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Purpose: A computationally efficient algorithm �linear iterative type� based on singular value
decomposition �SVD� of the Jacobian has been developed that can be used in rapid dynamic
near-infrared �NIR� diffuse optical tomography.
Methods: Numerical and experimental studies have been conducted to prove the computational
efficacy of this SVD-based algorithm over conventional optical image reconstruction algorithms.
Results: These studies indicate that the performance of linear iterative algorithms in terms of
contrast recovery �quantitation of optical images� is better compared to nonlinear iterative �conven-
tional� algorithms, provided the initial guess is close to the actual solution. The nonlinear algo-
rithms can provide better quality images compared to the linear iterative type algorithms. Moreover,
the analytical and numerical equivalence of the SVD-based algorithm to linear iterative algorithms
was also established as a part of this work. It is also demonstrated that the SVD-based image
reconstruction typically requires O�NN2� operations per iteration, as contrasted with linear and
nonlinear iterative methods that, respectively, require O�NN3� and O�NN6� operations, with “NN”
being the number of unknown parameters in the optical image reconstruction procedure.
Conclusions: This SVD-based computationally efficient algorithm can make the integration of
image reconstruction procedure with the data acquisition feasible, in turn making the rapid dynamic
NIR tomography viable in the clinic to continuously monitor hemodynamic changes in the tissue
pathophysiology. © 2009 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3261029�
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I. INTRODUCTION

Near-infrared �NIR� diffuse optical tomography uses a finite
set of boundary measurements made on the soft-tissue using
light in the spectral range of 600–1000 nm to reconstruct the
internal distribution of optical properties.1 When multiwave-
length measurements are available, the optical properties can
reveal the spectral, thereby functional, properties of the tis-
sue under investigation. The NIR optical tomography has
been most intensively investigated for breast cancer
imaging2–4 and brain function assay.5–7 Typically, the NIR
light is delivered through optical fibers and the transmitted
light is also collected through the same or additional fibers
that are in contact with the surface of the tissue. Using these
measurements, distributions of wavelength dependent ab-
sorption and/or scattering coefficients of the tissue are recon-

6
structed using a model-based iterative algorithm. These NIR
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studies have the advantage of being noninvasive and nonion-
izing, making it applicable for investigating functional
changes in a tissue over a prolonged time.

As the malignant tumor vasculature is known to be differ-
ent from the benign one, the main aim of the NIR optical
tomography has been to noninvasively capture the difference
in the vasculature or, more precisely, the dynamics of it as
NIR light can penetrate deep tissues. Efforts have been
made8–11 to develop NIR systems capable of acquiring the
NIR tomography data at high speed up to the video-rate.
These systems use spectrally encoded parallel light delivery
to achieve a frame rate of 35 Hz.9,11 The transmitted light
from the boundary of the tissue is acquired through a charge
coupled device camera, which is then decoded to recover the
data corresponding to specific source-detector locations. As
intensity measurements are generally suitable in providing

optical absorption coefficient distribution, the scattering co-
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efficient is not used as an unknown parameter in rapid dy-
namic optical tomographic imaging.9,11,12 Although the data
acquisition in these rapid dynamic �video-rate� NIR optical
tomography systems has been performed at higher rates
��35 frames /s�, the image reconstruction has always been
handled off-line due the computational complexity of itera-
tive algorithms.9,11,12 Typical speed of 10 frames/s to recover
the distribution of absorption coefficient is reported in the
literature11 by using a coarse mesh on a Pentium IV 2 GHz
CPU. Even though there are methodologies for real-time im-
age reconstructions �integrated with the data acquisition�,
they often require high-end workstations that have the capa-
bility of parallel processing of these algorithms.13,14 Al-
though attempts have been made to use single-step image
reconstruction algorithms,14,15 they are generally incapable
of the much needed optical contrast recovery in dynamic
applications.

