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Model-based image reconstruction techniques yield better quantitative accuracy in photoacoustic image
reconstruction. In this work, an exponential filtering of singular values was proposed for carrying out the image
reconstruction in photoacoustic tomography. The results were compared with widely popular Tikhonov
regularization, time reversal, and the state of the art least-squares QR-based reconstruction algorithms for three digital
phantom cases with varying signal-to-noise ratios of data. It was shown that exponential filtering provides superior
photoacoustic images of better quantitative accuracy. Moreover, the proposed filtering approach was observed to be
less biased toward the regularization parameter and did not come with any additional computational burden as it was
implemented within the Tikhonov filtering framework. It was also shown that the standard Tikhonov filtering
becomes an approximation to the proposed exponential filtering. © 2016 Optical Society of America

OCIS codes: (170.0170) Medical optics and biotechnology; (170.5120) Photoacoustic imaging; (170.3010) Image reconstruction

techniques.
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1. INTRODUCTION

Photoacoustic imaging (PAI) is an in vivo hybrid imaging
modality combining both optics and acoustics [1–3]. The ap-
plications of PAI include breast cancer imaging, brain imaging,
and blood vasculature imaging [4–6]. This imaging modality
uses a noninvasive laser pulse in the near infrared (NIR) win-
dow (600–1000 nm) to irradiate the biological tissue under
investigation. The light irradiation causes a modest increase
in the temperature, which gives rise to pressure waves through
thermal expansion. This initial pressure rise is proportional to
the absorbed optical energy. These pressure waves travel in the
biological tissue as an acoustic wave known as a photoacoustic
(PA) wave. An array of ultrasound transducers placed at the
boundary of biological tissue under investigation in a circular
fashion acquire the propagated PA signals. A reconstruction
algorithm is then deployed to map the initial pressure rise inside
the tissue using the collected boundary PA data.

The NIR light penetrates deeper into biological tissues, hence
enabling PAI for deep tissue imaging. The photoacoustic tomog-
raphy (PAT) has great potential for anatomical and functional
imaging for preclinical and clinical applications, which has been
widely discussed in the literature [7–10]. Photoacoustic imaging
uses blood as an intrinsic contrast agent, but when the signal
from the blood is not strong enough an exogenous contrast agent
can also be used [11]. Earlier investigations of PAI/PAT included
performing molecular imaging combined with contrast agents
such as gold nanoparticles [12].

Recently, the emphasis has been on improving the quantita-
tive accuracy of PA images via utilization of advanced image
reconstruction methods [11,13]. In the past, several analytical
and iterative algorithms have been proposed for PAT image
reconstruction. Analytical algorithms include algorithms like fil-
tered backprojection, time reversal, and Fourier transform based
reconstructions [11,13]. Analytical algorithms are based on the
spherical Radon transform model, which do not accurately de-
scribe the response of the detection system [11,14]. They require
a large number of data collection points around the target object
and the measured data to be densely sampled and/or the object-
to-transducer distance to be sufficiently large. The large distances
are undesirable as they degrade the signal-to-noise ratio (SNR) of
the recorded data. Large data acquisition needs a greater number
of ultrasound transducers in addition to rise in data collection
time. This requirement also increases the cost of the instrumen-
tation set up [11,13]. The use of limited data, especially with
analytical reconstruction algorithms, degrades the spatial resolu-
tion of the reconstructed images. Thus analytical algorithms have
constraints in achieving the quantitative accuracy in limited-data
cases and smaller geometries. Model-based iterative image
reconstruction algorithms use the impulse response method to
incorporate the response of an ultrasound detector and treat
the ultrasound transducer as a linear acoustic system [11,14].
Thus, incorporation of limited bandwidth of acoustic detector
response and other physical parameters improves the computa-
tional modeling of photoacoustic wave propagation/detection,
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in turn making the image reconstruction procedure more real-
istic and accurate. These model-based reconstruction methods
have been proven to provide reasonably accurate PA images
even in cases of limited data [11,13–15]. These model-based
reconstruction algorithms essentially deploy regularization
to provide a balance between the inverse noise and quantitative
accuracy and have been proven to be robust to experimental
data noise [11,13–15]. Thus, making these model-based
reconstruction schemes more attractive in most experimental sce-
narios has been the main focus of recent works in PA image
reconstruction [11,13].

