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Abstract— Photoacoustic tomography (PAT) is a nonin-
vasive imaging modality combining the benefits of optical
contrast at ultrasonic resolution. Analytical reconstruction
algorithms for photoacoustic (PA) signals require a large
number of data points for accurate image reconstruction.
However, in practical scenarios, data are collected using
the limited number of transducers along with data being
often corrupted with noise resulting in only qualitative
images. Furthermore, the collected boundary data are band-
limited due to limited bandwidth (BW) of the transducer,
making the PA imaging with limited data being qualitative.
In this work, a deep neural network-based model with
loss function being scaled root-mean-squared error was
proposed for super-resolution, denoising, as well as BW
enhancement of the PA signals collected at the boundary
of the domain. The proposed network has been compared
with traditional as well as other popular deep-learning
methods in numerical as well as experimental cases and
is shown to improve the collected boundary data, in turn,
providing superior quality reconstructed PA image. The
improvement obtained in the Pearson correlation, structural
similarity index metric, and root-mean-square error was
as high as 35.62%, 33.81%, and 41.07%, respectively, for
phantom cases and signal-to-noise ratio improvement in
the reconstructed PA images was as high as 11.65 dB
for in vivo cases compared with reconstructed image
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I. INTRODUCTION

PHOTOACOUSTIC tomography (PAT), also referred to as
optoacoustic tomography is an “imaging from coupled

physics", has revolutionized biomedical imaging by facilitating
high optical contrast along with high spatial resolution [1], [2].
Over the years, PAT has emerged as a noninvasive hybrid
imaging modality, effectively unifying the merits of optical
excitation and ultrasonic detection facilitating higher imag-
ing depths [3]–[8]. In PAT, the tissue under investigation is
irradiated with a nanosecond short laser pulse in the near-
infrared (NIR) region. The NIR characteristics, such as low
absorption and scattering coefficient in biological tissues,
result in deep tissue penetration achieving increased signal-to-
noise ratio (SNR) without damaging the tissue. Light energy
incident on the tissue is partially absorbed by it, consequently
increasing the temperature due to thermoelastic expansion
resulting in the emission of acoustic waves. Subsequently,
the generated waves propagate across the biological tissue and
are detected by wideband ultrasound transducers located at the
tissue boundary. Using reconstruction algorithms, information
acquired by these transducers gets utilized to compute the
initial pressure rise, which is proportional to the absorbed
optical (or ultrasonic) energy. In addition, the optical absorp-
tion coefficient is highly susceptible to the pathophysiology of
the tissue, enabling PAT to distinguish the pathophysiological
nature of the tissue in high contrast with ease (assuming
homogeneous fluence). Hence, photoacoustic (PA) imaging
unravels functional and structural information in a scalable
manner, which further amplifies its utility for both clinical
and preclinical applications [6], [9].

The most important part of PA imaging is to recon-
struct accurate PA images using the acquired PA signals.
For this, the acoustic inverse problem needs to be solved
to estimate the initial pressure at time t = 0 using the
acoustic measurements acquired through the transducers at
time t . Several reconstruction algorithms exist in the lit-
erature, which can be broadly classified into: 1) analytical
methods and 2) model-based iterative methods [10]–[13].
Based on the spherical radon transform model, analytical
methods, such as filtered backprojection (BP), delay & sum,
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and the Fourier transform-based methods, as well as model-
based time-reversal methods although computationally fru-
gal, require massive amounts of data for accurate image
reconstruction. Large data requirements commensurate with
increased scan time and excessive experimental setup cost,
rendering it practically infeasible to meet such huge data
requirements. Also, the limited aperture of transducers further
prohibits the data collection. Hence, analytical methods in
these limited-data scenarios result in qualitative imaging [14]–
[16]. On the other hand, model-based iterative models perform
considerably better than their analytical counterparts in context
to limited data and display robustness to noise. However,
these methods are computationally expensive and have high
memory constraints. Hence, due to the setup cost and practical
considerations, the reconstruction of PA images is a challeng-
ing task, given the limited data and memory restrictions for
real-time applications. Irrespective of the reconstruction algo-
rithm employed, factors such as SNR, quality of PA signals,
and limited bandwidth (BW) of the ultrasound transducers
affect the performance of these techniques. For any pragmatic
experimental setting, transducers are always band-limited and
introduce a blurring effect on the reconstructed images.

In order to overcome the inevitable limitation arising due
to band-limited ultrasound transducers, an additional step is
required to reinstate the quality of reconstructed PA images.
Earlier, a deconvolution-based deblurring algorithm was
proposed by Rejesh et al. [17]. In this approach, the detected
PA signal is convolved with a transducer impulse response to
restore the original PA signal. However, deconvolution-based
approaches have been classified as “ill-posed” [18] due to
their failure to achieving unique solutions when the data are
approximate and, thereby, entail regularization. Cao et al. [19]
recently proposed an inverse filtering method coupled
with multisampled signal denoising technique to recover
out-of-band frequency components. This signal recovery not
only resulted in increased SNR but also managed to reveal
deeper structural details in reconstructed PA images.

Over the past few years, deep learning has been extensively
employed in the biomedical imaging domain, outperforming
most of the existing classical approaches. In particular,
convolutional neural networks have witnessed proliferation
in application to computer-aided detection [20]–[23],
segmentation [24]–[27], and image reconstruction [28]–[31].
Antholzer et al. [32] proposed a method for improving
the quality of the reconstructed PA images obtained using
the BP technique via a deep-learning-based architecture.
Reiter and Bell [33] and Allman et al. [34] introduced a
convolutional neural network that was trained to identify
the location of the individual point targets for PA imaging,
without requiring traditional geometry-based beamforming
from the beamformed data for various sound speeds, target
locations, and absorber sizes. In [35], a deep neural network
was proposed for providing high-resolution 3-D PA images
from the limited view data. The model represented an
iterative scheme and incorporates gradient information
of the data for compensating the limited view artifacts.
Davoudi et al. [36] proposed a U-Net-based deep neural
network for getting superior quality PA images to form the
substantially undersampled data or limited view scans.