This work mainly aims at presenting a singular value de-
composition �SVD�-based computationally efficient iterative
algorithm that can, in principle, obtain the video-rate optical
tomographic image reconstruction in-line with the data ac-
quisition. Also, an efficient way of reducing the size of Jaco-
bian, introduced by Eames et al.,16 is combined with the
SVD-based algorithm. A systematic comparison of the
present reconstruction method with the more traditional ones
is provided in order to bring forth the computational effi-
ciency of the former. The SVD-based algorithm is also em-
ployed in a reconstruction based on dynamical data �involv-
ing increasing absorption over time� acquired from a tissue-
mimicking phantom to assess the suitability of the method
for being used in-line with the video-rate data. The numerical
and experimental studies taken up in this work are restricted
to only two-dimensional �2D� domains, which suffice to
demonstrate the feasibility of the algorithm in reconstructing
rapid dynamic optical images.

II. MATERIALS AND METHODS

II.A. Rapid dynamic NIR diffuse optical tomography:
Forward problem

Continuous wave NIR light propagation in thick biologi-
cal tissues can be modeled using the steady-state diffusion
equation,1 which is an approximation to the radiative transfer
equation and is given by

− � . D�r�� � ��r�� + �a�r����r�� = Qo�r�� , �1�

where the optical diffusion and absorption coefficients are
denoted by D�r�� and �a�r��, respectively, and r� denotes the
spatial location vector. The light source, represented by
Qo�r��, is modeled as isotropic. ��r�� is the photon fluence
rate at a given position r�. We have

D�r�� = �3��a�r�� + �s��r����−1, �2�

where �s� represents the reduced scattering coefficient and is
presently considered to be a known parameter �invariable
over the domain� in rapid dynamic NIR optical tomography.
The finite element method �FEM� is used to solve Eq. �1�

and thus generate the modeled data, which is the logarithm
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of the intensity �ln A� for a given distribution of the absorp-
tion coefficient �a�r��.17–19 Type III boundary condition,
which also accounts for the refractive-index mismatch at the
boundary,20 is employed.

II.B. Rapid dynamic NIR diffuse optical tomography:
Inverse problem

II.B.1. Levenberg–marquardt „LM… minimization:
Nonlinear iterative method

A detailed discussion of the LM method is available in
Ref. 21 and it is only briefly reviewed here. The aim of this
approach is to minimize the objective functional ���, given
below, with respect to the absorption coefficient ��a�

� = �ln Ameasured − ln Amodeled�2, �3�

where ln Ameasured is the measured experimental data and
ln Amodeled is the modeled data �dimension: NM �1; NM is
the number of measurements�. Minimization of this objective
functional with respect to �a is achieved by setting the first-
order derivative equal to zero

��

��a
= JT� = 0, �4�

where �= �ln Ameasured− ln Amodeled� is the data-model misfit
and J= �� ln Amodeled /��a� the Jacobian �of dimension NM
�NN; NN represents the number of unknowns or, equiva-
lently, the number of FEM nodes�. To circumvent the ill-
conditioned nature of the problem, the update equation for
the optical properties at iteration “i” is regularized leading to

��i = ��Ji−1�TJi−1 + �iI�−1�Ji−1�T�i−1, �5�

where ��i represents the update of the optical absorption
coefficient ��a� at the ith step, Ji−1 represents the Jacobian
calculated using optical properties ��a� of the previous itera-
tion �i−1�, and �i is the �strictly positive� regularization pa-
rameter corresponding to the ith iteration, monotonically de-
creasing with increasing iteration. It typically starts at 1000
and is reduced by a factor of 100.25 at each iteration. The
stopping criterion for all iterative procedures discussed in
this work is chosen so as to ensure that the decrease in the L2

norm of data-model misfit between successive iterations is
less than or equal to 1%. In case of the nonlinear iterative
procedure �Eq. �5��, it is known that the error between the
expected and reconstructed optical images might increase af-
ter a few iterations.15,22,23 In the case discussed here, such
divergence typically occurred after the eighth iteration. Thus
for purposes of comparison of the procedures, the recon-
structed image at the eighth iteration has been employed.

