

• Radius: It is the standard deviation of the Gaussian
blur which is to be subtracted

• Mask Weight: It determines the strength of the filtering

It emphasizes the change in slope of the intensity and
can also create negative values, if the actual image con-
tains zero values. These negative values can lead to a halo
around the edges [16]. The unsharp masking is an effec-
tive method for enhancing a low contrast images. As it
does not have regularization built into it, even the noise
gets enhanced along with feature information, and it may
lead to poor visual perception [24, 25].

2.7 | Joint bilateral filter based
enhancement

Bilateral filter is a spatial filter proposed initially for per-
forming denoising, detail transfer, sharpening, detail
enhancement as well as contrast management. The basic
bilateral filter usually causes either over-blur or under-
blur in the image features. Therefore, a joint bilateral fil-
ter was utilized here for better estimation of the high fre-
quency information from the image [17, 26]. A general
linear translation variant filtering process involves the
input image (xO), the guidance image (xI) (same as the
input image for enhancement) as well as the output
image (xF). The filtering at any pixel is given as:

xF =
X
j

Wij xIð ÞxO ð3Þ
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here, i and j represents the pixel indices. The filter kernel
Wij is a function of only the guidance image and does not
depend on the input image. The bilateral filter kernel
Wbf

ij is given as:

Wbf
ij xIð Þ= 1

Mi
exp −

kpi−pjk2
σ2s

 !
exp −

k xIi −xIjk2
σ2r

� �

ð4Þ

here, p denotes the pixel coordinates and Mi denotes the
normalizing parameter such that

P
jW

bf
ij =1. The param-

eter σs adjusts the sensitivity of spatial similarity, while
the parameter σr adjusts the intensity/color similarity.
The enhanced output image thus becomes

xE = c*xD + xF ð5Þ

where xD = xO − xF is the detailed image and c is the
required magnification for the detailed image.

The joint bilateral filter is known to be an edge-pre-
serving enhancement filter used in many applications
[17]. In here, the structural information from other pat-
ches in the image gets utilized for defining a guide weight
(as each pixel is replaced by a weighted average of its
neighbors) leading to better edge-enhancement as well as
noise suppression through robust estimation and is
known to be a spatial sharpening algorithm, similar to
proposed GFGF.

2.8 | Proposed GF based enhancement

Filtering is a well-known technique for enhancing the
signal and suppressing the noise in images [27]. Many fil-
ters such as Gaussian, Laplacian, Non Local Means
(NLM) [28] and so on have been used for deblurring,
sharpening and restoration of images [16]. These are spa-
tially invariant and independent of the imaging model.
Their performance depends on the additional informa-
tion provided that can be used in the filtering process.
Some of these are computationally inefficient and thus
have limited utility in real-time processing requirements.

A recently proposed GF approach uses a fast linear
time algorithm and is invariant to the kernel size. The
GF is an edge preserving filter which uses a guiding
image and performs implicit regularization to enhance
the image characteristics. It has established itself as a
state-of-the-art method and has found applications in
image fusion [11], edge aware smoothing, structure trans-
ferring [29], flash/no flash denoising [30], joint
upsampling, dehazing [31] and detail enhancement [32].
Previously, GF has been used in photoacoustic imaging

[33] to perform image fusion and enhance the performance
of reconstruction algorithms [34]. In this work, GF has been
used to enhance the OoF images in the focal stack and the
OoF image (xO) itself is used as the guiding image.

Let xO denote the OoF image, xF the filtered image
and xE represent the enhanced image. The guided filter-
ing process can be represented as a linear transformation
of the initial image xO to the filtered image xF in a win-
dow ωk centered at pixel k and is given as

xiF = akx
i
O + bk,8i∈ωk, ð6Þ

where, ak and bk are linear coefficients and are constant
in ωk. This model ensures that xF has an edge only where
xO has an edge, as rxF = a r xO. Suppose ni is the
amount of noise present in the xO image, then the
reconstructed image xF can be represented as

xiF = xiO−ni ð7Þ

The coefficients (ak and bk) are determined by mini-
mizing the cost function obtained after combining Equa-
tions (6) and (7) and is written as Equations (8).

