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Abstract—Segmenting the median nerve is essential
for identifying nerve entrapment syndromes, guiding
surgical planning and interventions, and furthering under-
standing of nerve anatomy. This study aims to develop
an automated tool that can assist clinicians in localizing
and segmenting the median nerve from the wrist, mid-
forearm, and elbow in ultrasound videos. This is the first
fully automated single deep learning model for accurate
segmentation of the median nerve from the wrist to the
elbow in ultrasound videos, along with the computation
of the cross-sectional area (CSA) of the nerve. The
visual transformer architecture, which was originally
proposed to detect and classify 41 classes in YouTube
videos, was modified to predict the median nerve in
every frame of ultrasound videos. This is achieved by
modifying the bounding box sequence matching block of
the visual transformer. The median nerve segmentation is
a binary class prediction, and the entire bipartite matching
sequence is eliminated, enabling a direct comparison
of the prediction with expert annotation in a frame-by-
frame fashion. Model training, validation, and testing were
performed on a dataset comprising ultrasound videos
collected from 100 subjects, which were partitioned into 80, ten, and ten subjects, respectively. The proposed model
was compared with U-Net, U-Net++, Siam U-Net, Attention U-Net, LSTM U-Net, and Trans U-Net. The proposed
transformer-based model effectively leveraged the temporal and spatial information present in ultrasound video
frames and efficiently segmented the median nerve with an average dice similarity coefficient (DSC) of approximately
94% at the wrist and 84% in the entire forearm region.
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I. INTRODUCTION

THE median nerve is a major peripheral nerve that serves
as a critical communication pathway between the hand

and central nervous system. It originates in the arm and
acts as a major channel for motor and sensory transmission
between the brain and the upper limb. This vital nerve supplies
various muscles, allowing forearm and hand movements such
as wrist and finger flexion. Furthermore, it transports sensory
information from the skin of the palm and fingers to the central
nervous system, thereby providing critical feedback for touch,
temperature, and pain perception. Owing to its central role in
coordinating intricate hand functions and sensory perception,
any damage or impairment to the median nerve can result in
significant motor deficits and sensory loss.
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Highlights
• The visual transformer architecture was modified for automated segmentation of the median nerve in ultrasound

videos of wrist-to-elbow region.

• The proposed model used both temporal and spatial information of ultrasound video frames resulting in a dice
similarity coefficient (DSC) of approximately 84% in the entire forearm region.

• The proposed model provides accurate segmentation of the median nerve and computes the cross-sectional area
in every frame in an automated fashion leading to improved quantitative measurements.

Peripheral nerve block using high-frequency alternating
currents as a therapeutic alternative requires precise nerve
diameter/cross-sectional area (CSA) to determine the min-
imum frequency required to produce nerve block [1].
Segmenting the median nerve is essential for diagnosing
carpal tunnel syndrome (CTS) [2], [3], [4], guiding surgical
planning and interventions such as ultrasound-guided regional
anesthesia (UGRA) [5], [6], identifying nerve entrapment
syndromes [7], and furthering our understanding of nerve
anatomy [8], [9]. The accurate segmentation of the median
nerve in medical imaging facilitates improved patient care,
precise surgical procedures, and advancements in medical
research. For example, regional anesthesia is an effective
alternative to general anesthesia in many surgical procedures.
The traditional approach is to blindly guide the needle to
the target nerve. However, blind needle guidance can lead to
nerve injury and local anesthetic toxicity in cases of erroneous
needle placement [10]. In this context, the UGRA technique is
becoming increasingly popular because of its ability to provide
real-time visualization of nerves, needle advancement, and
local anesthetic dissemination. Failure in accurately localizing
the nerve can lead to nerve trauma or local anesthetic toxicity.

Several medical image analysis tools have been developed
to assist radiologists with median nerve segmentation from
US images. An automated median nerve localization method
was proposed in [11], particularly for UGRA. This method
relies on a machine learning technique that uses despeckling
filtering, feature extraction, and selection, followed by pixel-
wise classification based on a support vector machine with a
Gaussian kernel. Similarly, a computer-aided machine learning
algorithm for median nerve localization was introduced in
[12]. However, feature extraction and feature selection in
these methods are purely handcrafted, and the accuracy of the
predicted segmented image depends on the selection of the
features.

Recently, the advent of deep learning methods has shown
huge potential for medical US analysis and has been applied
to nerve segmentation as well. To segment the nerve region,
a deep learning model using a convolutional neural network
(CNN) and spatiotemporal consistency was proposed in
[13]. Another deep-learning-based method that uses similarity
measures to track the median nerve was introduced in [14] and
was evaluated for tracking a set of predefined continuous wrist
motions. An automated median nerve segmentation framework
based on the U-Net-based encoder–decoder architecture [15]
was proposed in [16]. Another U-Net-based approach called
DeepNerve that uses the features of both MaskTrack and

convolutional long short-term memory (LSTM) for median
nerve segmentation was proposed in [17]. A comparative
study on the performances of various pretrained CNN-based
architectures including DeepLabV3+ [18], U-Net [15], feature
pyramid network (FPN) [19], and Mask R-CNN [20] for
median nerve localization/segmentation task was performed in
[21]. A Mask R-CNN-based approach [20] with two additional
transposed layers was used in [22] to segment the median
nerve and predict the CSA.