In this article, a hybrid end-to-end trainable deep
neural network model was proposed for super-resolution,
denoising, as well as BW enhancement of PA signals
for the effective reconstruction of quantitatively accurate
PA images. Furthermore, the proposed approach may be
applied to ultrasound tomography, tweaking the parameters
and fine-tuning the model. The super-resolution-based
techniques using simple convolutional neural networks and
U-Net-based architectures have been used in computed
tomography (CT) [37], [38] and currently have not been
used in PAT. There have been different architectures used for
super-resolution, such as VDSR [39] (accurate image super-
resolution using very deep convolutional networks) that uses
high learning rate and residual learning, RED30 [40] (image
restoration using very deep convolutional encoder–decoder
networks with symmetric skip connections) that symmetrically
links convolutional and deconvolutional layers with skip-layer
connections and training loss converges much faster and attains
a higher quality local optimum, deeply recursive convolutional
network (DRCN) for image super-resolution [41] that uses
recursive supervision and skip connection, super-resolution
generative adversarial networks (SR-GANs) [42] that use
a perceptual loss function consisting of an adversarial loss,
and a content loss to recover photorealistic textures from
heavily downsampled images on public benchmarks. These
architectures have been used for super-resolution of natural
images, whereas the U-net that was utilized in this work was
shown to perform well on medical images [38], and hence,
these architectures were not utilized. In PAT, there have
been different deep-learning architectures that were used for
improving back projection-based reconstruction, the fusion
of different reconstruction techniques [43], but there has not
been any work in the sinogram (data) domain to perform
the super-resolution and BW enhancement using a simple
network. The BW enhancement using neural networks was
attempted earlier, and it has shown limited improvement [44].
This is the first network that proposes super-resolution
(increasing the available data), denoising, as well as BW
enhancement of collected PA data for improving PAT. The
main contributions of the work can be summarized as follows.

1) It is the first kind of single network that performs super-
resolution, denoising, as well as the BW enhancement
of PA data in the sinogram domain (the majority of
deep-learning networks have been proposed in the image
space, i.e., improve the reconstructed image).

2) The proposed neural network works on the full sino-
gram, rather than at pixel-level, thus inherently providing
robustness and generalization. The robustness was also
shown when the network was trained for numerical
phantoms and was shown to perform well even for
experimental in vivo data.

3) The architecture proposed with modifications can be
used to enhance the experimentally collected raw data
(sinogram), which can, in turn, improve the outcome of
an inverse problem, thus inherently removing the bias
of the image reconstruction method.

4) Introduction of the scaled root-mean-square loss func-
tion for training the network for sinogram data, which
contains values with extremely low magnitude, can be
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extended to other applications that share properties of PA
data. The scaling also helps in preserving the gradient
values with small magnitudes, and thus, the vanishing
gradient problem can be solved.

5) The method is shown to perform favorably as com-
pared with the other state-of-the-art conventional and
deep-learning-based techniques, such as automated
wavelet denoising (AWD), super-resolution convolu-
tional neural network (SRCNN), and U-net architectures.

6) The PA data generated through k-WAVE MATLAB
Toolbox for training the model were made publicly avail-
able to augment research in PA imaging, encouraging
the community to develop methods that can improve the
sinogram (rather than doing it indirectly by improving
the reconstructed image).

The rest of this article is organized as follows. In Section II,
we briefly introduce existing methods and elucidate the
proposed method. In Section III, evaluation metrics have
been discussed, whereas in Section IV, details about the
experimental setup have been canvassed. Section V validates
the performance of the proposed approach.

II. PHOTOACOUSTIC IMAGE RECONSTRUCTION

In this section, the PA image reconstruction along with
few approaches to overcome its limitations is being discussed.
A detailed explanation of the proposed deep-learning-based
approach is given in the following.

A. Forward Problem

In PAT, the forward model provides the computation of data
collected by acoustic transducers located at the tissue boundary
using (1), which determines the propagation and generation of
the acoustic wave inside the tissue [8](

�2 − 1

c2

∂2

∂ t2

)
P(�x, t) = −α

Cp

∂H(�x, t)

∂ t
(1)

where P(�x, t) represents the PA wave pressure at location �x
at time t , c is the speed of light, Cp denotes the specific heat
capacity, α represents the coefficient of thermal expansion,
and H(�x, t) represents the energy deposited per unit volume
per unit time. Furthermore, the reconstruction/inverse problem
incorporates estimating the initial pressure P(�x, t = 0) given
the acquired boundary measurements at time t , making it an
initial value problem. Section II-B describes the system of
equations governing the numerical experimental setup.

B. System Matrix Building

In order to simplify the PA wave propagation model, it can
be represented through a linear system of equations as follows:

Ax = b (2)

where A ∈ R
m×n2

is the system matrix containing impulse
responses such that each column represents the response of a
pixel in the imaging domain for varying time domains. Here,
m is the product of the number of transducers and the number
of time samples that each of these transducers acquires, and x
denotes an image of size n × n pixels, which is converted to

a vector such that x ∈ R
n2×1. The data collected by each

transducer, i.e., b ∈ R
m×1, are computed using (2) in the

simplified forward model [45], [46]. To obtain the image,
linear BP (LBP) method can be used as [47]

xLBP = AT b (3)

where xLBP ∈ R
n2×1 is the image vector and AT is the

transpose of the system matrix. The LBP method is one
of the most basic methods for image reconstruction. In this
work, the image reconstruction was performed using the LBP
method due to its low computation time and being analytical
in nature. Since the sinogram has been improved using the
proposed deep neural network, the LBP will be effective in
comparison to reconstructed results as it does not have any
parameters (such as regularization) that affect the image qual-
ity. In the experiments explained in this work, the same setup
as comprehensively explained in [45] and [46] was employed.
Section II-C describes an automated wavelet-based denoising
method to improve boundary data, in turn, improving the
reconstructed PA images.