E ak,bkð Þ=
X
i∈ωk

akx
i
O + bk−xiO

� �2
+ ϵa2k

� �
ð8Þ

where ϵ is the regularization parameter which penalizes
larger values of coefficient ak. The coefficients obtained
after minimizing Eq. (8) are given as Equations (10)
and (11).

ak =

1
jωj
P
i∈ωk

xiOx
i
O−μk�x

i
O

σ2k + ϵ
ð9Þ

bk = �xkO−akμk ð10Þ

with μk and σ2k being the mean and variance of xO respec-
tively in ωk, jωj is the number of pixels in ωk and
�xiO =

1
jωj
P

i∈ωk
xiO is the mean of xO in ωk. Since a pixel is

involved in all overlapping windows, xF is computed
using an average over all windows and the output thus
becomes Equations (10) and (11).

xiF =
1

jω j
X
pji∈ωk

akx
i
O + bk

� � ð11Þ

Due to the symmetry,
P

kji∈ωk
ak =

P
k∈ωi

ak , Eq. (11)
can be written as
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xiF = �aix
i
O + �bi ð12Þ

The enhanced output image can be written as

xE = c*xD + xF ð13Þ

where xD = xO − xF is the detailed image and c is the
required magnification for the detailed image. The steps
of the proposed method are presented in Algorithm 1.
The enhanced image (xE) computation in the whole pro-
cess is performed locally patch wise and the computa-
tional time required is comparable to any other standard
filtering (like Gaussian filter) approach. This enables
real-time image enhancement of microscopy images. In
case of GF based enhancement, the edge preserving can
be explained as follows. The filtering coefficients are
given as ak =

σ2k
σ2k + ϵ and bk = (1− ak)μk. When ϵ>0, two

cases arise

• If the OoF image (xO) has high variance in ωk, then
σk � ϵ which implies ak ≈ 1 and bk ≈ 0. Thus, for a
pixel which is present in a high variance area, its value
remains the same, that is, xF = xO.

• If the OoF image (xO) is almost constant in ωk, then
σk � ϵ which implies ak ≈ 0 and bk ≈ μk. Thus, for a
pixel present in a flat patch area, its value becomes the
average of the neighboring pixels.

The GF also performs gradient preserving as it uses a
patch-wise model. For the enhancement case (same
image is used as self-guiding image), ap < 1 and bp is
constant.

Suppose the detail layer is given as d = xO − xF and
utilizing ∂xxF = ak∂xxO, one can write

∂xd= ∂xxO−∂xxF = 1−akð Þ∂xxO ð14Þ

which implies that ∂xxd and ∂xxO are always in the same
direction and thus the gradient is always preserved.

Algorithm 1 Guided Filter(xO, r, ϵ) with fa(.) rep-
resenting performing operation ‘a’ on the
arguments.

InputInput OutputOutput xO − Out of Focus Image
r−Window radius patch sizeð Þ
ϵ−Regularization Parameters

xF−Filtered Image

1: meanxO = f mean xOð Þ
2: corrxO = f mean xO:*xOð Þ;
3: varxO = corrxO −meanxO :*meanxO ;

4: a= varxO := varxO + ϵð Þ;
b=meanxO −a:*meanxO

.
5: meana = fmean(a);
meanb = fmean(b)

6: xF = meana. * xO + meanb

3 | EXPERIMENTS

To demonstrate the efficacy of the proposed GF, several
focal stacks were acquired from human blood smear
and PAP smear slides. The stacks were processed with
all enhancement methods presented here, including
GF. Slide smears containing healthy as well as Plasmo-
dium falciparum infected RBCs were imaged at ×40
while PAP smears were imaged at ×20 magnification.
Acquisition of these focal stacks of a hundred frames
each was performed by first obtaining best focus at a
particular Field of View (FoV). The z-axis was then
actuated to a particular distance d-lstack/2 below the
plane of best focus. This distance was one half of the
length of the focal stack (lstack) multiplied by the step
size (ssize).

d− lstack=2 = −
lstack
2

*ssize ð15Þ

The mechanical system then actuates the z-axis in
a number of steps totaling to lstack in a vertical direc-
tion upward from the previous location wherein the
separation between steps, that is, ssize is programmed
to be 0.33 μm for blood smear images in Figures 6 and
7 and 1.00 μm for the other four focal stacks used in this
work. After each translation, a frame is acquired and saved
with sequential naming, resulting in a single focal stack.
Since the imaging sequence began with a z-plane con-
taining an OoF image and the distribution of the spacing
is symmetric along the z-axis, the best focused image is
contained at the center of the focal stack.