The methods discussed to date are exclusively for
segmenting the median nerve at the wrist, where the
nerve is comparatively easy to localize. Typically, the UNet
encoder–decoder architecture performs well at the wrist, and
the efficiency decreases considerably as one moves from the
wrist to the elbow region. When the nerve is away from the
carpal tunnel, its depth is typically larger, and the shape of
the nerve is different. Furthermore, UNet-based approaches
do not consider the temporal relationships. To overcome
this limitation, LSTMs are introduced, wherein a specific
number of input frames are used to learn the temporal
relationships. Although LSTMs are designed to capture long-
range dependencies in sequential data, they may still struggle
to capture extremely long dependencies or complex spatial
relationships in nerve segmentation tasks.

Unlike computer vision tasks, where the background and
receiver positions are fixed, the object of interest changes
across frames in the US video, along with the background
and receiver positions. This means that unlike object tracking,
the field of view changes across frames for median nerve
segmentation. The video mosaicing method has been shown
to yield better performance by providing larger field-of-view
mosaic images in medical imaging applications, such as probe-
based confocal laser endomicroscopy (pCLE) [23]. However,
the accurate alignment of frames in video mosaicing can be
difficult, especially in cases where there is a possibility of
movement of the ultrasound probe or the tissue being imaged.
These artifacts can degrade the quality of the mosaic image
and reduce the diagnostic accuracy of deep learning methods.
Mosaicing also requires significant additional computation,
limiting near-real-time clinical inferencing. Second, speckle
noise is a natural part of ultrasound imaging that reduces the
image resolution and contrast. The SNR of ultrasound videos
is usually lower than that of general computer vision videos
[24] and depends on the imaging parameters. Third, annotating
US videos is a difficult task that requires an experienced
clinician, thus limiting the amount of labeled data to serve
as the ground truth.
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Given these challenges with automated object segmentation
in ultrasound videos, a vision transformer (ViT)-based model
can serve as a better solution that can work with a
smaller amount of data while considering temporal long-
range dependencies in an efficient manner. The success of
transformer models is mainly attributed to the improved self-
attention mechanism arising from their capability to model
long-range dependencies [25]. Transformer-based models have
also been applied in a wide range of medical imaging
applications. In this regard, the Trans U-Net model [26]
is designed for medical image segmentation harnesses
transformer technology. In Trans U-Net, 12 transformer
layers were introduced into the encoder of the UNet model.
This approach effectively mitigated the limitations associated
with conventional convolutional operations [26]. Furthermore,
models such as detection transformers (DETRs) have shown
promise in object detection [27] and have been adapted for the
detection of polyps in the colon, as reported for convolution
in transformer networks (COTRs) [28]. In their approach,
convolutional layers were inserted into the transformer
encoder for high-level image feature reconstruction and faster
convergence. Another approach that combines CNN and
transformer nets, called TR-Net, to detect significant stenosis
was proposed by Ma et al. [29]. In this approach, a shallow
3D-CNN was used to extract the local semantic features
of coronary regions, and transformer encoders were used
to learn correlations between different regions of the local
stenosis of a coronary artery, which aids in the accurate
detection of stenosis by aggregating information from local
semantic features and global semantic features. A context-
aware hybrid transformer called CT-CAD [30] was proposed
for the detection of chest abnormalities in X-ray images. Tao
and Zheng [31] introduced a spine-transformer model designed
to tackle the automatic detection and localization of vertebrae
in spine CT scans with arbitrary field of view. They framed
the detection task as a problem of predicting one-to-one
sets. Li et al. [32] proposed the MultiIB-transformer for the
segmentation of CT and ultrasound images, which consisted of
a single transformer layer and multiple information bottleneck
(IB) blocks. They used a deep learning structure that requires
only one transformer layer, thereby significantly reducing
the number of model parameters without compromising
performance. The local feature information from CNNs and
global context information from transformers were leveraged
in the local and context-attention adaptive network (LCA-Net)
for thyroid nodule segmentation in ultrasound images [33].
To simultaneously maintain sufficient global information and
local details, a hybrid CNN-transformer network (HCTNet)
was proposed for breast ultrasound image segmentation in
[34]. Detailed reviews on the usage of transformers for
medical image analysis have been presented in [35], [36],
and [37].

Since their inception, ViT models have consistently
advanced the forefront of various vision tasks, including
image classification [38], object detection [39], semantic
segmentation [40], image colorization [41], low-level vision
[42], and video understanding [35], [43]. Typically, ViT has
resulted in notable improvements in semantic segmentation
by enabling fine-grained pixelwise interpretation of scenes

Fig. 1. Image acquisition: the probe was positioned at the wrist with
the subjects seated facing the sonographer with the forearm and fingers
extended in a comfortable position.

and objects [40]. Compared with conventional CNNs, ViT
prediction errors align more closely with human perceptual
judgments, making this one of the most exciting features of
ViT. Recent studies have emphasized this unique characteris-
tic, as demonstrated by Naseer et al. [44]. ViT demonstrates a
remarkable capacity to comprehend and model intricate visual
relationships, allowing them to make predictions consistent
with human visual reasoning. This aligns with the growing
consensus that ViT, with its self-attention mechanisms and
global context modeling, holds great promise in bridging
the gap between artificial vision systems and human
perception.

