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Abstract—The sign language digits based on hand
gestures have been utilized in various applications such as
human-computer interaction, robotics, health and medical
systems, health assistive technologies,automotive user inter-
faces, crisis management and disaster relief, entertainment,
and contactless communication in smart devices. The color
and depth cameras are commonly deployed for hand gesture
recognition, but the robust classification of hand gestures
under varying illumination is still a challenging task. This work
presents the design and deployment of a complete end-to-
end edge computing system that can accurately provide the
classificationof hand gestures captured from thermal images.
A thermal dataset of 3200 images was created with each sign
language digit having 320 thermal images. The solution presented here utilizes live images taken from a low-resolution
thermal camera of 32×32 pixels, feeding into a novel light weight deep learning model based on bottleneck motivated from
deep residual learning for classification of hand gestures. The edge computing system presented here utilizes Raspberry
pi with a thermal camera making it highly portable. The designed system achieves an accuracy of 99.52% on the test data
set with an added advantage of accuracy being invariable to background lighting conditions as it is based on thermal
imaging.

Index Terms— Thermal imaging, gesture recognition, embedded systems, deep learning, neural networks, contactless
applications, sign language digits.

I. INTRODUCTION

THE sign language based on hand gestures has applica-
tions in several areas such as automotive user interfaces,

health and medical systems, health assistive technologies,
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crisis management and disaster relief, entertainment, and
human-computer/robot interaction. This enables an effective
contactless communication in many cases such as health
care applications [1], [2], speaking, listening [3], entertain-
ment such as gaming [4]–[6], contactless control of smart
devices such as television [7], robotics [8], crisis management
and disaster relief and several other areas including medical
diagnostics and surveillance [9].

Recently, several deep learning models have been pro-
posed for hand gesture recognition. A deep convolutional
neural networks (CNN) based static hand gesture recognition
was proposed in [10] using two publicly available datasets,
National University of Singapore (NUS) hand posture dataset
and American finger spelling A dataset. In this work, raw RGB
images of hand postures have been utilized with CNN model
providing the classification accuracy of 94.6%. A dynamic
hand gesture recognition using two-dimensional (2D) CNN
has been proposed in [11]. A combination of low and high
resolution sub-networks have been deployed to obtain a clas-
sification accuracy of 98.2%. A CNN model along with
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3D receptive fields for dynamic hand gesture recognition was
proposed in [12]. Classification accuracy of 97.5% has been
achieved with this hybrid neural network. A static hand gesture
recognition using CNN with data augmentation has been
proposed in [13]. Using this approach, an accuracy of 97.12%
has been obtained. The same task using morphological filters
was attempted in [14]. Classification accuracy of 96.83% has
been achieved using this filtering approach. A dynamic hand
gesture recognition has been attempted using the CNN and
recurrent neural network (RNN) in [15]. With this approach,
an overall accuracy of 85.46% was obtained. A hand gesture
recognition using Gaussian mixture model was also attempted
earlier in [16]. Using this model, an average recognition
accuracy of 95.96% has been achieved. A deep CNN has
been proposed for the task of hand gesture detection and
recognition in [17]. Using this method, recognition accu-
racy of 90.7% was reported. A double channel (DC) CNN
was also developed for hand gesture recognition in [18].
The recognition rate of 98.02% has been obtained in this
approach. A three-dimensional (3D) CNN based hand gesture
recognition was also developed and presented in [19]. It has
achieved a classification accuracy of 77.5%. A multimodal
hand gesture recognition using 3D CNNs was attempted
in [20]. It achieved classification accuracy of 94.4%. A 3D
CNN and long short-term memory (LSTM) based dynamic
hand gesture recognition has been proposed in [21]. This
approach has achieved an accuracy of 97.8%. A Tiny hand
gesture recognition without localization using a deep CNN
has been proposed in [22]. It achieved an accuracy of 97.1%
with simple backgrounds and 85.3% for complex backgrounds.
A hand gesture recognition using a compact CNN and surface
electromyography signals has been proposed in [23]. With this
compact CNN approach, an accuracy of 98.81% was reported.
Image processing techniques along with a deep CNN has been
proposed for hand gesture recognition in [24]. It achieved
recognition rate of 95.61%. An online detection and classifica-
tion of dynamic hand gestures with recurrent 3D CNNs was
presented in [25]. Using this recurrent 3D CNNs, an accu-
racy 88.4% has been achieved. A probabilistic combination
of CNN and RNN based hand gesture recognition resulted
in an accuracy of 89.5% [26]. A Hand gesture recognition
utilizing shape and texture evidences in complex background
has been proposed in [27] with reported classification accuracy
being 94.6%.