The PA image reconstruction problem is inherently an initial
value problem. Least-squares QR (LSQR) based reconstruction
has been used in the literature as an efficient algorithm [16].
LSQR-based reconstruction provides quantitatively more
accurate results when an optimal selection of regularization
parameter is utilized, as compared to L-curve and generalized
cross validation (GCV) based methods [17]. A typical model-
based image reconstruction method utilizes standard Tikhonov
regularization, which requires an explicit regularization param-
eter [16–19]. Although the use of a regularization parameter in-
herently blurs the reconstructed images, a deblurring algorithm
can be further deployed for the better recovery of internal tissue
structure as long as the source of blurring can be modeled
[20,21]. Basis pursuit deconvolution (BPD) in the framework
of LSQRhas been used previously in PA imaging, as the state-of-
the-art technique, to perform efficient reconstruction in these
limited data cases [15].

The regularization applied in these model-based image
reconstruction methods can be well understood by the utility
of singular value decomposition (SVD), namely, to know filter-
ing that is being applied to its spectral (eigen) values of the sys-
tem [22]. Thus, these spectral filtering methods often provide
an improved insight into the problem at hand. In this work,
Tikhonov regularization was applied via singular value filtering
as a standard method for performing PA image reconstruction.
Also, a novel method that performs exponential filtering of
singular values has been proposed here for improving the
PA image reconstruction, and its performance was systemati-
cally investigated in comparison to other state-of-the-art
model-based methods such as BPD based LSQR. The objective
of this study is to demonstrate a reconstruction algorithm,
which utilizes exponential filtering, that results in superior
reconstruction of PA images. We have compared the model-
based reconstruction strategies via standard figures of merit
to quantitatively assess the reconstructed image quality. For
completeness, the standard analytical reconstruction method
based on time reversal was also engaged in the comparative
studies. It was proven via utilization of digital phantoms that
the exponential filtering of singular values improves the PA
images both in terms of quantitation and quality. It was also
shown that the Tikhonov filtering technique becomes the
special case of the proposed exponential filtering.

2. METHODS

A. k-Wave Simulation of PA Wavefield

k-Wave is a third-party open-source MATLAB toolbox
developed as a time domain forward model of acoustic wave

propagation for PA imaging. It has a one-step time reversal
image reconstruction algorithm for an arbitrary measurement
surface. A detailed description can be found in [23].

The k-Wave toolbox simulates the PA wavefields as well as
reconstructing PA images. The forward model computations
are based on a k-space pseudo-spectral time domain solution
to the acoustic wave equations. The experimental geometry
used for the simulation of PA waves is similar to that described
in [15,17].

B. System Matrix Construction

The system matrix building for the geometry under consider-
ation has been detailed in [15,17], and here it is briefly
reviewed. The PA waves at the boundary of the imaging
domain are collected by an array of transducers. The process
of collecting these signals can be represented as a time varying
causal system [24]. The k-Wave toolbox was utilized to con-
struct the system matrix of this system, where impulse re-
sponses (IRs) were recorded pixel by pixel for the complete
imaging domain as described in [15,17].

An image having a dimension of n × n, which represented
the imaging domain, was vectorized by stacking all columns
one below the other into a n2 × 1 size vector. This vector
was represented as x, which has to be reconstructed in a PA
inverse problem. The time-varying PA data was stacked in a
m × 1 dimensional vector, which was represented as the mea-
surement vector b. The system matrix (A) has a dimension of
m × n2, each column representing the IR of the corresponding
pixel of the image as explained in [17]. As building of system
matrix construction requires computing the IR of every pixel in
the imaging domain, it is computationally demanding. This
can be improved by recording the IR of one pixel and shifting
and/or attenuating this recorded IR for all other pixels based on
the distance. Note that each pixel IR goes as a column in the
system matrix [17].