This study aims to develop an automated tool that can assist
sonographers in localizing and segmenting the median nerve at
the wrist, mid-forearm, and elbow in ultrasound images, which
can improve the aforementioned tasks. This work proposes, for
the first time, the utilization of a modified version of video
instance segmentation using transformer (VisTR) architecture
for median nerve segmentation from wrist-to-elbow with
ultrasound video as input. Specifically, the contributions of
this study are as follows.

1) A transformer-based model has been proposed for the
first time for fully automated segmentation of the
median nerve with ultrasound video as input providing
a throughput of 76 frames in a second.

2) Modified the architecture of the visual transformer
originally proposed for video instance segmentation to
predict the median nerve in every frame of ultrasound
videos. This is achieved by modifying the bounding
box sequence matching block of the visual transformer.
Since the median nerve segmentation is a binary
class prediction, the entire bipartite matching sequence
is eliminated, enabling a direct comparison of the
prediction with expert annotations in a frame-by-frame
fashion.

3) Evaluation of CSA measurement based on the median
nerve (at the wrist and from wrist-to-elbow) section
segmented by the proposed method in comparison to the
manual tracing of nerve boundary performed by expert
sonographers.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 11,2024 at 14:49:07 UTC from IEEE Xplore.  Restrictions apply. 



GUJARATI et al.: TRANSFORMER-BASED AUTOMATED SEGMENTATION OF THE MEDIAN NERVE 59

II. METHODS

A. Data Acquisition and Preparation

The dataset was obtained in a clinical setting at Aster-CMI
Hospital in Bangalore, India. The Philips CX50 ultrasound
machine was used to acquire the dataset. A Philips L15-7io
hockey stick transducer probe with a frequency range of
7–15 MHz was used. The subjects were seated facing the
examiner with the forearm and the fingers extended in a
comfortable position as shown in Fig. 1. The dataset consisted
of acquisitions obtained at 3-cm depth from the skin. The
image sequence for each subject was saved as a video of 8 s.
The dimension of each acquired image was 800 × 600 pixels.
In this study, a dataset consisting of 100 subjects was used,
and all the images were annotated by an expert sonographer.
Approval of all the ethical and experimental procedures and
protocols for this research work involving human subjects
was granted by Aster-CMI Hospital, Bangalore, India, under
Approval No. Aster/IEC/049/2020-21, Dated June 27, 2020.
Written informed consent was obtained from all the human
subjects. The male-to-female ratio was 1:3. The age range of
the patients was 35–65 years. The current study focused on the
normal anatomy of the median nerve from the wrist-to-elbow
region. As the anatomy of the tissues is altered post-surgery,
subjects who underwent any major nerve surgical procedures
were excluded from this study.

The sequence of frames was extracted from each video.
Data de-identification was performed on all the images used in
this study by removing all the personal information that could
identify an individual from medical images to ensure patient
privacy. Each image was cropped to a size of 448 × 336.
This was done prior to any data processing carried out related
to the study. For generating the training, validation, and test
datasets, annotations were generated by expert sonographers
using ImageJ [45], a free image analysis software made
available by the National Institutes of Health (NIH), USA. The
resultant annotated images were saved as binary images. The
annotations included the pixelwise segmentation binary images
for training the segmentation module. The dataset with expert
annotation (100 videos) was then partitioned into training,
validation, and test datasets, with 80, ten, and ten subjects.
respectively. Apart from this, the data from 30 additional
subjects were acquired for the clinical evaluation consisting of
normal wrist, mild, and severe CTS, with ten subjects in each
class. To increase the size of the training datasets, the available
data were augmented using horizontal flips. Using this data
augmentation process, the total training datasets were doubled
and a total of 46 868 images were used for training. The
validation and testing were performed on 3000 images each.

B. Deep Learning Model: VisTR

The architecture of VisTR [46] is a modified version of
ViT to process the video sequences. The VisTR uses an
architecture that consists of five components and treats the
job as a parallel series decoding problem. The five blocks that
constitute the VisTR architecture are the backbone, encoder,
decoder, bounding box sequence matching, and sequence
segmentation. Each block is explained briefly here.

1) Backbone: The CNN backbone extracts high-level
feature maps for T input frames, each with a size
of H0 × W0 (i.e., xclip ∈ RT ×3×H0×W0 ). Afterward, the
feature maps (∈ RC×(H0/32)×(W0/32)) (with Res-Net backbone)
have been concatenated to generate temporal feature maps
t0 ∈ RT ×C×(H0/32)×(W0/32).

2) Encoding Using Transformer: A 1 × 1 convolution was
used on the t0 feature maps to reduce the dimensionality of the
feature space by linearly transforming them into a new feature
space t1 ∈ RT ×d×(H0/32)×(W0/32) with a lower dimension,
d < C . Since the transformer model processes tokenized
vectors, this 4-D feature map tensor was flattened into
N = T ·(H0/32)·(W0/32) vectors, each with a dimension of d ,
and fed into the transformer encoder. The transformer encoder
comprises a multihead self-attention (MHSA) and feedforward
network (FFN) network. The encoder consists of the positional
encoder for encoding the spatial and temporal space. The
transformer architecture does not explicitly consider the order
of elements in the input sequence (i.e., permutation-invariant).
However, precise position information is required to accurately
segment objects in an image or video in the segmentation task.
To address this issue, the VisTR model introduces spatial and
temporal positional encoding to provide the transformer model
with information about each element’s spatial and temporal
positions in the input sequence. This allows the model to
effectively capture the spatial and temporal relationships
between objects and their surroundings, resulting in accurate
instance segmentation.