Majority of the developed models consist of several
convolution layers, max-pooling layers, and different regular-
ization layers like drop out, and L2 regularization. In addi-
tion, these models are heavy, which require more memory
and greater model inference time. Memory efficient CNNs
execution without having any compromise on the accuracy
has been a challenge, especially when the inference has to
be performed on an edge computing device in real time.
The state-of-the-art performance has been achieved only with
the help of neural network accelerators [28]. In this work,
we develop a memory efficient CNN model which provides
high accuracy without the need for accelerators. We also
compare the performance of proposed memory efficient CNN
model with the recently reported CNN models and the Big

Transfer (BiT) model [29], [30], the state of the art model for
image classification task on CIFAR10 dataset. This dataset
is very similar to the developed thermal dataset with image
size being (32,32,3). This work also shows that the proposed
light-weight CNN out performs the state of the art model.

The above reported deep learning models were based on
RGB images. The RGB cameras capture visible light and
produce greyscale or RGB images, which can be utilized for
many day-to-day applications including hand gesture recogni-
tion. Nevertheless, the quality of RGB images such as colors
and visibility of the objects in the imaging scene largely
depend on the background lighting conditions, such as artificial
or natural light. Some attempts have been made for hand
gesture recognition using low resolution RGB images under
variable illumination conditions [31], [32] and depth images
in low-intensity environments [33]. However, RGB cameras
fail to capture any object in the imaging scene when it is
totally dark. The illumination with changing intensity and
color balance are some of the challenges associated with the
quality of RGB images. Other sensors such as 3D sensors and
near infrared sensors [34] have been introduced to overcome
these limitations associated with RGB cameras. These sen-
sors are active sensors with illumination being not a major
concern. A passive sensor is preferred in many real-world
applications. The micro electromechanical systems (MEMS)
camera is a passive non-contact temperature measurement
sensor. A MEMS thermal camera has two main parts, first one
is the silicon lens and the second one is the thermopile sensor.
The radiant heat of far-infrared rays emitted from objects in
the imaging scene is focused on the thermopile sensor using a
silicon lens [35]. The thermopile sensor produces electromo-
tive force as per the incident radiant energy of far-infrared rays
emitted from objects. Using the produced electromotive force
and the internal thermal sensors, the temperature of objects in
the imaging scene can be measured in a noncontact manner.

To the best of our knowledge, this is the first work to report
thermal imaging based hand gestures, which are indepen-
dent of background lighting including dark light conditions.
We also propose a novel light weight deep learning model
based on bottlenecks motivated from deep residual learning
for classification of hand gestures using images obtained from
a thermal camera.

The remainder of this article has been organized as follows.
Section II provides the thermal imaging system descrip-
tion, and the experimental setup details used in order to
obtain the hand gestures of the thermal images. Section III
presents dataset details and variations associated with the data.
Section IV elaborates on the machine learning model and
dataset considered in this work. Section V presents the results.
Finally, concluding remarks and future work was discussed in
Section VI.

II. THERMAL IMAGING SYSTEM DESIGN

A MEMS thermal camera of Omron D6T has been utilized
to create a dataset of thermal images for sign digits based on
hand gestures. It has inter integrated circuit (I2C) interface
and is connected to Raspberry Pi embedded system as shown
in Fig. 1. To be able to interface the thermal camera to the
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Fig. 1. Photograph showing the thermal camera coupling with the edge
computing embedded system Raspberry Pi.