C. Automated Wavelet Denoising Method

The data obtained using the interpolation can be denoised
using the maximum overlap DWT (MODWT) [48] method
(nonorthogonal transform) using the wavelet denoising [49].
The advantages of MODWT are as follows.

1) The sample size is not restricted to powers of 2.
2) Zero padding is not required.
3) It forms a zero-phase filter and, hence, lines up with the

features of the original signal in contrast to the DWT
transform.

The complete discussion can be found in [48] for interested
readers. The application to PA images has been discussed
in [49]. In this work, MODWT has been utilized for denoising
the PA signals obtained after interpolation of the data obtained
using 100 detectors. The threshold for denoising is chosen by
the universal threshold criteria [50].

D. Super-Resolution Convolutional Neural Network

Image super-resolution [51] has a wide application to
translate an image from a low-resolution to a high-resolution
image. Previous techniques exploit internal similarities of the
same image [52]–[54] or learn mapping functions [55]–[57]
for translation of a low-resolution to high-resolution image.
These techniques are challenged by difficulties in effec-
tively and compactly modeling the data. Sparse coding
techniques [58], [59] were used in the past for image-based
super-resolution. It involves the extraction of overlapping
patches, encoded by a low-resolution dictionary. These coef-
ficients are then used for constructing the dictionary, which
helps to build a corresponding high-resolution image. These
techniques either learn and optimize dictionaries [58], [59]
or try to model them in different ways [55], [56]. SRCNN [60]
was utilized to model one such dictionary that learns the
mapping from a low-resolution to high-resolution image. This
architecture was used to first map the noisy, band-limited
patches using 100 detectors to noiseless, full BW patches using
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Fig. 1. Training configuration for the proposed U-Net-based architecture. (a) Data collected through 100 transducers with 70% BW are added
with variable noise resulting in SNR values of data from 10 to 70 dB. Patches of size 64 × 64 are cropped from (a) and input into the U-Net-based
model. (b) Output patch of size 64 × 64 is then used to compute the scaled-RMSE loss with the corresponding patch from the data collected through
200 transducers and 100% BW. This loss is propagated backward to train the proposed model for BW enhancement, super-resolution, and denoising.

200 detectors. For comparing the performance of SRCNN
with the proposed network, the implementation configurations
mentioned in the original work [60] were deployed.

E. Proposed Method
Deep learning has found numerous applications in image

processing tasks, such as image enhancement, edge detection,
and image super-resolution. These have been recently extended
to applications in CT imaging for super-resolution of the
sinogram data using simple convolutional layers as well as
an U-Net-based architecture [38]. In this work, a hybrid
end-to-end trainable U-Net-based model [61] is proposed for
super-resolution, denoising, as well as BW enhancement of PA
signals. Sections II-E1–II-E3 discuss the architecture, training
details, and testing methodology for the proposed.

1) Architecture: The proposed method trains an U-Net-
based architecture shown in Fig. 1. The first layer contains
32 convolutional filters of size 3 × 3 with a stride of 2 × 2,
which progressively increases in powers of 2 until the bot-
tleneck layer with a maximum of 512 filters. Each layer
with the corresponding number of 3 × 3 filters applies two
consecutive convolution operations with rectified linear unit
(RELU) activations followed by a max-pooling layer with a
window of size 2 × 2. In [38], pooling layers were utilized
for super-resolving the sinogram data of CT images. The

pooling layer that was utilized in this work downsamples the
input using max-pooling (similar to [38]). It helps in making
shift-invariant results by taking only specific values for the
input. It also reduces the spatial size of representation and the
number of parameters and computation in the network. The
shift invariance plays an important role in image segmentation
and image classification where the position of the target is
arbitrary. After downsampling the input to reach the bottleneck
layer, symmetrically inverse operations were applied using
the same filter size and stride to upsample the bottleneck
layer to obtain an output of the same size as the input. The
number of filters decreases progressively over the layers in
a symmetric fashion. At each layer, zero padding of size
“1” was performed to maintain the size before and after
convolution operations. Skip connections were added during
upsampling from the corresponding downsampled layers in
order to maintain the overall sinogram structure, as shown
in Fig. 1. Note that the original U-Net architecture layers
employ softmax activation functions in the final two layers
for segmentation. However, we used exponential linear unit
(ELU) [see (5)] activation [62]. Although RELUs have been
employed extensively for modeling images or improving the
reconstruction quality through deep neural networks, it fails
to effectively characterize PA data that contain positive as
well as negative values. Hence, in this work, ELU activations
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were employed, which have been shown to outperform RELU
activations for specific tasks [62]. The motivation for this
stems from the fact that sinogram data may contain negative
values, in which the RELU activations fail to achieve as
evident from (4)

relu(x) =
{

x, if x >0

0, if x ≤ 0
(4)

elu(x) =
{

x, if x >0

α(ex − 1), if x ≤ 0
(5)

where x is the input and α is the regularization parameter for
elu. In addition to this, ELUs push the mean unit activations to
zero, thereby mimicking batch normalization with an advan-
tage of lower computational complexity. To further evaluate
this, we compare three variants of the U-Net architecture:
1) U-Net (Relu) where all activations are ReLUs; 2) U-Net
(Elu) where all activations are ELUs; and (3) U-Net (Hybrid)
where ELUs have only been used in the final layers. The
proposed U-Net (Hybrid) variant was able to provide the
generalization by effectively modeling the negative values
in sinogram through the final layers while maintaining the
advantages of ReLUs in U-Net architecture.