3) Decoding Using Transformer: The decoder takes the T
number of query embedding vectors having d dimensions
(I ∈ RT ×d ) along with the output of the transformer encoder
E and generates sequence prediction O(∈ RT ×d ) of N feature
vectors that preserve the original order of the input frames.

4) Bounding Box Sequence Matching: To obtain the
bounding box of median nerve, a three-layer FFN was applied
to the sequence prediction O. This allows us to get the
normalized center coordinates, width, and height of the box
with respect to the image. A linear projection layer was with
a softmax activation function to determine the class labels.

5) Segmentation Head for Sequences: This module aims
to generate a series of mask predictions for median nerve.
This module uses transformer decoder output (i.e., sequence
prediction) (O) and encoder output (E) as input to generate
similarity maps for each frame. To simplify, the module
only calculates each frame’s similarity maps individually,
as temporal information is already available in decoder output
O. The self-attention block processes the prediction features
(O) and encoded features (E) to produce attention maps (A)
for each frame.

The encoded features were reshaped into
RT ×d×(H0/32)×(W0/32). These encoded features (E) and
decoded features (O) are used to generate the mask
attention map A (∈ RT ×n×(H0/32)×(W0/32)) of n feature maps.
To generate the feature maps of the mask, the module actively
combines the attention maps (A) with the encoded features
(E) and backbone features (B) (i.e., with ResNet-101 or
50 as backbone (RT ×256×(H0/4)×(W0/4), RT ×512×(H0/8)×(W0/8),
RT ×1024×(H0/16)×(W0/16), RT ×2048×(H0/32)×(W0/32)) of the
corresponding frames. A deformable convolution [47]
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Fig. 2. VisTR architecture: 1) CNN backbone (here, ResNet-101) to extract the spatial feature maps of clip frame by frame. 2) Transformer encoder
decoder blocks to extract the high-level spatial + temporal feature maps by combining all individual feature maps of the backbone. 3) Bounding box
coordinates’ extraction and matching to detect the median nerve in the frame. 4) Segmentation head to precisely detect the boundary of the median
nerve in the frame. The magenta box indicates the modified block. All other blocks were the same as in the original implementation of VisTR [46].

operation was applied to combine features and generate the
sequence of mask (∈ RT ×k×(H0/4)×(W0/4)) of k feature maps.
To propagate information about mask features across different
frames, a 3-D convolution operation was used. Three 3-D
convolution layers, group normalization layers [48], and a
rectified linear unit (ReLU) activation function were used
to generate the output series of mask ∈ RT ×1×(H0/4)×(W0/4).
Finally, a bilinear interpolation was used to get the mask
with size the same as the input image [i.e., (H0, W0)],
mask ∈ RT ×1×H0×W0 .

6) Loss Functions for Models: The ground truth in T frames
can be given by

y =
{
(k, k . . . , k), (box0, box1 . . . , boxT )

}
(1)

where k is the class label of the target for this prediction, and
boxt = (xmin, ymin, width, height) is normalized box coordi-
nates and its width and height with respect to the t th frame.
So, the probability of prediction being class k is given by

p̂(k) =
{

p̂0(k), p̂1(k) . . . , p̂T (k)
}

(2)

and bounding box prediction sequence is given by

b̂ox =
{
b̂ox0, b̂ox1 . . . , b̂oxT

}
. (3)

The loss function is a combination of a negative log-likelihood
for predicting the class, as well as separate losses for the
bounding box and mask prediction for the sequence prediction.
The overall loss is a linear combination of these losses

L(y, ŷ) = − log p̂(k) + Lbox(box, b̂ox) + Lmask(m, m̂) (4)

where Lbox is a linear combination of generalized intersection
over union (GIoU) loss and L1 loss given as

Lbox(box, b̂ox) =
1
T

T∑
t=1

[
ηgiou · Lgiou(boxt , b̂oxt )

+ηL1

∣∣∣∣∣∣boxt − b̂oxt

∣∣∣∣∣∣
1

]
(5)

and Lmask is a linear combination of focal loss and dice loss
given as

Lmask(m, m̂) = ηmask
1
T

T∑
t=1

[
LDice(m t , m̂ t )

+LFocal(m t , m̂ t )
]
. (6)

7) Architectural Modifications to VisTR: In this study, the
visual transformer architecture, which was originally designed
to detect and classify 41 different classes in the YouTube
VIS dataset, was modified for median nerve segmentation.
The modification aims to adapt the visual transformer to a
more specialized task, that is, segmentation of the median
nerve presence in each frame of an ultrasound video.
To achieve this, a critical component of the visual transformer
architecture, known as the bounding box sequence matching
block, was modified. This block, in its original form, was
designed for tasks involving object detection and classification,
relying on bipartite matching to establish correspondence
between the predicted bounding boxes and ground-truth
objects. As median nerve segmentation corresponds to binary
classification (presence or absence of the median nerve in
a given frame), the process is streamlined by eliminating
the entire bipartite matching sequence, which was originally
designed for handling multiple classes and complex object
interactions. This simplification enabled direct frame-by-frame
comparisons between the model’s predictions and expert
annotations, making the process more efficient and tailored to
median nerve segmentation in ultrasound videos. These strate-
gic adjustments to the visual transformer architecture enabled
it to leverage its capabilities to focus exclusively on the binary
classification problem of median nerve segmentation in each
frame of the ultrasound video sequence, ultimately enhancing
its performance and applicability. A schematic of the modified
VisTR architecture is presented in Fig. 2.