In the work described here, it was assumed that the medium
had homogeneous ultrasound properties, with no absorption and
scattering of sound. The speed of sound was assumed to be
1500 m∕s (approximate value for soft tissue). The ultrasound
detectors were considered to be point detectors having a center
frequency of 2.25 MHz and 70% bandwidth. As the core of dis-
cussion in this work lies with improving the model-based
reconstruction scheme and proposing a superior alternative, only
limited-data cases were utilized here with total number of 60 de-
tectors. These detectors were deployed and placed equidistantly
in a 22 mm radius circle (like a round clock, placing one detector
at each minute). This geometry was adopted to mimic the exper-
imental setup [11]. The size of the imaging domain was consid-
ered to be 201 × 201 pixels, each pixel measuring 0.1 mm
�n2 � 40; 401�. The k-Wave computational grid size of 501 ×
501 pixels (50 mm × 50 mm), whichwasmoderately larger than
the imaging domain, was utilized, mimicking the acoustic cou-
pling medium. A perfectly matched layer was used to satisfy
the boundary condition. The time step for data collection was
50 ns, with a total of 500 steps �m � 60 × 500�. Thus the size
of the system matrix, A�m × n2�, becomes 30,000 × 40,401.

The forward model of PAI can be summarized as

Ax � b; (1)
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where A is the system matrix (collection of IRs of each pixel), x
is initial value of pressure at each pixel in the imaging domain,
and b is a measurement vector containing the boundary PA
data. The SVD of the system matrix, that is, its reduction
to diagonal form, can be represented as

A � UΣV T ; (2)

whereU and V are left and right orthogonal matrices and Σ is a
diagonal matrix containing singular (spectral) values on its
diagonal with its magnitude descending as one goes from
the first diagonal value to the last one.

C. Analytical Reconstruction Algorithms

1. Backprojection Algorithm

The backprojection image reconstruction, an analytical solu-
tion for the PAT inverse problem, can be written as

xbp � AT b � V ΣUT b: (3)

Note that this method was not employed for performing the
PA image reconstruction in the present work and has been
included here for completeness of discussion.

2. Time Reversal Algorithm

For any initial source with a bounded support, the wavefield
leaves the imaging domain (which is bounded) in a finite time,
with the condition that the speed of sound is constant and the
spatial domain is odd. This is famously known as Huygens’
principle [25]. Let the longest traversal time of the wave inside
the imaging domain be t̃ .

The zero initial condition (at t � t̃) and boundary condi-
tion equal to the measured data can be imposed to solve the
acoustic wavefield’s equation in the reverse time direction, thus
arriving at t � 0 and the initial pressure distribution, x [26].

The time reversal method works for arbitrary geometry of a
closed observation surface. The important assumption is that
the solution inside the surface decays with time. When the de-
cay is slow, a larger cut-off time t̃ may be needed. The k-Wave
toolbox utilizes the same time reversal to solve the inverse
problem (obtaining the initial pressure) [23].

D. Model-Based Reconstruction Algorithms

1. l 2-Norm Based Tikhonov Regularization

As discussed earlier, the analytical methods discussed above re-
construct qualitative PA images and also require large amounts
of data. The model-based reconstruction scheme is proven to
be effective for limited data cases and has been employed in the
literature [11,13–15]. It relies on minimization of the residue
function along with a regularization. As the limited-data case
leads to a discrete ill-posed problem, regularization constrains
the solution space. The Tikhonov based l 2-norm smoothness
constraint is one of the widest regularizations for solving these
kind of problems. In this case, the minimization function can
be written as

Ω � ‖Ax − b‖22 � λ‖Rx‖22; (4)

where λ is known as the regularization parameter, providing a
balance between the residue and the expected initial pressure
(x). ‖ · ‖2 represents the l 2 norm. The minimized cost function
[Eq. (4)] leads to a direct solution,

x � �ATA� λRTR�−1AT b: (5)

Higher regularization tends to oversmooth the image, while a
smaller value of λ amplifies the noise in the image. The term R
in the above equation may hold different values for different
regularization schemes. Here, in standard Tikhonov regulariza-
tion R is equal to an identity matrix (dimension n2 × n2), giving
the regularized Tikhonov solution as

xtikh � �ATA� λI�−1AT b: (6)

Using the SVD of A [Eq. (2)], the solution can be rewritten as

xtikh � �V ΣTΣV T � λI�−1V ΣTUT b; (7)