2) Training: For training the proposed model for super-
resolution and BW enhancement of the sinogram domain
data, training data were generated using k-WAVE MATLAB
toolbox, as mentioned in Section IV. Sinogram data obtained
corresponding 1000 breast images [63] were used to train
the model. Sinogram was generated for all these images for
limited BW for 100 detectors and full BW for 200 detectors
for training the network. The sinogram data were obtained
using the limited BW detectors placed at the boundary of the
imaging domain. These sinograms obtained were then added
with the Gaussian noise, and the sampled noisy sinograms
were used as the input for the network. The output consists
of fully sampled, full BW, and denoised sinograms. Since
these output sinograms correspond to at least 200 detectors
data and do not contain noise, the reconstruction of the PA
image was performed via LBP [47] technique. Note that
the aim of this work is to show that the proposed network
is capable of enhancing the PA data (sinogram), so the
utilization of simple BP as the reconstruction method does
provide unbiased way of quantifying the improvement of
image quality. Reconstructed image quality using filtered back
projection or other variants [64] depends on the choice of
appropriate filter or parameters in the filter, which may not
be straightforward to assess the improvement in the PA data
obtained via the methods discussed here. From each image,
105 patches of size 64 × 64 were generated by sliding over
the 200 × 512 sinogram data with a stride of 16 × 16. A total
of 105 × 1000 = 105 000 patches were used for training,
where a 20% split for training and validation was done. The
training data set has 84 000 patches, while the validation data
set has 21 000 patches. Furthermore, the Gaussian noise in
the range of 10–70 dB was added in the data, while the
training and ground truth were the patches generated using the
200 detectors data. The total number of trainable parameters
used for training the network was 7 759 787. The network

Fig. 2. Illustrative representation of the data collection setup. Compu-
tational grid of 501 × 501 with an array of 200 ultrasound transducers
around the data generation grid of 401 × 401 and a 201 × 201 pixels
reconstruction grid is shown. Transducers are placed at a radial distance
of 22.5 mm from the center of the grid setup.

was trained using the proposed scaled root-mean-square error
(scaled-RMSE) loss function, defined as

L = 1

N

N∑
i=1

�x̂i − φ(xi)�2 × τ (6)

where x̂i is the predictions of the model and φ(xi) is the
true signals. Since sinogram data contain values of the order
of 0.0001, a loss multiplication factor, τ = 10 000 was used
to ensure effective backpropagation of the loss to the initial
layers. It enables us to train a deeper network without worrying
about the dying out of loss gradients and hence preventing
the problem of vanishing gradients. In [65], loss scaling was
proposed to preserve gradient values with small magnitudes.
It was shown that scaling up the gradients will shift them to
occupy more of the representable range and, hence, will result
in preserving values that are otherwise close to zero. One of the
approaches of scaling is to scale the loss obtained in the for-
ward pass before starting the computation of backpropagation.
Once scaling is performed, chain rule affects all the computed
values by the same amount, and thus, no extra operations are
required, and the vanishing gradient problem can be easily
avoided. The scaling factor was determined after extensive
experimentation, and the optimal value of 10 000 was obtained
for the proposed method utilizing the approach mentioned
in [65]. The scaling of the input by the factor has not been tried
in the proposed method as the input data need to be multiplied
by the same factor, while in case of loss scaling, it will be only
one multiplication. Furthermore, the Adam optimizer was used
for training the network with γ = 0.98 with a step size of 2.
The learning rate, the number of epochs, and the batch size
were set to be 1e-3, 250, and 128, respectively. The model was
fine-tuned to obtain the best set of hyper-parameters, such as
the starting number of filters (32), the maximum number of
filters (512), batch size, learning rate, γ , step size, and epochs.
All computations were carried out on a Linux workstation
with Intel Xeon Silver 4110 CPU with 2.10-GHz clock speed,
having 128-GB RAM and a TITAN RTX GPU with 24-GB
memory. It took 65 s (approximately) for one epoch, and
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Fig. 3. Target numerical phantoms used for quantitative evaluation of the proposed method. (a)–(d) Ground-truth images for PAT, modified Derenzo,
BV, and breast phantoms. Corresponding reconstructed images using LBP with full BW and noise less data are shown in (e)–(h) to serve as reference
for best case.

a total of 4.5 h (approximately) to train the model using
the above-mentioned workstation. PyTorch implementation
of the proposed method shall be made available online at
https://sites.google.com/site/sercmig/home/dnnpat.

3) Testing: For testing, input data obtained using lim-
ited BW (70% for numerical data) and low resolution,
i.e., 100 detector data, were first interpolated using nearest
neighbor to obtain a sinogram of size 200 × 512. This
sinogram data were padded using the “reflect” padding to
obtain a sinogram data of size 512 × 512. This was per-
formed to ensure that there is no mismatch between the
tensor sizes while concatenating the skip connections. The
padded sinogram data are input into the model to obtain super-
resolved sinogram data with full BW. This enhanced data
were then reconstructed using BP to obtain reconstructed PA
images. These images are then evaluated using the figure of
merits to analyze the improvement observed with the proposed
method. Section III discusses the figures of merit used for
evaluation.

III. FIGURES OF MERIT

Quantitative performance of the proposed method has been
compared with existing state-of-the-art methods over the
reconstructed PA images using evaluation metrics, namely,
RMSE, structural similarity (SSIM) index, Pearson correlation
(PC), and SNR. For numerical phantoms, RMSE, PC, and
SSIM were compared, whereas for experimental in vivo phan-
toms, SNR was employed as the sole criterion of evaluation
due to the absence of target initial pressure. The following
describes the metrics in detail.