C. Testing
Following end-to-end training, the architecture was sub-

jected to classify each pixel of the test sample into two
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Fig. 3. Example segmentation of the median nerve using the methods discussed in this work for subject-1. The green contour indicates the expert
annotation and the red contour indicates the result obtained for the corresponding method, as indicated in each row. The associated frame number
is given on the top of every image (0 corresponds to the start of the wrist region and 300 corresponds to the elbow region), and the bottom of each
frame has the corresponding computed CSA. This example corresponds to the lowest (minimum across test subjects) figure of merit (DSC) for the
proposed VisTR (ResNet-101), which is 0.720.

categories: background and median nerve. A probability map
was produced as output by the model with the same spatial

dimension as the input. Each pixel was given a label based
on its maximum probabilistic score across the two categories.
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Fig. 4. Example segmentation of the median nerve using the methods discussed in this work for subject-8. The green contour indicates the expert
annotation and the red contour indicates the result obtained for the corresponding method, as indicated in each row. The associated frame number
is given on the top of every image (0 corresponds to the start of the wrist region and 300 corresponds to the elbow region), and the bottom of each
frame has the corresponding computed CSA. This example corresponds to the best (maximum across test subjects) figure of merit (DSC) for the
proposed VisTR (ResNet-101), which is 0.910.

Furthermore, the CSA of the median nerve was automatically
computed by the proposed method based on the calibration
of the dimensions of a single pixel, which is equal to
0.0043 mm2 for the acquisition. Then the CSA can be

computed as

CSA = Single pixel area × number of median nerve pixels.
(7)
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Fig. 5. Figures of merit for median nerve segmentation, (a) precision and (b) success rates, averaged over all the test subjects in the wrist-to-elbow
region.

D. Evaluation
Given the expert annotations, the efficiency of the proposed

deep learning model was assessed by several figures of merit
including recall, precision, DSC, and Hausdorff distance (HD).
Recall denotes the rate of positive samples correctly classified.
The precision denotes the proportion of the classified pixels
which are relevant. DSC was used to evaluate the similarity
between expert annotation and predicted segmentation masks.
The DSC can be computed as the ratio of shared true
positive pixels to the sum of the total pixels in both the
sets. A high DSC means a good match between expert
annotation and predicted masks, while a low score indicates
potential errors in the segmentation. HD measures the greatest
distance from any point in one set to the closest point in the
other set, providing a quantitative assessment of segmentation
accuracy.

To evaluate the performance/identify the weaknesses of the
different deep learning models and to assess the resistance
to adversarial attacks, input perturbation experiments were
also performed as discussed in Section III. These experiments
also aid in model interpretability, revealing decision-making
processes and reducing biases for improved reliability
and performance. Two types of perturbation experiments
are performed: noise perturbation and weight perturbation.
To evaluate the robustness of the different models, speckle
noise with different mean values was added to the test
data, and the corresponding noisy data were tested using
the models trained on the original data (noise perturbation
study). Precision errors in the rounding can cause weight
perturbations. When the model is sensitive to small weight
changes, rounding errors can accumulate and affect its
behavior and performance. To evaluate the robustness of the
different models in the presence of weight perturbation, the
model weights W were perturbed using different η values as

Wperturbed = (1 + η)W. (8)

E. Implementation

All the models were trained using PyTorch [49] along with
Adam optimizer [50]. For VisTR (ResNet-101 and ResNet-50
as backbone), pretrained DETR [27] models’ weights from the
COCO dataset were used. These pretrained weights [27] used
a d value of 384. Alternatively, VisTR (ResNet-18) was trained
from scratch with the same d value. This work used a Linux
workstation with Intel i9 9900X CPU, 128-GB RAM, and two
NVIDIA RTX A6000 GPUs with 48-GB memory each for all
computations, including deep learning model training. For all
the U-Net-based models, the logcosh dice loss function was
adopted [51]. This specific loss function was selected based
on extensive experimentation and analysis, which consistently
demonstrated its superior performance across a spectrum
of figure-of-merit metrics considered in the evaluation. The
logcosh dice loss function, known for its smoothness and
robustness, has emerged as the preferred choice owing to
its ability to strike a balance between capturing fine-grained
details and effectively handling outliers. In contrast, for the
ViSTR model, a custom cost function was composed of a
linear combination of several distinct components, including
binary cross-entropy (BCE), GIoU, L1-loss, focal loss, and
dice loss, each serving a specific purpose [46] as discussed
in Section II-B. Consideration of BCE penalizes uncertain
predictions, whereas GIoU and dice loss contribute to accurate
object localization and segmentation. In addition, L1-loss and
focal loss were integrated to mitigate model sensitivity to
class imbalance and focus on challenging regions within the
ultrasound video frames.