� V Σ†
FU

T b; (8)

where

Σ†
F � diag

�
σi

σ2i � λ

�
� diag

�
ϕi

σi

�
; (9)

with the Tikhonov filter factors being

ϕi �
σ2i

σ2i � λ
: (10)

The σi represents the ith diagonal value of Σ. Note that as i in-
creases, the σi value goes to zero; thus without the λ, the solution
(xtikh) can take large value. With the regularization, the solu-
tion xtikh will be constrained, thus leading to a reasonable solution
even for small values of σi [27]. The regularization parameter
(λ) can be found using algorithms such as GCV, L-curve, or min-
imal residual method (MRM) [28]. Numerical experiments
found that GCV and L-curve algorithms do not help to converge
the ill-posed problems, as also observed in [17]. MRM is an al-
ternative method which is equivalent to the regularized steepest
descent method. This is an iterative method to solve a system of
linear equations. The MRM converges to an approximate solu-
tion x for every given λ. Thus the residue ‖b − Ax‖2 was com-
puted in each iteration. The optimum regularization parameter,
λ, was the one which minimizes the residue. In this work, MRM
was utilized [28] to find the optimum regularization parameter
(λopt) for Tikhonov regularization.

2. BPD Based LSQR Method

The LSQR type algorithm estimates an approximate model-
resolution blur matrix and then performs an additional step
of deblurring to improve the reconstruction result [15]. The
dimensionality of system matrix A can be reduced using
Lanczos bidiagonalization as given in [29]. The equations of
Lanczos bidiagonalization are

Gk�1�β0e1� � b;

AHk � Gk�1Bk;

ATGk�1 � HkBT
k � αk�1hk�1eTk�1; (11)

where Gk and Hk are left and right orthogonal Lanczos matri-
ces, β0 is the l 2 norm of b, e1 is a unit vector, and Bk is the lower
bidiagonal matrix having αk in the main diagonal. The cost
function [Eq. (4)] with this bidiagonalization transforms to

Ω � ‖β0e1 − Bkx�k�‖22 � λ‖x�k�‖22; (12)
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where x�k� is the dimensionality reduced version of x such that
k < n2. The update equation for the estimated solution becomes

x�k�est � �BT
k Bk � λI�−1β0BT

k e1: (13)

The regularization parameter was obtained by minimizing the
residue ‖b − Ax‖2 [17]. A BPD step was utilized to deblur
the reconstructed estimate as it was described in [15]. This
method utilizes a split augmented Lagrangian shrinkage
algorithm [30] to minimize the objective function given by

Ω � ‖Mx�k� − x�k�est ‖22 � λl1‖x�k�‖1; (14)

where M is the LSQR algorithm’s model resolution matrix,
given as

M � �BT
k Bk � λI�−1BT

k Bk: (15)

If x�k�d was the deblurred estimate [which minimizes Eq. (14)] of
x�k�est , the final deblurred estimate becomes

xLSQR � Hkx
�k�
d : (16)

Note that this solution has been referred as BPD based LSQR in
further discussion.

E. Proposed Exponential Filtering Method

This study proposes an exponential filtering technique for PA
image reconstruction. This method is widely known as the
Showalter method [31] in the inverse problems literature
[32]. Exponential filtering is a regularization method that seeks
to integrate an initial value problem up to a certain abscissa
1∕

ffiffiffi
λ

p
, where λ is the regularization parameter [33]. This

method considers the filter factors [in Eqs. (9) and (10)] as

ϕi � 1 − exp�−σ2i ∕λ�: (17)

Again here, when λ � 0 (no regularization), the filter factors
become unity, thus leading to an unregularized solution.

Clearly large values of the regularization parameter (λ) will
provide more filtering of the solution. But a too small λ will
not give enough filtering. In this work a heuristic choice of regu-
larization parameter was utilized after a number of experiments.
Unlike the Tikhonov regularization, MRMwas not used here for
finding the optimum regularization parameter for two reasons.
First, MRMdoes not converge at a truthful point for exponential
filtering. Second, it was shown in our experiments that the pro-
posed method was stable even with the variation in regularization
parameter within a reasonable range (please refer to Section 4).
Thus only a heuristic choice was deployed here.