A. Root-Mean-Square Error

The RMSE evaluates the standard deviation of the residuals
as an absolute measure to evaluate the quality of the recon-
structed image [66], [67], defined as

RMSE(I target,Irecn
) =

√√√√∑N
i, j

(
I target

i, j − Irecn

i, j

)2

N 2
(7)

where I target and Irecn
denote the target and reconstructed

images, each of pixel size N × N . Lower residuals are
ideal for a good quality reconstructed images, and hence, low-
RMSE values are desirable.

B. Structural Similarity Index

SSIM amalgamates three comparative measure-
ments, namely, luminance (l), contrast (c), and
structure/ correlation(s) to evaluate the quality of an image
with respect to a reference image. In our case, similarity of
the reconstructed image (recn) is computed with respect to the
target image [68], [69]. The three parameters are defined as

l(target, recn) = 2μtargetμrecn + c1

μ2
target + μ2

recn + c1
(8)

c(target, recn) = 2σtargetσrecn + c2

σ 2
target + σ 2

recn + c2
(9)

s(target, recn) = σtarget,recn + c3

σtargetσrecn + c3
(10)

where μtarget and μrecn represent the mean, σtarget and σrecn

represent the variance of the target and reconstructed images,
respectively, σtarget,recn represents the covariance between the
two images, and c1, c2, and c3 are constants such that
c3 = c2/2. SSIM is defined as the weighted combination
of the three components, SSIM = [lα · cβ · sγ ]. Higher the
SSIM, higher the similarity between the reconstructed and
target image.

C. Pearson Correlation

Pearson Correlation is a measure of linear correlation
between two entities [70]. Here, correlation between the target
image I target and reconstructed image Irecn

is computed as

PC(I target,Irecn
) = cov(I target,Irecn

)

σ (I target) · σ(Irecn
)

(11)

where cov represents the covariance and σ represents the
variance. PC ∈ [−1, 1], where 1 denotes complete linear
correlation, 0 represents no linear correlation, and −1 indicates
a perfectly complementary relationship.
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Fig. 4. Reconstructed PAT phantom images with each row representing the SNR of data being 20, 40, and 60 dB and correspondingly
given in (a)–(g), (h)–(n), and (o)–(u), respectively. Reconstructed images using data with limited BW (70%) and 100 transducers are shown
in (a), (h), and (o). While (b), (i), and (p) show reconstruction results when the data with 100 transducers that are interpolated using nearest
neighbor to obtain a 200 transducer data. (c), (j), and (q) Results obtained using the automated wavelet denoising approach. The results obtained
using the SRCNN-based method are shown in (d), (k), and (r), and the results obtained using the U-Net (Relu) are shown in (e), (l), and (s). Finally,
(f), (m), and (t) show the results obtained using the proposed U-Net (Elu) approach, and (g), (n), and (u) show the results obtained using the proposed
U-Net (Hybrid)-based approach. Table I reports the figure of merits of these results in a comparative manner.

D. Signal-to-Noise Ratio

SNR is a quantitative measure that assesses the desired
signal strength in comparison with the background noise [71].
As mentioned earlier, the target initial pressure distribution is
unavailable for experimental in vivo phantoms; hence, SNR
is employed to analyze the quantitative improvement. It is
defined as

SNRr (dB) = 20 × log10

( S
σnoise

)
(12)

where S represents the signal power and σnoise represents the
standard deviation in the noise. A higher SNR value (in dB)
is desired in the reconstructed PA image.

IV. NUMERICAL AND EXPERIMENTAL STUDIES

This section describes the numerical and experimental setup
for generating data similar to as done in [43], [46], and [72].
A computational grid of 501 × 501 pixels was employed
with 0.1 mm/pixel. For data generation, a high-dimensional
401 × 401 pixels grid was used, while reconstruction was
performed on a low-dimensional grid of 201 × 201 pixels
to avoid the inverse problem. The white Gaussian noise was
added to the data generated in order to achieve variable noise
levels having SNR values between 20 and 60 dB. As shown in
Fig. 2, 100 point transducers with a BW of 70% having central
frequency of 2.25 MHz were placed at the tissue boundary in
a circularly equidistant manner at a radius of 22.5 mm. Each
transducer sampled 512 observations after every 500 ms, i.e., a
sampling frequency of 20 MHz. Speed of sound in the medium
(tissue under investigation) was assumed to be a uniform with
no absorption or dispersion at 1500 m/s. This configuration
results in a system matrix A ∈ R

51 200×40 401.

For a comprehensive comparison of the proposed method
with existing approaches, four distinct numerical phantoms,
namely, PAT, modified Derenzo, blood vessel (BV), and
breast, were considered. The numerical experimental data
were generated using the open-source k-WAVE MATLAB
toolbox [73]. The PAT phantom constitutes the alphabets
“PAT” [see Fig. 3(a)] and aids in determining the efficacy
of recovering sharp objects. The modified Derenzo phantom
[see Fig. 3(b)] contains circular object groups with differing
radii that assist in evaluating the recovery strength of small
and large objects. The BV phantom [see Fig. 3(c)], as the
name suggests, resembles the thick and thin BV-like structures
and help analyze the success in the recovery of amorphous
complicated structures. Note that a maximum initial pressure
distribution of 1 kPa was asserted for the first three phan-
toms. Finally, the breast phantom was created using contrast-
enhanced imaging data [63], [74]. In this phantom, the initial
pressure was varied from 0 to 5 kPa, and the expected initial
pressure distribution was given in Fig. 3(d). Breast phantoms
help in testing the robustness of the proposed approach in
cases with complex PA images bearing variable contrast and
noise. The reconstructed images using noiseless data with
200 detectors using these four phantoms were presented in
the second row of Fig. 3 to serve as a reference (to know
what is truly achievable).