Fig. 2. Photograph showing the Raspberry Pi camera shield.

Raspberry Pi, it is necessary to design a custom shield. This
shield is mounted to the pins of the Raspberry Pi with a pull
up resistor for the thermal camera to function correctly. The
pull up resistor also ensures the signal to and from the camera
is correct. In addition, this blocks out any biased power or
signals that may interfere. The resistors are connected to the
power in one end, the data port and clock port on the other
end. The wires are connected as show in Fig. 2. From top
to bottom, they are connected to the ground, clock, data and
power.

The Raspberry Pi shield is custom designed using Altium
Designer [36] and a prototype has been made. The custom
shield has only two layers, top and bottom. The custom shield
also ensures that the wires are connected to the corresponding
pins on the Raspberry Pi. For the proper operation of I2C
interface, it needs to be connected to pin 3 (SDA) and pin 5
(SCL), also called GPIO 02 and GPIO 03 respectively. The
power supply pins are pin 2 and pin 4, which supplies 5V, and

Fig. 3. Flowchart showing the important steps for capturing the thermal
images with Raspberry Pi.

it needs to be connected to one of these. The grounding has
a lot of options, pin 6, pin 9, pin 14, pin 20, pin 25, pin 30,
pin 34 and pin 39 and any one of these can be used to provide
a common ground level [37], [38].

Once the Omron D6T thermal camera has been interfaced to
the Raspberry pi, the thermal image dataset of hand gestures
has been created by taking images from various person’s hands
and placed them in separate folders. The image folders are
named from 0 to 9 and placed the images corresponding to
the sign language digits. A custom software interface was
developed to capture the thermal images using Raspberry Pi
embedded system. A flowchart showing the complete steps for
creating the dataset is shown in Fig. 3.

III. THERMAL IMAGING DATASET OF HAND GESTURES

Using the steps shown in Fig. 3, a large dataset of thermal
images of hand gestures has been created. The complete
dataset consists of 3200 images. For each sign digit, 320 hand
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Fig. 4. Complete thermal imaging setup showing an example image
collection.

gestures of thermal images were collected from different
persons hands. While taking the data, hand is oriented in
several ways with respect to the camera to be able to provide
large variations to the dataset.

In order for the Omron D6T thermal camera to be placed in
a stable position, it was attached to a tripod. The distance and
FoV (Field of View) was optimized. The tripod was custom
designed based on 3D-printing of a pre-drawn model [39]. The
total finished setup can be seen in Fig. 4. The total setup is
quite flexible and highly portable.

The Omron D6T thermal camera has a resolution of 32×32
pixels. This low resolution reduces the information to be
provided for a classical machine learning, which requires
hand-crafted features, making it challenging for the classifi-
cation task. The total disc space of all 3200 images is only
8.2MB, a very low amount of data that can be easily migrated
and utilized for any artificial intelligence model development.
As it can be observed in Fig. 5, the quality of images may
vary depending on the position and quality of the sensor. The
image quality also depends on the external factors other than
the thermal camera sensor itself. The thermal camera will
detect difference in temperature from the background and the
object in front, reflecting how warm the hand of the person
is compared to the surface beneath. A hand gesture belonging
to the same class taken from different persons is shown in
Fig.5. The Fig. 5(a) shows a good quality image, where all
fingers are visible and the hand is center placed. This will
be the desired quality for images, although Fig. 5(b) gives a
distinct color difference but, the fingers are not distinct due
to the posture of the hand itself. In both Fig. 5(c) and 5(d),
the contrast is poor due to non-uniform temperature on the
hands itself. This poses several challenges for the classical
machine learning algorithms to be able to classify irrespective
of hands with different temperature and posture. For each

Fig. 5. Example thermal images in terms of variation in quality: (a) Good
quality thermal image; (b) Good quality, bad positioning; (c) Poor quality,
good positioning; and, (d) Varying quality from hand-palm to fingers.

person, the positioning of the hand is different, as hands
geometry is distinct for each person along with gesture being
different as well. This creates a large diversity in the dataset
even for the same class and poses several challenges to
provide robust classification with good accuracy. Therefore,
it is important to have large number of images with large
diversity in the data including capture of images from different
persons.