II.B.2. LM minimization: Linear iterative
method

For a set of experimental measurements made in diffuse
optical tomography either using a tissue-mimicking phantom
or a biological tissue, the data is initially calibrated to re-
move the detector channel variations and also to provide an

24,25
initial guess for the iterative procedure. Since the initial
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guess is obtained from the average of the measurements
made, it is typically close to the background optical proper-
ties of the tissue.24,25 Due to this, we adopt a variation in
nonlinear procedure, wherein the Jacobian �J� is only com-
puted once at the initial guess of optical properties ��a� and
used repeatedly to make the iterative reconstruction proce-
dure computationally efficient. Note that the Jacobian com-
putation is one of the computationally expensive steps �typi-
cal order of O�NN3� flops� in the iterative image
reconstruction procedure. This technique is referred to as the
“linear iterative method,” reflecting the fact that J is com-
puted only once. The regularized update equation for the
optical properties at iteration i for this method is given by

��i = ��J0�TJ0 + �iI�−1�J0�T�i−1. �6�

Here J0 represents the Jacobian computed using the initial
guess �obtained from the data calibration procedure�.

With the LM minimization requiring the regularization
parameter ��� to be reduced over every iteration �so it tends
to zero asymptotically�, each linear iterative step requires �I
�appropriately updated� to be added to JTJ. As the matrix
inversion requires O�NN3� operations,26 a singular value de-
composition of the Jacobian makes the inversion �Eq. �6��
computationally efficient.

II.B.3. SVD: Linear iterative method

Using singular value analysis, the Jacobian can be decom-
posed as

J = USVT, �7�

where U �dimension NM �NM� and V �dimension NN
�NN� are orthonormal matrices containing the singular vec-
tors of J and the diagonal matrix S �dimension NM �NN�
contains the singular values of J. Combining Eqs. �6� and
�7�, we can obtain the update ��i for the ith iteration through
the equation

��i = V � � � UT � �i−1, �8�

where � is diagonal matrix with the diagonal entries as
S / �S2+�� �Appendix A�.

Thus matrix inversion �required on the RHS of Eq. �6��
can be replaced by matrix multiplication. Regularization of
JTJ �as in Eqs. �5� and �6�� is realized through an addition of

TABLE I. Summary of methods discussed in this w
numbers.

Method Section number Equation

Nonlinear II.B.1 5
Linear iterative II.B.2 6
SVD II.B.3 8
Linear efficient II.B.2 and II.B.4 10
SVD efficient II.B.3 and II.B.4 11
� to the denominators of the elements of �. This procedure
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renders the computation of �� an O�NN2� process rather
than O�NN3�; further details on number of operations is
given in Appendix B.

II.B.4. Jacobian reduction

Recently, Eames et al.16 have developed an efficient Jaco-
bian reduction method to improve the computational efficacy
of 3D image reconstruction algorithms. We use the same
procedure, wherein the size of the Jacobian is reduced by
removing contributions of nodes that are below the total sen-
sitivity threshold. That is, nodal variables that are almost
noncontributing �with the nodal position being typically far
away from the source and/or the detector� to the total sensi-
tivity are not included as unknowns in the image reconstruc-
tion. Accordingly the total sensitivity throughout the imaging

domain is computed and a new Jacobian J̃ij is formed as
follows:

J̃ij = �Jij if �
i=1

NM

Jij 	 = 5% of M

0 if �
i=1

NM

Jij 
 5% of M 	 , �9�

where j corresponds to the node number within the domain

and M =max��i=1
NMJij�. Given a new Jacobian element J̃ij that

corresponds to the total sensitivity for a specific node being
zero, the entire column corresponding to that node is re-
moved to produce a much smaller Jacobian matrix. This
drastically reduces the number of operations and memory
required for computing the update of the optical properties.16

The reconstruction scheme involving a reduced Jacobian,
as above, is presently referred to as the “efficient method,”
which is implemented using both linear iterative and SVD-
based techniques described earlier. The corresponding “effi-
cient equations” for the linear iterative and SVD methods are
given below

Linear efficient:��i = ��J̃0�TJ̃0 + �iI�−1�J̃0�T�i−1, �10�

SVD efficient:J̃ = ŨSṼT, ��i = Ṽ � � � ŨT * �i−1.