Similar to the Tikhonov regularization case, where Eq. (6)
reduces to Eq. (8), the relation to filter factors [similar to
Eq. (9)] can be written as

Σ†
F � diag

�
1 − exp�−σ2i ∕λ�

σi

�
: (18)

As listed in Table 1, the exponential factors can be reduced to
Tikhonov filter factors for a special case when σ2⋘λ. Taking
the exponential series expansion in Eq. (17), filter factors can be
written as

ϕi � 1 − exp�−σ2i ∕λ� � 1 −

�
1 −

σ2i
λ
� �−σ2i ∕λ�2

2!
�…

�
;

by neglecting the higher power terms for a special case when
σ2⋘λ,

ϕi ≅
σ2i
λ
; (19)

considering the same approximation, σ2⋘λ, for Tikhonov
filter factors [Eq. (10)],

ϕi �
σ2i

σ2i � λ
� 1

1� λ
σ2i

≅
1
λ
σ2i

≅
σ2i
λ
: (20)

Thus both the proposed and Tikhonov filter factors become
equivalent for the case σ2⋘λ. Hence, Tikhonov regularization
can be seen as an approximation to exponential filtering.

Exponential filtering of the singular values (proposed)
method performance was objectively compared with earlier
discussed methods (k-Wave time reversal, Tikhonov regulariza-
tion, and BPD based LSQR) using the following figures of merit.

F. Figures of Merit

1. Pearson Correlation Coefficient

The Pearson correlation (PC) coefficient is a quantitative
metric that measures the degree of correlation between the re-
constructed image and target image, having a range of values
from −1 to 1. This figure of merit is routinely used in the emis-
sion tomography as well as biological imaging [34]. The PC can
be defined as [34]

PC�x; xrecon� � COV�x; xrecon�
ρ�x�ρ�xrecon� ; (21)

where x is the expected initial pressure distribution and xrecon is
the reconstructed initial pressure distribution. COV denotes
the covariance, and ρ denotes the standard deviation. The
Pearson correlation describes the accurate detectability of the
target (i.e., spatial fidelity). A higher value of PC is desirable
in the reconstructed images.

2. Contrast-to-Noise Ratio

The contrast-to-noise ratio (CNR) is a measure of the image
quality based on the contrast, typically used to compare the
reconstructed images [35,36]. The CNR can be defined as

CNR � μroi − μbackffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2roiaroi � ρ2backaback

q ; (22)

where μ and ρ correspond to the mean and the standard
deviation, respectively. Subscript roi corresponds to the region of
interest, and back corresponds to the background image. The
aroi � Aroi

Atot
and aback � Aback

Atot
represent the area ratio. The higher

the CNR, the better is the image reconstruction performance
and differentiability of the region of interest (roi) versus back-
ground. A human eye can perceive the difference between roi and
background accurately if the CNR value is 4 and above [36].

Table 1. Filter Factors for Tikhonov and Proposed
Exponential Regularization

Tikhonov Proposed

ϕi � σ2i
σ2i �λ

ϕi � 1 − exp�−σ2i ∕λ�
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3. NUMERICAL EXPERIMENTS

Numerical experiments are ideal for comparing the quantitative
accuracies of the reconstruction methods, as measuring the ac-
tual initial pressure rise in an experimental phantom can be very
challenging. In this work, three numerical phantoms were
chosen to show the effectiveness of the proposed method.
Since PA imaging has been widely used for visualizing internal
blood vessel structures, one was a numerical blood vessel net-
work phantom with an initial rise of 1 kPa [Fig. 2(a)]. Another
numerical phantom was a variation of the Derenzo phantom
which consisted of small and large size targets distributions over
the imaging region [Fig. 3(a)]. Numerical experiments with a
target consisting of the letters “PAT” were also considered to
examine the reconstruction of sharp edges [Fig. 4(a)]. The nu-
merically generated PA signals using the k-Wave tool box, for
all numerical phantoms, was added with 1% Gaussian random
noise, after accounting for the limited bandwidth of the trans-
ducers, to mimic the experimentally collected data. This
amounted to a SNR level of 40 dB. Being the impulsive signal,
the magnitude of the added noise was calculated based on the
peak level of the input signal (noisy signal � signal� noise).
To observe the effectiveness of the proposed method for in-
creased noise levels, for numerical blood vessel network phan-
tom data, the SNR levels of 20 and 30 dB were also considered.