Typical machine learning algorithm requires hand-crafted
features to perform the classification task, in turn requiring
good quality images. As there is large variation of temperature
between different persons under same ambient conditions,
the quality of thermal images will also vary. A high quality
camera increases the stability, thus removing the variations in
image quality with added advantage of improving the speed
of thermal image acquisition. The thermal images that were
utilized in this work are of very low resolution, which makes
the classification extremely challenging. The details in thermal
images can be completely missed with only having separate
color for hand and background. The images in Fig. 6 shows
a complete set of thermal images, that has been taken with
Omron D6T thermal camera. With such a low resolution
camera, the temperature difference needs to be higher for the
camera to separate objects from the background. In all images
in Fig. 6, there is some leakage of heat, as the camera might
pick up some heat from the table. This will manifest as purple
color in the thermal images.

Some images were also alike due to this low resolution,
example being thermal images of number 3, 6 and 9, cor-
responding to image 6(d), 6(g) and 6(j) in Fig. 6. For a
trained personnel, this is an easy classification task. A machine
(computer) on the other hand, needs efficient algorithm to be
able to classify correctly. A set of good quality images will
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Fig. 6. A complete set of thermal images: (a) Thermal image, number 0;
(b) Thermal image, number 1; (c) Thermal image, number 2; (d) Thermal
image, number 3; (e) Thermal image, number 4; (f) Thermal image,
number 5; (g) Thermal image, number 6; (h) Thermal image, number 7;
(i) Thermal image, number 8; and, (j) Thermal image, number 9.

increase the success of detecting the correct gesture, for both
humans and machine.

After collecting these 3200 images (320 samples for each
of the ten classes), we divided this dataset into three parts,

Fig. 7. Architecture of the proposed light weight CNN model. All ‘Conv’
layers use a kernel size of ‘3 × 3’ followed by batch normalization
operation and ‘ReLU’ activation function. The details of layers were
presented in Table II.

TABLE I
NUMBER OF SAMPLE IN TRAINING, VALIDATION AND TEST DATASET

FOR EACH CLASS OF THE DEVELOPED THERMAL IMAGING DATASET

training, validation and testing part. The testing dataset con-
sists of 20% of the entire dataset such that each class has equal
number of samples. From the remaining dataset, we randomly
sample 10% to create a validation dataset. The number of
samples in each of the dataset for each class has been shown
in the Table I.

IV. LIGHT-WEIGHT DEEP LEARNING MODEL FOR

HAND GESTURE RECOGNITION

A. Model
As discussed earlier, the classical machine learning model

requires hand-crafted features and are not robust in performing
classification task with low-quality thermal images. The supe-
rior alternative is to develop a deep learning model, which is
fully data-driven and learns the feature set based on the train-
ing dataset. The proposed deep learning model is extremely
light-weight and efficient with number of parameters being
851,978 and having a size of 10 Megabytes. The model
consists of several bottleneck layers, which were inspired
from deep residual networks (architecture was provided in
Fig. 7 and layers details were presented in Table II). Each
bottleneck layer was composed of stacked residual blocks
as shown in Fig. 8 with layers details being provided in
Table III. The first block performs three operations, namely
depth squeezing using a ’1 × 1’ convolution, local feature
extraction using ’3×3’ convolution and finally depth stretching
using ’1 × 1’ convolution. The second block also performs
3 similar operations with the only difference of using dilated
convolution of size ’3 × 3’ to extract local features instead of
regular convolution. This dilation increases the receptive field
of the convolution network. In short, the operations performed
in the proposed bottleneck can be summarized as follows:
Given a feature map x (as the input of bottleneck), the output
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TABLE II
DETAILS OF DIFFERENT LAYERS IN THE PROPOSED LIGHTWEIGHT

CNN (ARCHITECTURE WAS SHOWN IN FIG. 7. EACH CONV LAYERS

REPRESENTS 3 × 3 CONVOLUTION, FOLLOWED BY RELU ACTIVATION

ALONG WITH BATCH NORMALIZATION. THE BOTTLENECK BLOCK WAS

PRESENTED IN FIG. AND DETAILS WERE PROVIDED IN TABLE III

Fig. 8. Architecture of the bottleneck module. Details of each layer was
provided in Table III.