�11�

For a ready reference, the methods used in this work along

long with the corresponding sections and equation

er Jacobian recalculated Jacobian reduced

Yes No
No No
No No
No Yes
No Yes
ork a

numb
with its salient features are summarized in Table I. Note that
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computations performed in this work have been carried out
on a dual core workstation with 2.66 GHz processor speed
and 4 GB memory.

II.C. Simulation and experimental evaluation

For all numerical experiments discussed here, the imaging
domain is chosen to be a circle of 86 mm diameter, a dimen-
sion representative of a breast imaging system using a ring
applicator. The background optical properties are �a

=0.01 mm−1 and �s�=1.0 mm−1 . For the finite element dis-
cretizations, one for generating measurements and the other
for use in the inversion, we use three-noded triangular ele-
ments with the following two mesh densities: �1� 10249
nodes �corresponding to 20160 triangular elements� for the
generation of “experimental” data �ln Ameasured� and �2� 2773
nodes �corresponding to 5376 elements� for the reconstruc-
tion procedure �e.g., in the generation of ln Amodeled�. The
data collection setup has 16 fibers that are arranged in a
circular, equispaced fashion.27 One fiber is used at a time as
the source while the other fibers serve as detectors to gener-
ate 240 �15�16� measurement locations or a total of 240
data points for ln A. The sources are modeled as Gaussian
with a full width at half maximum of 3 mm to represent the
distribution used in a typical experimental setup.27 The
source is also assumed to be located one mean transport
length inside the boundary.

Initially, a circular target of radius 7.5 mm with a contrast
of 2:1 compared to the background in �a placed at location
�21, 0� is used to generate the ln Ameasured data using the
10249-node mesh �Fig. 1�a��. These noise-free numerical
measurements are calibrated on the 2773-node mesh and the
initial guess for the iterative procedure is obtained from the
calibration procedure. Note that the linear iterative procedure
�Eq. �6�� is essential for better recovery of optical contrast
when compared to a single-step procedure �Eq. �6� for
i=1�.14,15,28 However, when the initial guess is far away from
the actual solution, a comparison of the performance of the
nonlinear and linear iterative procedures clearly brings forth
the superiority of the nonlinear procedure �Eq. �5�� and hence
the need for recomputing the Jacobian in this case. For the
same case, a comparative noise tolerance study has also been
taken up, wherein the simulated data with added noises of
1%–4% are considered as the ln Ameasured.

Next, a comparison of contrast recovery capabilities �cor-
responding to change in target contrast from 1.5 to 5� of the

FIG. 1. Reconstruction results using noiseless data. �a� Actual �a image.
Reconstructed �a distribution using �b� nonlinear method and �c� linear
iterative method. Reconstructed �a image with initial guess
�=0.002 mm−1� using �d� nonlinear and �e� linear iterative methods.
linear and nonlinear iterative algorithms has been consid-
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ered. The noise in the data is kept at 1% corresponding to
typical data noise level in the experiments. An object with
two targets, one near the boundary �location �21,0�� and an-
other in the center �at �0,0�� of the domain, are considered for
this purpose. The initial guesses for these iterative schemes
are obtained using the calibration procedure referred to
earlier.24,25

Next a comparison of linear iterative methods �linear it-
erative, SVD, linear efficient, and SVD efficient; see also
Table I� is taken up with data noise level of 1%. For com-
pleteness, a comparison of these linear iterative methods
with the corresponding nonlinear methods was also per-
formed. We use the L2 norm of the data-model misfit and
root mean square �rms� error between actual and recon-
structed absorption coefficient distributions for this compari-
son. Such a numerical comparison is deemed necessary to
show performance equivalence of these linear iterative meth-
ods.

As this work pertains to developing a computationally
efficient algorithm for rapid dynamic optical tomography, a
comparison of computation times per frame for the iterative
reconstruction methods, namely, nonlinear, linear efficient,
and SVD efficient �Table I�, with increasing number of pa-
rameters �equivalently, node numbers in the FEM mesh� has
also been performed.