The unsharp mask filter was applied to images of
malaria infected RBCs for different values of the radius and
mask weight. The radius was varied through the values
(1, 2, 3, 4, 5, 10) while the mask weight was varied through
the values (0.1, 0.3, 0.5, 0.7, 0.9). It was observed that the
best results were obtained for Radius = 3 and Mask
Weight = 0.7 (results not shown) and for rest of the experi-
ments only these values were utilized. It was observed that
this filter merely improves the best focused image and it's
performance degrades when input images are OoF.
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The optimal value of the parameter σs which adjusts
the sensitivity of spatial similarity was found to be
4, while the parameter σr which adjusts the intensity/

color similarity was found to be 0.1, and the value of the
detail enhancement parameter (c) was chosen to be
5. The parameters used for GF approach were as follows:

FIGURE 2 A, The images within a focal stack of PAP smear, after processing with B, CLAHE, C, ROHIM, D, modified L0, E, MV-

Bitonic, F, unsharp mask filter, G, joint bilateral filter (BF) and H, proposed guided filter (GF). The displayed patch is of size

320 px × 320 px. The variance plot for these images is shown in Figure 10. The red arrows indicate one of the enhanced region using the

proposed guided filter (g), which was washed off in other enhancement techniques
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the patch size defines the neighborhood around the
pixel that is used for implicit regularization and the
parameter ϵ defines the degree of smoothing (defines

the threshold on variance in GF). Here, we have cho-
sen a patch size of 4, ϵ as 1e-2, and the value of the
detail enhancement parameter (c) was chosen to be

FIGURE 3 A, The images within a focal stack of PAP smear, after processing with B, CLAHE, C, ROHIM, D, modified L0, E, MV-

Bitonic, F, unsharp mask filter, G, joint bilateral filter (BF) and H, proposed guided filter (GF). The displayed patch is of size

320 px × 320 px. The variance plot for these images is shown in Figure 10
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5. For a quantitative measure of the quality of focus,
the variance of the image is taken as the method of
choice owing to its low computational complexity and
appreciable performance.

4 | RESULTS AND DISCUSSION

A total of ten set of results are presented here—eight indicat-
ing improved visual quality of images (four for PAP smears,

FIGURE 4 A, The images within a focal stack of PAP smear with epithelial (marked with a red arrow) and nonepithelial cells, after

processing with B, CLAHE, C, ROHIM, D, modified L0, E, MV-Bitonic, F, unsharp mask filter, G, joint bilateral filter (BF) and H, proposed

guided filter (GF). The displayed patch is of size 600 px × 600 px. The variance plot for these images is shown in Figure 10. The red arrows

indicate one of the enhanced region using the proposed guided filter (g), which was washed off in other enhancement techniques
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one for a stack of malaria infected RBCs, three for
healthy RBCs) and two indicating improved segmenta-
tion accuracy (one each for RBC and PAP smear). For
all sets, the z-distance from the central frame is shown
above each frame.