TABLE III
DIFFERENT LAYERS IN THE BOTTLENECK BLOCK UTILIZED IN THE

PROPOSED MODEL MENTIONED IN TABLE II. ‘M’ IS SPATIAL EXTENT

AND ‘Z’ IS DEPTH OF THE FEATURE MAPS. THE ARCHITECTURE OF

THE BOTTLE NECK WAS PROVIDED IN FIG. 8

h(x) of the initial residual block can be written as:

h(x) = f (x, θ1) + x (1)

where, f (x, θ1) is sequence of convolution operations parame-
terized by θ1, performing depth squeezing, feature extraction
and depth stretching. Note that it is easy to optimize f (x, θ1),
than to learn the underlying h(x) directly from x [40]. Finally,
the output b(x) of the bottleneck is given by:

b(x) = g(h(x), θ2) + h(x) (2)

where, g(x, θ2) is sequence of convolution operations parame-
terized by θ2, performing depth squeezing, feature extraction
via dilated convolution and depth stretching.

As seen in Table II, the bottleneck layers were placed alter-
natively along with other convolution layers. Each convolution

step utilized in the entire network was followed by a RELU
activation and a batch normalization step. The input images
that were acquired from Raspberry pi-device connected with
a thermal camera are of the size 32 × 32. Given a mini-batch
with N samples, the cross-entropy loss L was computed as
shown below:

L = − 1

N

N∑

i=1

C−1∑

t=0

yit log (ŷit ) (3)

where y is the one hot encoded label (C × 1) and ŷ is the
predicted softmax probabilities (C × 1) and, C is number
of classes.The proposed model is extremely light weight and
can be easily trained from scratch instead of transfer learning
and was successfully trained from the well known kaiming
initialization [41]. The proposed model was also trained using
Adam optimizer with a learning rate of ‘0.005’ and with
a batch size of 8. The end to end training of the model
was performed on Google Colab using Keras deep learning
library [42] with Tesla T4 GPU consisting of 14 GB GPU
memory.

B. Benchmark Model
We compared our proposed model with Big Transfer (BiT)

model, the state of the art model for image classification task
on CIFAR10 dataset [29]. The CIFAR10 dataset is very similar
to the thermal dataset proposed as each image in CIFAR10 has
the size (32,32,3). We train the model using transfer learning
technique, such as Fine Tuning. In this method, the model was
first pre-trained on large dataset and then fine tuned to new
dataset by freezing few initial layers of the model and training
only the other unfrozen layers.

The Big transfer model was built using two components,
namely upstream pre-training and downstream fine tuning.
In the upstream pre-training the model was pre-trained on large
datasets and in downstream fine tuning task, the pre-trained
model was trained on new datasets using transfer learning.
This combination of two components help the BiT model
perform effective hyper parameter search and achieve state
of art results on many downstream tasks [29], [30]. There are
many variants in the BiT model, differing in their architecture
size and the pre-trained dataset. Since our model should be
deployed on an embedded device (raspberry pi), we use only
the relatively light weight versions of the BiT model. We use
the BiT-S models, pre-trained on ILSVRC-2012 dataset, with
50 × 3 and 101 × 3 resnet architectures. We also use BiT-M
model, pre-trained on ImageNet-21K dataset, with 50 × 3 and
101 × 3 resnet architectures [30]. The details of these models
in terms of number of parameters as model size are given in
the last two columns of Table IV.