For the U-Net-based models, the initial learning rate was
set to 0.001 with lr schedular “REDUCELRONPLATEAU”
with a patience level of 5. For VisTR, the transformer’s
initial learning rate was set to 10−4 and the backbone
learning rate was set to 10−5. Both the learning rates were
decreased by 0.1 every 12 epochs. Because pretrained weights
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from the COCO dataset were used in the VisTR backbone,
a low learning rate was used to facilitate the fine-tuning
of the model to adapt to the median nerve segmentation
task. This approach allowed the model to gradually adjust
its parameters in response to the intricacies of the median
nerve dataset, promoting smoother convergence and preventing
abrupt weight updates that could destabilize the training
process. Conversely, for all other models trained from scratch,
a relatively high learning rate was used to initialize the models.
Using a higher learning rate for these models, the early stages
of training were expedited, such that the model established a
fundamental understanding of the dataset and began to refine
its features.

The number of epochs for each model was chosen as
that corresponding to the minimum loss for the validation
dataset. The specific parameters used for training of models
are summarized in Table I. Since the same parameters were
used for all the U-Net-based models (U-Net, U-Net++, Siam
U-Net, Attention (Attn) U-Net, LSTM U-Net, and Trans
U-Net), they are listed in the first row of Table I.

III. RESULTS

A. Performance Comparison With Expert Annotation

The models used in this study, the corresponding parameter
size, FLOPs/frame, training time, and processed frames/s
are summarized in Table II. To evaluate the segmentation
capability of the proposed algorithm, in the case where the
expert annotation is available, different metrics described in
Section II-D were deployed. Table III summarizes the recall,
precision (abbreviated as Prec), and DSC averaged over the
frames for ten subjects obtained using the models considered
in this study. All the methods exhibited a relatively high
degree of accuracy and effectiveness in segmenting the median
nerve at the wrist region. This can be attributed to the
relatively straightforward nerve’s consistent course and the
absence of obstructing tissues that might obscure its visibility.
However, as one moves further away from the wrist toward
the elbow, the performance of U-Net-based methods notably
deteriorates. This is because the region toward the elbow
introduces substantial variability in its course, unlike the wrist
region. Moreover, the surrounding anatomical structures such
as muscles and blood vessels can hinder its clear visualization.
The VisTR model, with its improved architectural design
and capacity to capture contextual information efficiently,
demonstrated a superior ability to handle the complexities
associated with localizing the median nerve in regions further
from the wrist.

Individual subject results (averaged over all frames of
that subject) for the proposed VisTR are provided in
Table IV. Example segmented images obtained using the
models discussed in this work are shown in Fig. 3 for subject-4
and Fig. 4 for subject-6. Computed CSA of the median nerve
has been provided at the bottom of every image in these
figures. From the results, it is evident that the proposed VisTR
provides superior performance in segmenting the median nerve
compared with the existing deep learning models in these
ultrasound videos.

B. Performance Comparison With Less Training Data
To evaluate the performance of the different models with

less training data, all the models were trained 25% data. The
corresponding results are summarized in Table V. As evident
from the table, the VisTR approach performed better than all
other methods in the wrist-to-elbow region even with 25%
training data.

C. Evaluation Across Frames
Although tracking is not performed in this study, the

performance of the proposed VisTR method was evaluated
temporally using two metrics: precision and success rate [57].
The precision metric provides the percentage of frames in
which the distance between the centers of the expert annotated
segmentation and the predicted result falls below a specified
threshold. The threshold varied from 0 to 50 pixels. The
success rate metric measures the percentage of frames in which
the intersection over union (IoU) ratio between the expert
annotated median nerve and predicted median nerve exceeds
a specified threshold. The threshold ranged from 0.5 to 1.
Plots of precision and success rates averaged over all the test
subjects in the wrist-to-elbow region are shown in Fig. 5. The
proposed VisTR was found to show better performance in
terms of these temporal metrics in all the ultrasound video
frames.

D. Perturbation Study
1) Noise Perturbation Study: The performance of the

different models considered in this study on input perturbation
(speckle noise mean) is summarized in Table VI. The better
performance of U-Net-based models under noisy regimes
is attributed to better regularization capabilities of the
model. Specifically, it comprises an encoder and a decoder,
a contracting-expansive pathway. The encoder extracts high-
level features and spatial hierarchies from the input image,
while the decoder reconstructs the segmentation map with finer
details. This architecture ensures that the model is regularized,
preventing it from learning overly complex features that
may be specific to noise. Moreover, U-Net incorporates
skip connections that facilitate the direct transfer of high-
resolution information from the contracting (encoding) path
to the expansive (decoding) path. This feature helps retain
fine details and spatial information, which can be crucial for
denoising noisy images. U-Net also uses a relatively simple
architecture compared with the complex attention mechanisms
of VisTR. In scenarios with high noise, this simplicity can be
an advantage as it reduces the risk of overfitting and allows
U-Net to focus on essential features.

2) Weight Perturbation Study: Table VII summarizes the
performance averaged over ten subjects’ data for different
models with weight perturbation. It is evident that VisTR was
less sensitive to rounding errors.