4.1.1. | Visual quality improvement in
PAP smear images

Figures 2 and 3 present few frames from focal stacks of
PAP smear slides after enhancement with all six

FIGURE 5 A, The images within a focal stack of PAP smear with epithelial and nonepithelial cells, after processing with B, CLAHE, C,

ROHIM, D, modified L0, E, MV-Bitonic, F, unsharp mask filter, G, joint bilateral filter (BF) and H, proposed guided filter (GF). The

displayed patch is of size 600 px × 600 px. The variance plot for these images is shown in Figure 10
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techniques. Similarly, Figures 4 and 5 present few frames
from focal stacks of PAP smear containing epithelial and
nonepithelial cells after enhancement with the discussed
methods. The optimal performance of GF can be noticed
especially in the context of over enhancement, that is, GF
preserves the color tone and saturation of image. Both of
these are important metrics for histopathology as they
can delineate between healthy and abnormal cells when
the morphology is otherwise similar. The CLAHE
processed images (Figure 2B) appear brighter, but the
essential features were absent (indicated via red arrow)
in these images when compared to the proposed GF
processed images, displayed in Figure 2H, which appear
more clear than the native images. ROHIM processed
images (Figure 2C) have a different color tone and also
cell boundaries were not clear. Lastly, modified L0 (Fig-
ure 2D) and MV-Bitonic (Figure 2E) do not seem to
improve the image quality either. While the former pro-
duces an undue contrast change without sharpening the
features, the latter only serves to smoothen the image,
without a significant visual improvement. Here also the
maximum distance from the best focused image is greater
than 10 μm and hence the unsharp mask filter (Figure 2F)
has limited utility as compared to the GF (Figure 2H).
Similar analysis was performed for other focal stacks of
PAP smear as shown in Figures 3 to 5. It is evident from
these results that other algorithms have limited utility
and performs well only for images which are slightly
OoF. Once the defocus is more than 10 μm, their contrast
enhancement and image quality improvement is negligi-
ble, while the GF provided more promising performance.
Similarly, the joint bilateral filter results (Figure 2G),
which is another spatial sharpening filter like proposed
GF, are also subpar as compared to the image enhance-
ment using GF (Figure 2H).

The variance across each of the focal stacks is pres-
ented in Figure 10 (upper left corner image) for all the
methods discussed. The GF enhanced images report a
higher variance than the native images, indicating a
sharper and better focused image. Even though CLAHE
provides higher variance, those images lack significant
diagnostic information as observed in Figure 2B. The
variance is maximum for images processed using
ROHIM (Figure 2C), but it over enhances and gives a
different color tone to the image. The modified L0 based
method tries to preserve the color tone but the OoF
images (shown in Figure 2D) were not improved for the
PAP smear data. The MV-Bitonic processed images
(shown in Figure 2E) and the joint bilateral filter
(shown in Figure 2G) do not report any significant
change in the variance values and thus the magnitudes
as well as the trends remain nearly the same as the
unprocessed images. The unsharp mask filter (Figure 2F)

also gives blurred images and the sharpness is lower as
compared to the GF based enhancement. The results
obtained using the proposed GF based method improves
the image quality of the OoF image as seen in Figure 2H.
Unlike the other methods, proposed GF method does
not over enhance or change the color tone of the OoF
image.

Another benefit of using image GF is that it provides
gradient preservation along with edge enhancement as
compared to the other methods [10, 11]. This can be
clearly seen in the variance plots (Figures 10 and 11) as
well as indicated by red arrows in Figures 2, 4 and 6. The
proposed GF method enhances the variance and does not
change the native trend of the stack as can be seen in the
variance plots, the same is not true with other enhance-
ment methods.

4.1 | Visual quality improvement in
blood smear images

Figures 6 to 9 present some frames from focal stacks of
blood smear slides (including Figure 6 showing malaria-
infected RBCs). The processed images show trends that
were similar as PAP smear, including change in color
tones. This becomes even more important for blood
smears, since the color of the nucleus denotes how dense
it is and any change in the color tone would affect diag-
nostic accuracy. Thus, retaining the information of color
is critical for diagnosis and only the proposed GF is able
to preserve this, while also correcting the defocus. Fig-
ure 6A shows the OoF frames for the malaria infected
RBCs. The images enhanced using CLAHE are shown in
Figure 6B which clearly demonstrates the over enhance-
ment present in images. Figure 6C represents the
enhancement using ROHIM which has the effect of
changing the color tone itself of the image. Modified L0
based method preserves the color tone but the image
defocus (Figure 6D) was not improved. The MV-Bitonic
processed images in Figure 6E and the bilateral filter
processed images in Figure 6G show no visually notice-
able change apart from a slight deblurring. Figure 6H
shows the results of the GF approach which clearly pre-
serves the color tone as well as improves OoF images. In
here, the maximum defocus is only 10 μm and hence the
unsharp mask filter gives nearly same performance as
the GF although the GF gives sharper images (Figures 6F
and 7F). It was found that as the distance is greater than
8 μm the image quality of the unsharp mask filter starts
deteriorating, while the GF still gives superior image
quality even for the healthy RBC image stack. Thus, the
unsharp mask filter gives good performance only when
the acquired images are close to the best focus and thus
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will have limited utility in real time. Similar results were
obtained for the other focal stacks shown in Figures 7 to
9. The unprocessed stacks are shown in Figures 7A, 8A