Finally, the efficacy of the SVD-based algorithm is as-
sessed in the reconstruction of dynamical changes in absorp-
tion in the phantom that were acquired by the video-rate NIR
tomography system.11 This video-rate system has an imaging
array of 27 mm in diameter designed to fit a rat’s cranium for
small animal imaging and 16 equispaced channels for inter-
spersed NIR light delivery and collection. A solid tissue
phantom of 27 mm in diameter is placed in the array, ensur-
ing tight coupling of the fibers to the phantom. The solid
phantom has a hole of 6.35 mm in diameter for placing bulk
intralipid solution wherein the diluted ink is injected steadily.
Ink injection starts at shortly after the data acquisition which
was at a rate of 35 frames/s.

III. RESULTS

Figure 1 highlights the importance of initial guess being
close to the actual solution for the linear iterative method to
provide better qualitative and quantitative reconstructed im-
age. Figure 1�a� shows the reference �actual� distribution of
�a, used to generate the data. Figures 1�b� and 1�c� give the
reconstructed images �involving a 2773-node mesh� by using
nonlinear and linear iterative methods �Table I�, respectively,
where the initial guess is obtained from the calibration of the
data generated on a 10249-node mesh. Figures 1�d� and 1�e�
give the results obtained through nonlinear and linear itera-
tive methods, respectively, for an initial guess of
0.002 mm−1 �which is far way from the actual value�. It is
evident from these results that when initial guess is far away
from the true solution, the nonlinear method results in a bet-
ter recovery of target shape and position than linear iterative

methods, as the Jacobian is recomputed at every iteration.
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Next, results pertaining to noise tolerance of linear itera-
tive and nonlinear methods are shown in Fig. 2. The refer-
ence �a distribution corresponding to Fig. 2 is given in Fig.
1�a�. The top row gives the results obtained from the linear
iterative method with corresponding data noise level �vary-
ing from 1% to 4%� given on top of each image. The middle
row of Fig. 2 gives the results obtained from the nonlinear
method, corresponding to the distributions shown in the top
row. Corresponding difference images �linear iterative-
nonlinear� are given in the bottom row of Fig. 2. Note that
the initial guess for all the cases in Fig. 2 is obtained from
calibration of the noisy data generated using a 10249-node
mesh and the reconstructions �along with forward calcula-
tions� have been performed using a 2773-node mesh. It is
evident from Fig. 2 �last row images� that the difference in

FIG. 3. Plot of expected versus reconstructed �a �maximum value in the
region� for the target positions �given in the legend of the figure� using both

FIG. 2. Comparison of performance of linear iterative and nonlinear meth-
ods with increasing noise level �1%–4%, given on top of each column�. Top
row corresponds to reconstructed image obtained with linear iterative
method, middle row corresponds to nonlinear method. Last row gives the
difference images between linear iterative and nonlinear methods �top row-
middle row�.
nonlinear and linear iterative methods.
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the reconstructed images using nonlinear and linear iterative
method is less than 4% of the reconstructed values.

Results on the contrast recovery via linear iterative and
nonlinear methods showing target position dependence are
shown in Fig. 3. Initial guess obtained from the calibration of
1% noisy data is used in results presented here. As the sen-
sitivity of measurements �with respect to the parameters to
be reconstructed� varies with the distance from the
boundary,29 two target positions �one near the boundary of
the domain �21, 0� and another at the origin� are considered
in this study. The contrast is varied from 1.5 to 5 times with
respect to the background, and the maximum value of recov-
ered �a is used to generate these plots. For the same initial
guess, the linear iterative method recovers the contrast better.
Reconstruction results obtained using the SVD-based linear
iterative algorithm and/or with the Jacobian reduction
method are given in Fig. 4 �expected �a distribution is given
in Fig. 1�a�� for data noise level of 1% along with the recon-
structed result using nonlinear method. The obtained recon-
structed distributions are almost identical in appearance in all
five cases, namely, nonlinear, linear iterative, SVD, linear
efficient, and SVD efficient �Table I�. More closely, Figs.
5�a� and 5�b� give the plots of data-model misfit and rms
error in �a with respect to the iteration number. Differences
in these plots for the linear iterative methods are within the
numerical precision of the machine, lending credence to the
supposition that linear iterative methods �linear iterative,
SVD, linear efficient, and SVD efficient� are not only
equivalent analytically, but also identical numerically.