E. Clinical Evaluation
CSA is the most reliable imaging parameter for diagnosing

carpal-tunnel-syndrome (CTS), inflammation, and edema in
nerves, tendons, and ligaments. For severe CTS diagnosis,
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TABLE I
SUMMARY OF TRAINING PARAMETERS FOR THE MODELS USED IN THIS WORK

TABLE II
SUMMARY OF MODELS USED IN THIS WORK. THE LAST COLUMN

PROVIDES THE NUMBER OF FRAMES PROCESSED IN A SECOND

TABLE III
AVERAGED FIGURES OF MERIT OBTAINED FOR TEN SUBJECTS’ TEST

DATA USING THE DISCUSSED MODELS FOR THE WRIST REGION AND

FOR THE REGION FROM WRIST-TO-ELBOW USING THE FULL TRAINING

DATA. THE BEST PERFORMING METHODS ARE SHOWN IN BOLD.
THE SUMMARY OF THE MODELS IS PROVIDED IN TABLE II

TABLE IV
SUBJECTWISE SUMMARY OF FIGURES OF MERIT FOR THE PROPOSED

VISTR (RESNET-101) MODEL. THE AVERAGED RESULTS ACROSS ALL

TEN SUBJECTS ARE GIVEN IN THE LAST COLUMN OF TABLE III

cutoff in terms of CSA is > 12mm2 [58]. To evaluate the
performance of the model in computing the CSA of the nerve,
experiments were conducted on normal subjects and patients
with mild and severe CTS, and the corresponding figure of
merit are summarized in Table VIII.

F. Ablation Study
The ablation study of loss terms in deep learning models

involves systematically removing or modifying specific loss
terms used during training to understand their impact on

TABLE V
AVERAGED FIGURES OF MERIT OBTAINED USING DIFFERENT MODELS

(TRAINED ON 25% TRAINING DATA) FOR THE WRIST REGION AND FOR

THE REGION FROM WRIST-TO-ELBOW. THE BEST PERFORMING

METHODS ARE SHOWN IN BOLD

the model’s performance. This study helps analyze the
contribution of individual loss terms toward the overall
optimization process and the resulting model’s behavior.
As discussed earlier, this work used five different losses, BCE
for classification, L1 and GIoU for the bounding box, and
focal and dice loss for the segmentation task. To evaluate the
impact of the losses for a given task, each one is eliminated
while keeping all other loss terms unaffected. From Table IX,
it can be seen that combining losses for the bounding box
and segmentation increases the overall DSC. By combining
the focal loss and dice loss, one can leverage the focal loss’s
ability to handle class imbalance and the dice loss’s ability
to evaluate segmentation similarity. The dice loss penalizes
dissimilarities between the predicted and expert annotation
sets more heavily, making it suitable for tasks where precise
segmentation boundaries are essential. Thus removing dice
loss from the equation, a heavy drop in DSC and other metrics
was observed, as the shape of the median nerve is an essential
factor in segmentation.

IV. DISCUSSION

The proposed VisTR architecture enables the model to
extract detailed contextual information from an entire image
using advanced attention mechanisms. VisTR excels in
comprehending the global context of ultrasound images in
contrast to conventional approaches that focus primarily on
local features or handcrafted heuristics. This comprehensive
awareness improves the ability to recognize fine nerve
structures in complex anatomical backgrounds. The flexibility
to adapt to various anatomical forms and structures is a
distinguishing feature of VisTR. This versatility is crucial,
particularly for nerve segmentation, because the median
nerve manifests differently in various individuals and imaging
scenarios. Many current techniques struggle to handle
this unpredictability, necessitating extensive fine-tuning or
specialized architectures for each scenario. In contrast, VisTR
has self-attention mechanisms that enable it to dynamically
adjust to different anatomical features without requiring a
great deal of modification. This attention mechanism plays
a pivotal role in enhancing the capacity of the model to

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 11,2024 at 14:49:07 UTC from IEEE Xplore.  Restrictions apply. 



66 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 71, NO. 1, JANUARY 2024

TABLE VI
PERFORMANCE METRICS OF DEEP LEARNING MODELS CONSIDERED IN THIS WORK AVERAGED OVER TEN SUBJECTS WITH INPUT

PERTURBATION (THE FIRST COLUMN INDICATES THE MEAN OF SPECKLE NOISE). THE BEST PERFORMING METHODS ARE SHOWN IN BOLD

TABLE VII
PERFORMANCE METRICS OF DEEP LEARNING MODELS CONSIDERED IN THIS WORK AVERAGED OVER TEN SUBJECTS WITH WEIGHT

PERTURBATION (THE FIRST COLUMN INDICATES THE VALUE OF PERTURBATION). THE BEST PERFORMING METHODS ARE SHOWN IN BOLD

effectively process input data. In particular, the attention
mechanism empowers VisTR to focus on each distinct element
present in incoming data. Unlike standard convolutional
techniques, which may miss subtle relationships between
distant pixels, this capability enables VisTR to establish
intricate connections among all the input components. This
comprehensive awareness is particularly valuable in scenarios

in which objects of interest exhibit variable positions and
scales within the images. Moreover, this attention mechanism
excels in capturing long-range dependencies in data. This
allows VisTR to recognize and leverage relationships that
span considerable distances across images. This proves
invaluable in image segmentation tasks where the context
provided by distant regions can profoundly impact the

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on January 11,2024 at 14:49:07 UTC from IEEE Xplore.  Restrictions apply. 



GUJARATI et al.: TRANSFORMER-BASED AUTOMATED SEGMENTATION OF THE MEDIAN NERVE 67

TABLE VIII
PERFORMANCE METRICS OF DIFFERENT MODELS AVERAGED OVER NORMAL SUBJECTS, MILD, AND SEVERE CTS PATIENTS AT THE WRIST

REGION. EACH CLASS HAD TEN SUBJECTS. HERE, PRED CSA CORRESPONDS TO THE PREDICTED CROSS SECTION AREA OF THE MEDIAN

NERVE, IN MM2 . THE BEST PERFORMING METHODS ARE SHOWN IN BOLD

TABLE IX
ABLATION STUDY FOR LOSS TERMS USED IN THE PROPOSED VISTR.
THE FIGURES OF MERIT REPORTED HERE ARE AVERAGED OVER TEN

SUBJECTS DATA FOR THE WRIST-TO-ELBOW REGION

accurate delineation of objects, especially ones with complex
boundaries.