In addition, performance of the proposed approach is evalu-
ated using two experimental phantoms: 1) horse-hair phantom
(see Fig. 8) and 2) in vivo rat-brain phantom (see Fig. 9).
The trilateral horse-hair phantom data were acquired using
Nd:YAG laser, while the in vivo rat-brain phantom data were
acquired using a pulsed laser diode (PLD). Furthermore,
we restrict ourselves with any detailed description of the
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TABLE I
COMPARATIVE RESULTS OBTAINED FOR THE RECONSTRUCTED PAT PHANTOM IMAGES SHOWN IN FIG. 4 IN TERMS OF FIGURE OF

MERITS: PC COEFFICIENT, SSIM INDEX, AND RMSE FOR SNR OF DATA BEING 20, 40, AND 60 DB. BOLD TEXT INDICATES

THE BEST POSSIBLE VALUE FOR THE METRIC USED

Fig. 5. Reconstructed modified Derenzo phantom images with each row representing the SNR of data being 20, 40, and 60 dB and correspondingly
given in (a)–(g), (h)–(n), and (o)–(u), respectively. Reconstructed images using data with limited BW (70%) and 100 transducers are shown
in (a), (h), and (o). While (b), (i), and (p) show reconstruction results when the data with 100 transducers that are interpolated using nearest
neighbor to obtain a 200 transducer data. (c), (j), and (q) Results obtained using the automated wavelet denoising approach. The results obtained
using the SRCNN-based method are shown in (d), (k), and (r), and the results obtained using the U-Net (Relu) are shown in (e), (l), and (s).
Finally, (f), (m), and (t) show the results obtained using the proposed U-Net (Elu) approach, and (g), (n), and (u) show the results obtained using the
proposed U-Net (Hybrid)-based approach. Table II reports the figure of merits of these results in a comparative manner.

experimental setup and direct the readers to refer to our
previous works [75], [76] for elaborate discussions. Note
that all experiments conducted on animals were meticulously
carried out, adhering to the guidelines and regulations laid
out by the Institutional Animal Care & Use Committee of
Nanyang Technological University, Singapore (Animal Proto-
col Number ARF-SBS/NIE-A0263). Section V compares the
figures of merits achieved through the proposed method and
displays its superiority against state-of-the-art methods along
with a visual juxtaposition.

V. RESULTS AND DISCUSSION

In this section, a detailed discussion about the results
obtained in terms of the figure of merits is covered. The
performance of numerical phantoms has been compared in
terms of PC, SSIM, and RMSE, while experimental phantoms

are compared based on SNRr (dB) values. This is followed by
the qualitative analysis of the images obtained in both cases.
Performance of the proposed approach is compared with both
classical and deep-learning-based state-of-the-art techniques
and variants of the U-Net architecture. For a fair evaluation,
all compared methods were trained using the same data. Note
that the proposed scaled-RMSE loss proved crucial in the
convergence of all deep-learning-based approaches discussed
in this article.

A. Numerical Phantoms

Target images for the PAT phantom (consisting of “PAT”
letters), Derenzo (consisting of small and large circles), BV
(consisting of thin and thick vessel structures), and Breast
phantom (consisting of contrast variations) are shown in
Fig. 3(a)–(d), respectively. The image reconstruction obtained
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TABLE II
COMPARATIVE RESULTS OBTAINED FOR THE RECONSTRUCTED MODIFIED DERENZO PHANTOM IMAGES SHOWN IN FIG. 5 IN TERMS OF

FIGURE OF MERITS: PC COEFFICIENT, SSIM INDEX, AND RMSE FOR SNR OF DATA BEING 20, 40, AND 60 DB.
BOLD TEXT INDICATES THE BEST POSSIBLE VALUE FOR THE METRIC USED

using 200 detectors and full BW is shown in Fig. 3(e)–(h),
respectively. These images serve as the desired output for our
simulations after the reconstruction is performed using the
LBP-based method.

The reconstruction obtained using limited data for the “PAT”
phantom using 100 detectors (to serve as limited data case) is
shown in Fig. 4(a). The reconstruction obtained after inter-
polation and then denoising are shown in Fig. 4(b) and (c),
respectively, for the “PAT” phantom with SNR of data being
20 dB. The reconstruction obtained for the “PAT” phantom
using 200 detectors data using SRCNN is shown in Fig. 4(d),
U-Net (Relu) is shown in Fig. 4(e), U-Net (Elu) is shown in
Fig. 4(f), and the proposed model U-Net (Hybrid) is shown
in Fig. 4(g). The improvements obtained in PC, SSIM, and
RMSE compared with the interpolated data case are 35.62%,
30.84%, and 21.09%, respectively, in this case of SNR of
data being 20 dB. As seen from the Fig. 4(g), the recon-
structed image is relatively artifact free with lesser noise in
the background. Similarly, the reconstructions obtained for
SNR of data being 40 dB for the limited data, interpolated,
denoised, SRCNN, U-Net (Relu), U-Net (Elu), and the pro-
posed technique are shown in Fig. 4(h)–(n), respectively. The
improvements obtained in the PC, SSIM, and RMSE was
21.26%, 33.81%, and 29.54%, respectively. As observed in
earlier case, the background noise was suppressed to provide
improved reconstructed image. Similarly, the reconstructions
obtained for the case of SNR of data being 60 dB for the
discussed methods are shown in Fig. 4(o)–(u), respectively.
The improvements obtained in the PC, SSIM, and RMSE were
21.36%, 33.72%, and 29.54%, respectively.