An important result as part of this study is provided in
Fig. 6, where the computation time per frame versus the
number of unknowns �or FEM nodes� is plotted �semi-log
plot� for the nonlinear, linear efficient, and SVD efficient
methods discussed herein �Table I�. Note that the polynomial

FIG. 4. Reconstructed �a distributions using �a� nonlinear, �b� linear itera-
tive, �c� SVD, �d� linear efficient, and �e� SVD efficient methods with 1%
noise in the data �salient features of the reconstruction methods are given in
Table I�. The expected �a distribution is given Fig. 1�a�.

FIG. 5. �a� Plot of iteration number versus L2 norm of data-model misfit. �b�
Plot of iteration number versus rms error between expected and recon-

structed �a distribution. The corresponding final images are given in Fig. 4.
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fits corresponding to each method �Appendix B� are also
plotted in Fig. 6. In the approaches considered here, the per-
formance of the linear iterative and SVD methods, in their
conventional efficient forms, was similar in terms of the
computational efficacy; however the details of the compari-
son are not shown here. The nodal density in the FEM dis-
cretization determines, among others, the numerical accuracy
of the forward model, consistent with the anticipation that
finer FEM mesh �more nodes� typically leads to better recon-
struction results.29 Figure 6 clearly shows that the SVD-
based method is computationally more efficient vis-à-vis the
others for the same number of FEM nodes.

Figure 7 shows an example reconstruction of dynamical
data collected on a tissue-mimicking phantom using the

FIG. 6. A semi-log plot of number of nodes �unknown parameters� versus
reconstruction time per frame for nonlinear, linear efficient, and SVD effi-
cient methods �given in the legend� described in this work �Table I�. Poly-
nomial fits corresponding to each method �Appendix B� are also plotted
�dotted lines� in this figure, represented by the legend.

FIG. 7. �a� An example of reconstructed dynamic data set using the SVD
method. The corresponding time points are shown at the top of each figure.

�b� Recovered �a contrast �maximum value in the target region� versus time.
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SVD-based algorithm. The data are used for reconstructions
at �10 frames /s using the SVD efficient algorithm leading
to a 100-fold improvement in reconstruction time compared
with the conventional nonlinear reconstruction.10 Recon-
structions using the SVD efficient algorithm at the time-
frames of 0–0.85 s �in �0.1 s time intervals� are shown in
Fig. 7�a�. The continuous change in the maximum absorption
coefficient in the ink-hole region and plateau after 0.7 s is
given in Fig. 7�b�.

IV. DISCUSSION

Image reconstruction in rapid dynamic NIR tomography
is typically performed off-line due to the computational com-
plexity, even though the data can be acquired at speeds up to
the video-rate.8–11 The aim of this work is to demonstrate
that an exploitation of the SVD of the Jacobian can make the
image reconstruction procedure in sync with the data acqui-
sition, making rapid NIR tomography viable in the clinical
setting to either continuously monitor the hemodynamic or
dynamical changes in the tissue pathophysiology.

In this work, we have also demonstrated, using experi-
mental data and initial guess obtained therewith, that linear
iterative methods can indeed yield reconstructed images of
about the same quality and quantification as nonlinear itera-
tive methods, albeit with lesser computational overhead
�Figs. 1�b�, 1�c�, 2, 3, and 6�. However, for initial guesses far
away from the actual solution, the nonlinear method will
always lead to more accurate reconstruction due to the re-
computation of the Jacobian. This is clearly borne out in
Figs. 1�d� and 1�e�. More specifically, linear and nonlinear
iterative methods with the initial guess obtained through the
calibration procedure have produced results that are similar
�within �4%�, even when the data noise level is increased
from 1% to 4% �Fig. 2�. This reveals that the recomputation
of the Jacobian may not be necessary provided the data cali-
bration enables estimating the initial guess not too far from
the actual solution. It should be noted that, for the dynamic
reconstruction considered here, after the initial calibration,
reconstruction at the ith time step can serve as the back-
ground distribution for the following time step. Moreover,
owing to the time interval between successive frames being
too small to result in appreciable variation in contrast, antici-
pated updates are also likely to be small. Therefore in this
case accurate reconstructions using the linear methods
should be possible.