The reconstruction results of the proposed method were com-
pared with the state-of-the-art BPD based LSQR method,
Tikhonov regularization, and the k-Wave based time reversal
reconstruction method. Note that for the time reversal method
the interpolated data was utilized to improve its performance as
explained in [23]. A Linux workstation with a dual eight-core
Intel Xeon processor having a speed of 3.10 GHz with
128 GB RAM was used for all computations performed in this
work.

4. RESULTS

The singular values of the PA system matrix are plotted in
Fig. 1(a). The filter factors for Tikhonov filtering [Eq. (10)]
and proposed exponential filtering [Eq. (17)], as listed in
Table 1, are also plotted as a function of σ2∕λ in Fig. 1(b).
For comparison purpose, the value of λ in this plot was kept
at 10−3 for both of the filtering methods. As it is evident from
Fig. 1(b) (also obvious from Table 1), the filtering factors tend to
1 with larger singular values. The objective of this plot was to
show that the exponential and Tikhonov filtering become iden-
tical for the case when σ2 ≪ λ, which is clearly reflected in the
figure.

The reconstructed PA images of the numerical blood vessel
phantom considered in this study using previously discussed
methods such as time reversal, Tikhonov regularization, the
BPD based LSQR method, and the proposed exponential filter-
ing method are shown in Figs. 2(b)–2(e). These reconstructions
were carried out for a SNR level of 40 dB. Red arrows in
Fig. 2(b) show that the time reversal method fails to reconstruct
the corner edges. The reconstructions for increased noise levels
(SNR � 30 dB and 20 dB) are shown in Figs. 2(f) and 2(g),
respectively. A one-dimensional cross sectional plot for all
presented results along the red dotted line in Fig. 2(a) is
given in Fig. 2(h), which quantitatively shows the improvement
in the recovered initial pressure. It is obvious from these
results that the proposed method performance is superior to
the others.

The reconstructed results for the same effort for the Derenzo
phantom corresponding to an SNR level of 40 dB are presented
in Figs. 3(b)–3(e). These reconstructions were for the SNR
level of 40 dB. It can be observed from these results that even
though the BPD based LSQR method was superior to time-
reversal and Tikhonov based methods, it suffered from
shadow-type artifacts (black areas surrounding bright circles)
as well as clearly observable partial volume effects (smaller
circles clearly not reconstructed with enough contrast as com-
pared to larger circles).

The performance of the proposed method in terms of
reconstruction of sharp edges via deploying the PAT phantom
can be clearly seen in Fig. 4. The SNR for the data in this case
was 40 dB. The same conclusion as earlier, with reconstructed
image quality using the proposed method being superior to other
methods discussed in this work, holds good here. More impor-
tantly, compared to state-of-the-art methods like BPD based
LSQR, the reconstructed images had less observable noise as well
as less distortion in the reconstructed edges in the letters.

Even though visually the results obtained by the proposed
method were superior, to objectively present the same, the
figures of merit (PC and CNR) corresponding to the results
presented in Figs. 2–4 are shown as a bar diagram in Fig. 5.
These results ascertained that the proposed method provided
not only visually appealing results, but also quantitatively up
to 40% more accuracy compared to the state-of-the-art method
(BPD based LSQR).

The regularization parameter (λ) in this study (for SNR level
of 40 dB) for the proposed method was chosen as 3 × 10−4 for
all three phantoms. This choice was purely heuristic, but it was
observed that reasonable variation in λ had very little to no
effect on the solution. This was shown via performing a simple
study of varying regularization parameter λ for the Derenzo
phantom (Fig. 3) from 10−5 to 10−3 and computing the figures
of merit for the reconstructed images. These computed values
were shown in Figs. 6(a) and 6(b) for PC and CNR, respec-
tively. These plots showed that the variation in PC and
CNR was insignificant, thus justifying the heuristic choice
of regularization parameter for the proposed method.