and 9A. The over enhanced images using CLAHE are
shown in Figures 7B, 8B and 9B, respectively. The images
obtained using ROHIM are shown in Figures 7C, 8C and

FIGURE 6 A, The images within a focal stack of malaria (feature marked with red arrow) infected RBCs, after processing with, B,

CLAHE, C, ROHIM, D, modified L0, E, MV-Bitonic, F, unsharp mask, G, joint bilateral filter (BF) and H, proposed guided filter (GF). The

displayed patch is of size 320 px × 320 px. The variance plot for these images is shown in Figure 11. The red arrows indicate one of the

enhanced region using the proposed guided filter (h), which was washed off in other enhancement techniques
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9C. The images have a different color tone as compared
to input images and defocused images were not
improved. Similarly, results obtained using the modified
L0 were represented in Figures 7D, 8D and 9D. These

images show that CLAHE, ROHIM and modified L0
norm based method do not improve the OoF images.
The MV-Bitonic filtered images in Figures 7E, 8E and
9E, results using the unsharp mask filter in

FIGURE 7 A, The images within a focal stack of healthy RBCs in a blood smear, after processing with B, CLAHE, C, ROHIM, D,

modified L0, E, MV-Bitonic, F, unsharp mask, G, joint bilateral filter (BF) and H, proposed guided filter (GF). The displayed patch is of size

320 px × 320 px. The variance plot for these images is shown in Figure 11
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Figures 7F, 8F and 9F and the results using the joint
bilateral filter in Figures 7G, 8G and 9G do not dem-
onstrate any useful/significant enhancement. The
corresponding processed images for the GF can be
seen below each of the focal stacks and the trends

were similar (Figure 11). It must be noted that GF not
only preserves cell boundaries (an essential feature in
histopathology) and color tone of image, but also sig-
nificantly improves the clarity of features to the
extent that they can be noticed visually (Figures 7H,

FIGURE 8 A, The images within a focal stack of healthy RBCs in a blood smear, after processing with B, CLAHE, C, ROHIM, D,

modified L0, E, MV-Bitonic, F, Unsharp mask, G, joint bilateral filter (BF) and H, proposed guided filter (GF). The displayed patch is of size

320 px × 320 px. The variance plot for these images is shown in Figure 11
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8H and 9H). Corresponding plots for variance are
shown in Figure 11 for all focal stacks and a major
improvement in variance can be seen with the
proposed GF.

4.1.1 | Enhancement in segmentation
accuracy

To demonstrate the utility of the proposed enhancement,
segmentation of the frames containing malaria-infected

FIGURE 9 A, The images within a focal stack of healthy RBCs in a blood smear, after processing with B, CLAHE, C, ROHIM, D,

modified L0, E, MV-Bitonic, F, unsharp mask, G, joint bilateral filter (BF) and H, proposed guided filter (GF). The displayed patch is of size

320 px × 320 px. The variance plot for these images is shown in Figure 11
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RBCs and PAP smear images was performed after
processing the images with all the four methods. The
results were compared with those reported by a human
expert (a trained personnel with a Master's degree in this
field). Five native, OoF frames are shown in Figures 12A
and 13A for PAP smear and i-RBC images. Segmentation
of these images (Figure 12B) is performed utilizing the

method proposed in ref. [35] which was shown to per-
form better than CellX segmentation method [37] for i-
RBCs. The enhancement was applied using CLAHE,
ROHIM and modified L0; subsequently the segmentation
was performed and the results were presented in Fig-
ure 12C-E. The MV-Bitonic enhanced images are pres-
ented in Figure 12F. The unsharp mask enhanced images