In the present context, it is insightful to bring out the
difference between linear �single-step� and linear iterative
methods reconstructing the contrast changes. There were ear-
lier attempts to use linear methods to recover the optical
property distributions.14,15,28 It is proven that even though
single-step methods are capable of detecting the targets
�qualitatively� given the background optical property distri-
butions, they are limited in their ability for quantitative
recovery.15,28 Accordingly, in this work, comparisons are
limited to linear iterative methods.

Comparison of the contrast recovery between linear and

nonlinear iterative methods for data noise level of 1% yields
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similar trends �Fig. 3�. Note that an experimental setup, with
a ringlike source/detector geometry and limited number of
measurements, typically results in hypersensitivity near the
boundary, leading to the better quantitative accuracy in re-
covering the targets near the boundary.29 Moreover, for the
cases considered here �target being either in the interior of
the domain or near the boundary�, the linear iterative method
is capable of recovering better contrast �modulo an error
�10%; see Fig. 3� when the reference contrast is 5:1. Nev-
ertheless, the nonlinear iterative method may perform better
in producing reconstructions with lesser variance and error in
the reconstructed mean of the targets. Also, the plots in Fig.
5 of the data-model misfit and the rms error �versus iteration
number� reveal that the nonlinear iterative methods perform
substantially better than their linear counterparts in terms of
image quality �at least by 30% in rms error, Fig. 5�b�� and in
minimizing the data-model misfit �Fig. 5�a��. Also, there is
always a linear relationship between the contrast recovery
and size of the target, which is well discussed in the
literature.23,30 The present study is conducted primarily to
show that, in the case of dynamical contrast recovery, linear
iterative methods provide a computationally efficient, yet
reasonably accurate alternative to the recovery of the time
varying updates. Note that Newton-based approaches, based
on local linearization of the nonlinear functional, typically
requires the initial guess to be within close neighborhood of
the actual solution and may thus lead to limited contrast
recovery. Deducing appropriate measures of such neighbor-
hood is however beyond the scope of this work.

For data with 1% noise, the proposed SVD method results
in nearly identical reconstructions to those via the linear it-
erative method, as seen from Figs. 4�b� and 4�c�. The effi-
cient Jacobian-reduced scheme, implemented within the lin-
ear iterative and SVD methods, has also given similar results
�the error is less than 1%�. A similar trend continues even
when the data noise level is varied from 0% to 4% �the
results are not shown here�. We have also compared the be-
havior of the linear iterative, SVD, linear efficient, and SVD
efficient methods over the iterations to convergence vis-à-vis
the nonlinear method. The results are shown in Fig. 5
wherein the plotted L2 error norms versus the iteration num-
ber via linear iterative methods are almost indistinguishable.

The computational efficacy of the proposed SVD method
is evident from Fig. 6. The leading order of the number of
operations in each method is given in Appendix B. The SVD
of the Jacobian has made the reconstruction process to be of
O�NN2� in contrast with O�NN3� flops needed for a tradi-
tional matrix inversion. It can be also seen that the compu-
tational complexity of the nonlinear method, which is
O�NN6�, makes it less attractive for rapid reconstructions
necessary for dynamic NIR tomography applications. For a
typical case with 1000 nodes, one can reconstruct 5 frames/s
with the SVD method, 4 frames/s with the linear iterative
method, and 1 frame/s with the nonlinear method. If a 200-
node mesh is considered, the SVD method can reconstruct
15 frames/s making the image reconstruction procedure also

nearly video-rate. It is shown that the reduction in computa-

Medical Physics, Vol. 36, No. 12, December 2009
tional complexity is larger for SVD as the number of nodes
increases �compare O�NN2�, O�NN3�, and O�NN6� flops re-
quired for the SVD, linear iterative, and nonlinear methods,
respectively�. Even though the presented results are for the
chosen set of optical properties and circular shape of the
domain, the trends and computational efficacy of the algo-
rithms are independent of the imaging domain size, shape,
and optical properties.