MRM for Tikhonov filtering provided the optimum (λ) as
0.6404 for the Derenzo phantom. Even here, to see the varia-
tion of figures of merit with respect to the regularization param-
eter, the value of λ was varied from 0.064 to 6.4 (a factor of 10

Fig. 1. (a) Plot showing the magnitude of singular values (σ) of the
system matrix A as a function of measurements, and (b) plot of filter
factors for Tikhonov and proposed exponential filtering methods as a
function of σ2∕λ with λ being 10−3.
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on both sides) and the corresponding figures of merit were
plotted in Figs. 6(c) and 6(d). As expected, the lower λ always
results in higher contrast, and thus the PC and CNR take
higher values for lower values of λ. It can also be observed that
the obtained PC and CNR values with λ being 0.064 were still
lower compared to the figures of merit obtained using the
proposed method.

Note that in some results presented in this work (Figs. 2–4),
the reconstructed initial pressure exceeded the expected value of
1, and this can be mainly attributed to the inverse noise gen-
erated by the image reconstruction method. The discussion of
inverse noise and its role in image reconstruction is beyond the
scope of this work, and readers interested in this can refer to
work by Tarantola [37].

5. DISCUSSION

The model-based reconstruction schemes for photoacoustic im-
age reconstruction are known to provide superior performance
compared to analytical reconstruction schemes [11,13–15].
The improvement in the reconstruction performance is typically
attributed to the model, which accurately accounts for the phys-
ics of the PA wave generation, propagation, and detection.
Beyond this, to improve image reconstruction performance,
one needs to perform a post-processing of model-based recon-
structed images via applying deconvolution or other image en-
hancement schemes. These two-step processes (model-based
reconstruction followed by a deconvolution step) are currently
known to be the state-of-the-art techniques and justify the addi-
tional computational burden in performing the deconvolution

Fig. 2. (a) Numerical blood vessel network phantom used in this study. Reconstructed PA images at 40 dB SNR level using (b) k-Wave time
reversal, (c) Tikhonov regularization (λ � 0.6404), (d) BPD based LSQR (λ � 4.256 × 10−5), and (e) the proposed method (λ � 3 × 10−4).
Reconstruction results of the proposed method for SNR levels of (f ) 30 dB (λ � 10−3) and (g) 20 dB (λ � 10−2). (h) One-dimensional
cross-sectional plot of the reconstructed results pertaining to SNR level of 40 dB along the dotted line shown in (a). The areas pertaining to
improved quality of reconstruction using the proposed method in comparison to others are indicated by red arrows in (b).

Fig. 3. (a) Derenzo phantom used in this study. Reconstructed PA
images at 40 dB SNR level using (b) k-Wave time reversal,
(c) Tikhonov regularization (λ � 0.3460), (d) BPD based LSQR
(λ � 4.12 × 10−5), and (e) the proposed method (λ � 3 × 10−4).
The areas pertaining to improved quality of reconstruction using
the proposed method in comparison to others are indicated by red
arrows in (b).

Fig. 4. (a) Numerical PAT phantom used in this study.
Reconstructed PA images at 40 dB SNR level using (b) k-Wave time
reversal, (c) Tikhonov regularization (λ � 0.5191), (d) BPD based
LSQR (λ � 4.02 × 10−5), and (e) proposed method (λ � 3 × 10−4).
The areas pertaining to improved quality of reconstruction using
the proposed method in comparison to others are indicated by red
arrows in (b).

1790 Vol. 33, No. 9 / September 2016 / Journal of the Optical Society of America A Research Article



step as they provide much desired quantification in the
reconstructed PA images.

In this work, a simple yet effective way of performing the PA
image reconstruction with the help of exponential filtering of
singular values was presented, and it was shown that its perfor-
mance is superior to the state-of-the-art two-step reconstruction
procedures, such as BPD based LSQR. More importantly, the
proposed exponential filtering is more universal as the standard
Tikhonov regularization becomes a special case of this.