V. RESULTS AND DISCUSSION

The proposed light-weight CNN model achieves an accu-
racy of 99.52% on the test dataset. The confusion matrix of
the proposed CNN model on the test dataset is shown in the
Fig. 9. It can be observed from Fig.9 that the digits ‘1’, ‘2’,
‘3’, ‘6’, ‘7’, ‘8’ and ‘9’ were able to correctly identify 100%
of their respective class’s test samples. Digits ‘0’, ‘4’ and ‘5’
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TABLE IV
PERFORMANCE COMPARISON OF PROPOSED MODEL AND

BENCHMARK MODELS IN TERMS OF TEST ACCURACY. THE MODEL

SIZE IN MB (MEGA BYTES) AND NUMBER OF PARAMETERS ARE

PROVIDED FOR EASY REFERENCE IN THE LAST TWO COLUMNS

Fig. 9. Confusion Matrix of the proposed light weight CNN model for
sign language digits (0 to 9) recognition from thermal images. The overall
accuracy was provided in Table IV.

Fig. 10. Plot of Training and Validation accuracy of the proposed light
weight CNN model as a function of epochs.

were able to correctly identify 98% of their respective class’s
test samples.

The training and validation accuracy plot of the proposed
CNN model is also shown in the Fig. 10. As shown in the
Fig. 10, the proposed model converges after 20 epochs to
validation accuracy of 99.58%. The average inference time

TABLE V
PERFORMANCE COMPARISON OF PROPOSED MODEL AND OTHER

DEEP LEARNING MODELS IN TERMS OF TEST ACCURACY. EXCEPT

FIRST 5 MODELS, REST MODELS HAVE UTILIZED ONLY RGB IMAGES

for the proposed model on one test sample is 30 mill sec on
the Raspberry Pi edge computing device.

Comparing the performance of the proposed CNN model
with the benchmark model, shown in the Table IV, it can
be observed that the proposed model is very lightweight
and also has very high accuracy. Performance comparison
of proposed model and published CNN models in terms of
test accuracy was shown in the Table V. it is evident from
these results that the proposed model is quite accurate for
the classification of hand gestures of thermal images and well
suited for performing inference on the edge computing device.

As thermal cameras are becoming embedded part of mobile
phones or being available as standard accessory [43], it is
important that the developed models especially as assistive
technologies can work on an edge device (including mobile
phone). The light-weight CNNs have this distinct advantage
being easily deployable in edge device and can be converted
into mobile applications that can provide inference on a mobile
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phone. They have found applications in other domains, such
as medical image processing [44] as well as other contactless
operations [45]. From Table IV, it is evident that the proposed
light-weight CNN has provided improved accuracy with at
least three orders of magnitude less parameters, making it
easily deployable in a mobile platform [44]. The improved
accuracy can be attributed to bottlenecks utilized in the pro-
posed model. These bottlenecks not only make the network
light weight, it forces the network to compress feature rep-
resentations to best fit in the available space, in order to
provide improved training. This has been shown to provide
better generalization on test data (unseen images) compared
to standard heavy models [44], [45]. The same has been
confirmed in our study as well.

The current study utilized very low quality thermal images
(size of 32 × 32) with recognition being performed using a
light-weight CNN model. Study involving varying lighting
conditions was performed here. Study involving complex
backgrounds was not attempted here as the main aim of this
work was to show end-to-end thermal imaging based hand ges-
ture recognition. Earlier studies involving RGB cameras have
shown that utilization of hand-crafted features, such as shape
and texture extracted from the gestures, were beneficial in
providing improved accuracy with complex backgrounds [27].
A similar study will be taken up as a future work to provide
a robust solution towards hand gestures recognition using
thermal camera.

VI. CONCLUSION

This work presented the design of a complete end-to-end
embedded system, which can accurately recognize the hand
gestures of the low-resolution thermal images of 32×32 pixels.
A thermal dataset of 3200 images was curated and each
sign language digit has 320 hand gestures of thermal images.
We have also developed a lightweight convolutional neural
network to provide high accuracy and the need for having high
performance computing environment. The designed system has
achieved an accuracy of 99.52% on the test dataset with an
added advantage of accuracy being invariable to background
lighting conditions as it is based on thermal imaging. The
developed system has shown that thermal imaging is well
suited for the hand gesture recognition in dark light conditions.
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