The reconstruction obtained using the limited data for the
Derenzo phantom using 100 detectors is shown in Fig. 5(a).
The reconstructions obtained after interpolation and then
denoising are shown in Fig. 5(b) and (c), respectively, for the
Derenzo phantom with SNR of data being 20 dB. The recon-
struction obtained for the Derenzo phantom using 200 detec-
tors data using SRCNN is shown in Fig. 5(d), U-Net (Relu) is
shown in Fig. 5(e), U-Net (Elu) is shown in Fig. 5(f), and the
proposed model U-Net (Hybrid) is shown in Fig. 5(g) for this
case of SNR being 20 dB. The improvements obtained in PC,
SSIM, and RMSE compared with the interpolated data case

are 22.55%, 29.30%, and 12.40%, respectively. The improve-
ment was similar to the case of “PAT” phantom. Similarly,
the reconstructions obtained for the case of SNR of data being
40 dB, interpolated, denoised, SRCNN, U-Net (Relu), U-Net
(Elu), and the proposed technique are shown in Fig. 5(h)–(n),
respectively. The improvements obtained in the PC, SSIM,
and RMSE were 18.00%, 22.97%, and 13.04%, respectively.
Similarly, the reconstructions obtained for SNR of data being
60 dB for the discussed methods in this work are shown in
Fig. 5(o)–(u), respectively. The improvements obtained in the
PC, SSIM, and RMSE were 18.00%, 23.03%, and 12.90%,
respectively. The background streak artifact reduction was
well achieved using the proposed model compared with other
methods.

The reconstruction obtained using the limited data for the
BV phantom using 100 detectors is shown in Fig. 6(a). The
reconstructions obtained after interpolation and then denoising
are shown in Fig. 6(b) and (c), respectively, for the BV
phantom for the case of SNR of data being 20 dB. The recon-
struction obtained for the BV phantom using 200 detectors
data using SRCNN is shown in Fig. 6(d), U-Net (Relu) is
shown in Fig. 6(e), U-Net (Elu) is shown in Fig. 6(f), and the
proposed model U-Net (Hybrid) is shown in Fig. 6(g) for the
case of SNR of data being 20 dB. The improvements obtained
in PC, SSIM, and RMSE compared with the interpolated data
case are 23.83%, 30.25%, and −3.46%, respectively. Similarly,
the reconstructed PA images obtained with SNR of data being
40 dB, interpolated, denoised, SRCNN, U-Net (Relu), U-Net
(Elu), and the proposed technique are shown in Fig. 6(h)–(n),
respectively. The improvements obtained in the PC, SSIM, and
RMSE were 20.96%, 26.11%, and 5.98%, respectively. The
reconstructions obtained for SNR of data being 60 dB for the
compared techniques are shown in Fig. 6(o)–(u), respectively.
The improvements obtained in the PC, SSIM, and RMSE were
21.13%, 26.36%, and 8.41%, respectively.

Finally, complex PA data with variable contrast and noise
were used to test the ability of the proposed approach to
generalize and adapt to the dynamic environment of any exper-
imental setup. The reconstruction obtained using the limited
data for the breast phantom using 100 detectors is shown in
Fig. 7(a). The reconstructions obtained after interpolation and
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Fig. 6. Reconstructed BV images with each row representing the SNR of data being 20, 40, and 60 dB and correspondingly given in (a)–(g), (h)–(n),
and (o)–(u), respectively. Reconstructed images using data with limited BW (70%) and 100 transducers are shown in (a), (h), and (o). While (b), (i),
and (p) show the reconstruction results when the data with 100 transducers that are interpolated using nearest neighbor to obtain a 200 transducer
data. (c), (j), and (q) Results obtained using the automated wavelet denoising approach. The results obtained using the SRCNN-based method are
shown in (d), (k), and (r), and the results obtained using the U-Net (Relu) are shown in (e), (l), and (s). Finally, (f), (m), and (t) show results obtained
using the proposed U-Net (Elu) approach, and (g), (n), and (u) show the results obtained using the proposed U-Net (Hybrid)-based approach.
Table III reports the figure of merits of these results in a comparative manner.

TABLE III
COMPARATIVE RESULTS OBTAINED FOR THE RECONSTRUCTED BV PHANTOM IMAGES SHOWN IN FIG. 6 IN TERMS OF FIGURE OF

MERITS: PC COEFFICIENT, SSIM INDEX, AND RMSE FOR SNR OF DATA BEING 20, 40, AND 60 DB. BOLD TEXT INDICATES

THE BEST POSSIBLE VALUE FOR THE METRIC USED

then denoising are shown in Fig. 7(b) and (c), respectively,
for the breast phantom corresponding to the case of SNR of
data being 20 dB. The reconstruction obtained for this case
using 200 detectors data using SRCNN is shown in Fig. 7(d),
U-Net (Relu) is shown in Fig. 7(e), U-Net (Elu) is shown in
Fig. 7(f), and the proposed model U-Net (Hybrid) is shown
in Fig. 7(g). The improvement obtained in PC, SSIM, and
RMSE compared with the interpolated data case are 6.46%,
11.11%, and −9.35%, respectively. Similarly, the reconstruc-
tions obtained for SNR of data being 40 dB, interpolated,
denoised, SRCNN, U-Net (Relu), U-Net (Elu), and the pro-
posed technique are shown in Fig. 7(h)–(n), respectively. The
improvements obtained in the PC, SSIM, and RMSE were
9.69%, 16.94%, and 41.07%, respectively. The reconstructions
obtained for the case of SNR of data being 60 dB for the
discussed methods in this work are shown in Fig. 7(o)–(u),

respectively. The improvements obtained in the PC, SSIM,
and RMSE was 10.02%, 17.17%, and 40.77%, respectively.
Note that U-Net (Relu) [see Fig. 7(e), (l), and (s)] completely
fails to model the variable contrast despite being trained using
the same data as other models. This reinforces the robustness
of ELUs in deep neural networks for PA imaging tasks.