Moreover, methods like BPD based LSQR assume that the
reconstructed image quality is purely affected with application of
regularization, and thus its results become biased for highly noisy
data cases (Fig. 5, results pertaining to blood vessel phantom
with SNR of 20 dB and 30 dB). Even in these highly noisy data
cases, the performance of the proposed method was superior
compared to other standard methods discussed in this work.

As can be seen from results presented in Figs. 3 and 4, the
typical reconstruction schemes like time reversal and Tikhonov
fail to reconstruct large objects and result in edge enhanced

bipolar objects (large circles being reconstructed as doughnut
shaped objects), even though they are unipolar. Both BPD
based LSQR and the proposed method result in unipolar im-
ages, with the proposed method being superior in recovering
the contrast even in smaller objects (top and right side objects
of Fig. 3). Also from the one-dimensional cross-sectional plots
given in Fig. 2(h), it is apparent that time-reversal and
Tikhonov methods fail to achieve the quantification, and
BPD based LSQR was more noisy compared to the proposed
method. The performance of the proposed method can be
attributed to the asymptotic regularization (exponential filter-
ing) applied to the spectral values (see Fig. 1) of the system
matrix, thus controlling the resolution characteristics of the
reconstructed PA image.

It is important to note that the performance of MRM in the
context of the PA image reconstruction needs to be further
studied. It has been successfully deployed in the case of non-
linear inverse problems, such as diffuse optical imaging [28],
and in the dimensionality reduced case of PAI [17]. As it is
obvious that the system matrix (A) is a sparse matrix along with
the measurement vector (b) also being largely sparse, the result-
ant value of regularization found using MRM was not optimal
in terms of reconstructed image quality, and the same can be
observed in Figs. 6(c) and 6(d), where the MRM solution value
is 0.6 and the regularization values lower than this result in
better figures of merit for the reconstructed image.

For noisy situations, the regularization parameter (λ) has to
be larger. The regularization parameter (λ) depends upon data
noise in the following way for the Tikhonov case [38]:

λ � σ2noise
σ2image

; (23)

where σ is the standard deviation. As noise in the data increases,
the regularization parameter value should also be increased.
Note that knowing the variance of the image is not possible
in real imaging scenarios, as the reconstructed image is the
solution of the inverse problem. By keeping this in mind, in
the numerical experiments carried out with the blood vessel
phantom, the value of the regularization parameter that was
utilized for the proposed method was also increased for noisy
data cases. For the SNR level of 30 dB, λ � 10−3, and for the
SNR level of 20 dB, λ � 10−2 was deployed.

Typical computation time for reconstructing the initial
pressure distribution for the time reversal method, Tikhonov
regularization, BPD based LSQR, and proposed method
was, respectively, 1.9, 3.8, 5.4, and 0.2 min. Note that finding
the λ using MRM in the Tikhonov case took 3.6 min, thus
increasing the total computational time in this case. Note that
in addition to these computational times, there is a one-time
overhead of the system matrix building and its SVD, which
took 318 min of computational time for the data-collection
geometry considered in this work.

6. CONCLUSIONS

Model-based reconstruction algorithms improve the quantita-
tive accuracy of PA images. This work utilizes an exponential
filtering based regularization for improving the reconstructed
PA images. The performance of the proposed method has been

Fig. 5. Comparison of (a) PC and (b) CNR for the reconstruction
results presented in this study (Figs. 2–4). The SNR level of the data is
indicated in the parentheses.

Fig. 6. Plots showing the figures of merit (a) PC and (b) CNR as a
function of regularization parameter (λ) for the proposed method for
the results presented in Fig. 3(e). The corresponding plots for the pre-
sented result in Fig. 3(c) are given in (c) and (d), respectively.
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superior compared to state-of-the-art methods, like BPD based
LSQR. This can be attributed to the exponential filtering, which
filters the singular values with decreasing weights with the in-
crease in singular value number. Thus the proposed method acts
as an effective low-pass filter to remove high frequency noise in
the reconstructed PA images. This method also has an added
advantage of being less biased toward regularization parameter
choice. It was proved using three digital phantoms with varying
noise levels that the proposed exponential filtering has a
distinct advantage compared to other state-of-the-art methods.
Moreover, within an approximation, this method becomes
equivalent to standard Tikhonov regularization.
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