FIGURE 10 The change in

variance for the native and enhanced

frames of one stack of (Figure 2) PAP

smear stack, (Figure 3) another PAP

smear stack, (Figure 4) PAP smear

stack with epithelial and

nonepithelial cells, (Figure 5) PAP

smear stack with epithelial and

nonepithelial cells. The x-axis

presents the frame number of the

corresponding stack while the y-axis

represents the log of the variance
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are presented in Figure 12G. The joint bilateral filter
enhanced images are presented in Figure 12H. The pro-
posed GF was also applied on the native stacks and the
improved segmentation results are shown in Figure 12I.
Similarly, the segmentation for PAP smear images was
performed using the method in ref. [36] for PAP smear
images shown in Figure 13A. The results for the

segmentation are shown in Figure 13B for the native sta-
cks. The enhancement was applied using GF on the
native stacks and the improved segmentation results are
shown in Figure 13I. The segmentation results for other
methods were also shown in Figures 13C-H after enhanc-
ing images using CLAHE, ROHIM, modified L0 method,
MV-Bitonic, unsharp mask and joint bilateral filter (BF),

FIGURE 11 The change in

variance for the native and enhanced

frames of one stack of (Figure 6)

malaria infected RBCs, (Figure 7)

healthy RBCs, (Figure 8) another

stack of healthy RBCs, and (Figure 9)

third stack of healthy RBCs. The x-

axis presents the frame number of

the corresponding stack while the y-

axis represents the log of the variance
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respectively. The MV-Bitonic processed images do show a
better segmentation count compared to the native ones.
However, it is prone to double/false segmentation

(Figure 12F—column 2 and 3; Figure 13F—column 4)
and still does not perform as well as the GF method.
After enhancement with GF the features were visible

FIGURE 12 A, Five native, OoF

frames from different stacks of

malaria-infected RBC images, B, their

segmentation using the method in

[35], the segmentation after

processing by C, CLAHE, D,

ROHIM, E, modified L0 method, F,

MV-Bitonic, G, unsharp mask, H,

joint bilateral filter (BF) and I,

proposed guided filter (GF). The

displayed patch is of size

200 px × 200 px. The segmentation

results are given in Table 1. The

segmentation contours for cells are

overlaid for easy reference
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clearly and it was able to improve the segmentation by
50% for PAP smear and 43% for blood smear, when com-
pared to native images. This resulted in a jump in the

number of cells being identified by the algorithm, as tab-
ulated in Table 1. This improvement is of significant
importance since medical professionals rely on the cell

FIGURE 13 A, Five native,

OoF frames from different stacks of

PAP smear images, B,

segmentation results on native

frames using the method in ref.

[36], segmentation after processing

by C, CLAHE, D, ROHIM, E,

modified L0 method, F, MV-

Bitonic, G, unsharp mask, H, joint

bilateral filter (BF) and I, proposed

guided filter (GF). The displayed

patch is of size 320 px × 320 px.

The segmentation results are given

in Table 1
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count to arrive at a diagnosis. Even a small improvement
of 7% translates to an increase in the RBC count per
microliter of blood by 350 000, considering that 1 μl blood
contains about 5 million RBCs. Such a large increase in
accuracy of cell count definitely leads to more accurate
diagnosis. It should be noted that GF produces superior
images compared to unsharp mask, even if a numerical
comparison (on the basis of segmentation results) does
not indicate a lot of improvement. Also, as previously
discussed that even a small improvement of 7% trans-
lates to an increase in the RBC count per microliter of
blood by 350 000. GF processed images provides a
higher visual clarity than those processed by unsharp
mask filter and this is very useful even for a manual
diagnosis.