These numerical results indicate that the proposed method
was effective in terms of providing good quality PA data
and, thus, able to provide superior results compared with the
existing classical and deep-learning-based approaches.

B. Experimental Phantoms

The reconstructed PA images obtained for the horse
hair phantom are shown in Fig. 8(a). The reconstructed
results for the interpolated and the denoised data are shown
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Fig. 7. Reconstructed Breast phantom with each row representing the SNR of data being 20, 40, and 60 dB and correspondingly given in (a)–(g),
(h)–(n), and (o)–(u), respectively. Reconstructed images using data with limited BW (70%) and 100 transducers are shown in (a), (h), and (o).
While (b), (i), and (p) show the reconstruction results when the data with 100 transducers that are interpolated using nearest neighbor to obtain a
200 transducer data. (c), (j), and (q) Results obtained using the automated wavelet denoising approach. The results obtained using the SRCNN-
based method are shown in (d), (k), and (r), and the results obtained using the U-Net (Relu) are shown in (e), (l), and (s). Finally, (f), (m), and
(t) show the results obtained using the proposed U-Net (Elu) approach, and (g), (n), and (u) show the results obtained using the proposed U-Net
(Hybrid)-based approach. Table IV reports the figure of merits of these results in a comparative manner.

TABLE IV
COMPARATIVE RESULTS OBTAINED FOR THE RECONSTRUCTED BREAST PHANTOM IMAGES SHOWN IN FIG. 7 IN TERMS OF FIGURE OF

MERITS: PC COEFFICIENT, SSIM INDEX, AND RMSE FOR SNR OF DATA BEING 20, 40, AND 60 DB. BOLD TEXT INDICATES

THE BEST POSSIBLE VALUE FOR THE METRIC USED

Fig. 8. Reconstructed images for in vivo horse hair phantoms for (a) limited BW, 100 transducers, (b) interpolated using nearest neighbor having
limited BW but 200 detectors, (c) denoising using automated wavelet approach, (d) SRCNN, (e) U-Net (Relu), (f) proposed U-Net (Elu), and
(g) proposed U-Net (Hybrid) approach have been shown. Note that corresponding SNRr (dB) values have been mentioned below the image.

in Fig. 8(b) and (c), respectively. The reconstructed results
obtained using SRCNN is shown in Fig. 8(d), U-Net (Relu) is
shown in Fig. 8(e), U-Net (Elu) is shown in Fig. 8(f), and the
proposed model U-Net (Hybrid) is shown in Fig. 8(g). The
reconstruction obtained using the proposed technique gives a

clear background which is free of artifacts compared with the
other techniques. The SNRr is improved compared with the
limited BW data reconstruction result by 11.65 dB.

Similar results are obtained for the in vivo rat-brain data
were shown in Fig. 9(a) for 100 detectors’ data. The images
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Fig. 9. Reconstructed images for in vivo rat-brain data for (a) limited BW, 100 transducers, (b) interpolated using nearest neighbor having limited
BW but 200 detectors, (c) denoising using automated wavelet approach, (d) SRCNN, (e) U-Net (Relu), (f) proposed U-Net (Elu), and (g) proposed
U-Net (Hybrid) approach have been shown. Note that corresponding SNRr (dB) values have been mentioned below the image.

obtained using the interpolated and the denoised method are
shown in Fig. 9(b) and (c), respectively. The reconstructed
results obtained using SRCNN is shown in Fig. 9(d), U-Net
(Relu) is shown in Fig. 9(e), U-Net (Elu) is shown in Fig. 9(f),
and the proposed model U-Net (Hybrid) is shown in Fig. 9(g).
Again, the results obtained using the proposed architecture
have shown an artifact-free background, and hence, there is a
clear improvement in the image quality. The improvement in
SNRr obtained, compared with the limited data reconstruction,
is 1.45 dB.

Note that in this work, the only linear back projection was
utilized for characterizing the improvement in data (including
BW enhancement, super-resolution, and denoising). It might
be possible to utilize the model-based schemes, which can pro-
vide further improvement in the reconstructed image quality.
As the discussion here is limited to improvement of boundary
data using deep learning, only the analytical reconstruction
method (linear back projection) was deployed here to reinforce
that improvement in the reconstructed image quality is purely
due to improvement in the sinogram data.

VI. CONCLUSION

Deep-learning-based methods have been explored to
improve PA imaging, where these methods have been deployed
in the image space. This work deploys an U-Net-based archi-
tecture for super-resolution and BW enhancement of sinogram
data (boundary PA data), and in turn, it provides improved
PA image quality. The performance of the proposed network
with loss function being scaled RMSE, which is capable of
providing much-needed generalization in the PA imaging, was
systematically compared in both experimental and numeri-
cal scenarios with existing classical and deep-learning-based
approaches. The background was free from the streak artifacts,
and hence, the superior quality of image reconstruction was
obtained. This technique can be applied to other imaging
modalities, such as ultrasound tomography, for performing
BW enhancement in the data domain. The improvement of
image quality due to utilization of the proposed method in the
data space in terms of SNR of reconstructed PA image SNR
(SNRr ) for the in vivo phantoms was as high as 11.65 dB
compared with the reconstruction obtained using data hav-
ing limited BW. Methods of the type proposed, which are
purely data-driven and having computational complexity being
extremely low (for running the trained model), will pave a way
for making PA imaging forerunner in the preclinical as well
as clinical settings.
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