Although capable, Trans U-net fell short of VisTR’s depth
and effectiveness in managing the global context. Owing to
its self-attention mechanism, VisTR’s architecture naturally
processes all the input elements in parallel. Furthermore,
owing to parallelization, training and inference are expedited,
which increases computational efficiency and makes it
suitable for real-time applications. However, Trans U-Net uses
sequential processing, which can become a computational
bottleneck.

In addition to the attention mechanism, transformers
like VisTR incorporate positional encodings. By providing
model knowledge of the spatial relationships between input
components, these encodings act as essential supplements to
the attention process. They encode information regarding the
relative positions of pixels or regions, enabling the model
to differentiate between features that might share similar
characteristics but are located at distinct spatial coordinates.
This positional information, combined with context-awareness
facilitated by the attention mechanism, collectively enhances
the ability of VisTR to comprehend the feature positions
necessary for accurate median nerve segmentation. It ensures
that the model can discriminate between median nerve
and background, even when their appearances vary across
different frames within an ultrasound video. The success
of the proposed VisTR model will open the door to
more transformer-based deep learning models and better
generalization.

In essence, the VisTR model for median nerve segmentation
is an effective tool. Its robustness, adaptability, and contextual
awareness through attention mechanisms set it apart from
the traditional ideas in the literature. This transformer-based
model has the potential to have a substantial impact on the
clinical practice of ultrasound-guided procedures involving

nerves (such as nerve neuropathy and local anesthesia) and
contribute to better patient care with accelerated identification
of nerves.

A. Clinical Impact
Segmentation of the median nerve is important for clinical

diagnosis and medical procedures. One critical application lies
in the diagnosis of CTS, a prevalent neurological disorder
characterized by compression of the median nerve at the
wrist. Accurate segmentation of the median nerve enables
measurement of its CSA. This quantification aids in the
diagnosis, determining the severity of nerve compression, and
guiding treatment decisions. Currently, the localization and
delineation of the median nerve are performed manually by
a sonographer. Furthermore, the frame for which the CSA
needs to be computed is determined by visually analyzing
the nerve in a qualitative manner. The proposed method
enables automated segmentation of the nerve. The CSA was
computed for every frame in an automated fashion, leading
to quantitative measurements. To evaluate the performance of
the model in computing the CSA of the nerve, experiments
were conducted on normal subjects and patients with mild
and severe CTS, and the corresponding figure of merit is
summarized in Table VIII.

The accurate segmentation of the median nerve is vital
to plan effective treatments that involve nerve compression
or injury. In such cases, determining the precise location
and extent of the damage is essential for selecting the best
treatment approach, which may involve surgery, physical
therapy, or other interventions. In surgical procedures, precise
segmentation of the nerve helps the surgeon identify its
position, size, and relationships with surrounding structures,
ensuring a safer and more effective procedure. In chronic
conditions affecting the median nerve, such as CTS or nerve
entrapment, regular imaging and segmentation can be used
to monitor disease progression. Changes in the shape, size,
and location of the median nerve provide valuable information
on disease severity and help guide treatment decisions. The
exact dimensions and location of the median nerve are crucial
for planning personalized rehabilitation and physical therapy
programs. Quantitative measures of the nerve CSA ensure that
exercises and treatments are tailored to the specific needs of
the patient, thereby promoting optimal recovery.

The proposed model developed for median nerve segmen-
tation in ultrasound images can find immediate applications
in the segmentation of other nerves and structures in
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ultrasound scans, facilitating the diagnosis and treatment
of peripheral nerve disorders or musculoskeletal conditions
such as segmentation of the sciatic nerve or ulnar nerve.
However, anatomical variability, such as varying shapes,
sizes, and locations in ultrasound images, can hinder direct
application, and it is challenging to generalize the model’s
performance across diverse anatomical regions. Furthermore,
the availability of annotated data for segmenting specific
nerves or structures may be limited, which necessitates
extensive data collection and annotation.

V. CONCLUSION

In this study, a modified version of the VisTR model was
used to efficiently segment the median nerve from ultrasound
videos. Transformers are particularly well-suited for handling
long sequences because they are less susceptible to issues such
as vanishing or exploding gradients when processing lengthy
sequences, thereby making them more advantageous for
tasks such as video segmentation. Furthermore, transformers
can overcome the limitations of CNNs, that is, the limited
restricted receptive field and, therefore, can effectively
leverage the comprehensive temporal and spatial information
present in continuous video frames. Thus, the proposed model
aids sonographers in efficiently segmenting the median nerve
in the wrist-to-elbow region and outperforms the existing
methods considered in this study. This is also the first work on
the application of transformers for segmenting a nerve in an
ultrasound video and to show the efficacy and effectiveness
of transformer-based models. The proposed VisTR model,
along with other discussed models in this study, is made
available here: ht.t.ps://github.com/karang2606/Median-Nerve-
Segmentation.
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