The in-sync image reconstruction with data acquisition
for rapid dynamic NIR tomography is determined by data
transfer, any preprocessing to transform the raw data suitable
for starting the image reconstruction, and the iterative proce-
dure for recovering the tissue optical properties. In most ap-
proaches of NIR tomography, the pre-reconstruction factors
have little impact on the overall image recovery speed; but as
the speed of iterative reconstruction is improved, the impact
of these pre-reconstruction factors would emerge, especially
when specifically large sets of measurements are necessary.
Recently, approaches of rapid NIR tomography have been
extended to noninvasive imaging of internal tissues, such as
prostate and rectum.31 These internal imaging applications
are in critical need of rapid image reconstruction. In these
contexts, the SVD efficient method may provide a viable
platform for such applications of rapid NIR tomography. At-
tempts are underway to use the SVD efficient method in the
clinical/preclinical settings and estimate the efficacy of the
algorithm compared to traditional algorithms.

V. CONCLUSIONS

In conclusion, the singular value decomposition of the
Jacobian has led to a computationally efficient reconstruction
algorithm, enabling the rapid dynamic NIR tomography im-
age reconstruction procedure match the timeline of data ac-
quisition �making it nearly video-rate�. The SVD-based algo-
rithm has made the number of operations in the image
reconstruction procedure to be of O�NN2�, rather than of
O�NN3� �NN being the number of unknown parameters�. The
SVD-based algorithm has been tested and shown to be
equivalent to the linear iterative algorithm both analytically
and numerically using two-dimensional test examples. The
SVD method has also been used for reconstruction based on
a dynamic experimental data set to show its efficacy. If the
initial guess is reasonably close to actual solution �which can
be obtained through data calibration procedure�, both linear
and nonlinear iterative methods are capable of recovering
almost the same contrast, with the linear iterative algorithms
offering a computationally more efficient route �number of
operations for linear iterative algorithms, O�NN3� and non-
linear algorithms, O�NN6��.
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APPENDIX A: UPDATE EQUATION FOR �a USING
SVD DECOMPOSITION

Putting J0=USVT �SVD decomposition of Jacobian� in
Eq. �6�, we will get

��VSUT � USVT� + �iI���i = VSUT � �i−1 �ST = S� , �A1�

��VS2VT� + �iI���i = VSUT � �i−1 �UTU = I� . �A2�

Multiplying both sides by VT leads to

�VT � �VS2VT� + VT�iI��� = VT � VSUT � �i−1, �A3�

VT � �S2 + �iI� � �� = SUT��i−1 �VTV = I� , �A4�

��i = V � �i � UT � �i−1 �VT = V−1� , �A5�

where

�lm

i
= � Sl

Sl
2 + �i if l = m

0 if l � m
	 .

APPENDIX B: CALCULATION OF NUMBER OF
OPERATIONS FOR NONLINEAR ITERATIVE,
LINEAR ITERATIVE, SVD METHODS

Typical calculation of number of operations will take into
account only divisions and multiplications, ignoring addi-
tions. Note that the matrix inversion needed in the update
equation was performed using Gaussian elimination. Typi-
cally, Gaussian elimination for an N�N matrix requires
��N3 /3�+N2− �N /3�� operations.26

For the nonlinear iterative update equation �Eq. �5��, the
number of operations required for iteration i is �ignoring the
additions�

Number of operations = �NN3/3� + NN2 − �NN/3�

+ NN � NM2. �B1�

The leading order for the nonlinear iterative update equation
is O�NN3�. For nonlinear method, there is an additional com-
putational cost of calculating Jacobian at every iteration,
which is O�NN3�, making the leading order as O�NN6�.

For the linear iterative update equation �Eq. �6��, the num-
ber of operations required for iteration i is

Number of operations = �NN3/3� + NN2 − �NN/3� . �B2�

The leading order for the linear iterative update equation is
O�NN3�.

For the SVD update equation �Eq. �8��, the number of
operations required for iteration i is

Number of operations = NN2 + NN2 + NN � NM2. �B3�

The leading order for SVD update equation is O�NN2�.
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