4.1.2 | Computational complexity

All images were taken by a color (RGB) camera at a reso-
lution of 1024 px × 768 px. The time taken for processing
a PAP Smear image is 0.52 seconds for CLAHE,
15.83 seconds for ROHIM, 6.84 seconds for modified L0,
212.21 seconds for MV-Bitonic, 0.76 seconds for unsharp
mask filtering and 22.3 seconds for joint bilateral filter

while GF takes 0.64 seconds. Note that MATLAB R2019b
on a Linux workstation with 16 cores of Intel Xeon pro-
cessor having a clock rate of 3.0 GHz with 32 GB RAM
was used for all computations performed in this work.
Such a high-powered system was utilized to achieve low
processing times as MATLAB was not optimized for exe-
cution speed. The algorithm was intended to be ported to
a custom built software using a computationally efficient
language such as C, allowing it to be implemented on
systems with limited processing power such as cell
phones. Further, the algorithm can also be implemented
in a dedicated hardware logic using FPGAs, resulting in
orders of magnitude reduction in the
computational time.

5 | CONCLUSION

Automated microscopy and image analysis have the poten-
tial to dramatically decrease the turnaround time and
increase the reliability of several routinely conducted diag-
nostic tests. Unfortunately the available commercial equip-
ment for this purpose are too bulky and prohibitively
expensive to be deployed in resource constrained settings.
While alternate, low-cost designs have been reported in

TABLE 1 Segmentation results on

h-RBC and PAP smear images
Frame number (blood smear) Figure 12 (1) (2) (3) (4) (5)

RBC present (human expert) 19 16 13 11 17

RBC identified in native image 14 14 13 7 15

RBC identified in CLAHE enhanced image 17 13 13 8 10

RBC identified in ROHIM enhanced image 1 11 13 8 8

RBC identified in Modified L0 enhanced image 10 12 10 9 12

RBC identified in MV-bitonic enhanced image 16 13 12 6 12

RBC identified in unsharp mask enhanced image 19 13 12 10 17

RBC identified in BF enhanced image 19 15 12 10 17

RBC identified in proposed GF enhanced image 19 15 13 10 17

Enhancement using proposed GF over native image 35% 7% 0% 43% 13%

Frame number (PAP smear) Figure 13 (1) (2) (3) (4) (5)

Cells present (human expert) 12 14 16 13 18

Cells identified in native image 8 11 14 13 11

Cells identified in CLAHE enhanced image 12 14 14 13 11

Cells identified in ROHIM enhanced image 4 7 14 7 7

Cells identified in modified L0 enhanced image 11 10 8 10 7

Cells identified in MV-bitonic enhanced image 11 15 15 12 13

RBC identified in unsharp mask enhanced image 12 15 13 12 15

RBC identified in BF enhanced image 12 11 9 7 7

Cells identified in proposed GF enhanced image 12 15 16 13 15

Enhancement using proposed GF over native image 50% 9% 14% 0% 36%

AWASTHI ET AL. 21 of 23



literature, their mechanical imperfections result in images
that are OoF. Such images need enhancement to be suitable
for automated processing and this work proposes a method
to that end. As evident from the improved segmentation
accuracy (as much as 50% improvement for PAP smear and
43% for blood smear) and improved score of the focus met-
ric (variance), significant enhancement in the quality
of microscopy images has been demonstrated via pro-
posed GF approach. Importantly, these improvements
were achieved without any change in the color tone
(unlike other methods), which is a critical parameter
for accurate diagnosis. This enhancement eliminates
the imperative need of hi-fidelity imaging, which is
difficult to achieve in low-cost whole slide imagers.
Thus, the cripplingly low throughput caused by
acquiring a large focal stack and then selecting the
best focused frame at each FoV is eliminated by apply-
ing this postprocessing method. Furthermore, the pro-
posed method is very useful whenever a focal stack
acquisition is required for imaging thick smears via
focal stacking or compensating for substrate surface
undulations. In these scenarios, the GF based
enhancement can serve to either reduce the number of
images required to build the stack or increase the z-
separation between the frames, eventually leading to
time–cost benefits that are crucial for devices aimed at
low-resource settings.
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