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Abstract— Digital Rock Physics leverages advances in digital
image acquisition and analysis techniques to create 3D digital
images of rock samples, which are used for computational
modeling and simulations to predict petrophysical properties of
interest. However, the accuracy of the predictions is crucially
dependent on the quality of the digital images, which is currently
limited by the resolution of the micro-CT scanning technology.
We have proposed a novel Deep Learning based Super-Resolution
model called Siamese-SR to digitally boost the resolution of
Digital Rock images whilst retaining the texture and providing
optimal de-noising. The Siamese-SR model consists of a generator
which is adversarially trained with a relativistic and a siamese
discriminator utilizing Materials In Context (MINC) loss estima-
tor. This model has been demonstrated to improve the resolution
of sandstone rock images acquired using micro-CT scanning by
a factor of 2. Another key highlight of our work is that for the
evaluation of the super-resolution performance, we propose to
move away from image-based metrics such as Structural Similar-
ity (SSIM) and Peak Signal to Noise Ratio (PSNR) because they
do not correlate well with expert geological and petrophysical
evaluations. Instead, we propose to subject the super-resolved
images to the next step in the Digital Rock workflow to calculate
a crucial petrophysical property of interest, viz. porosity and
use it as a metric for evaluation of our proposed Siamese-SR
model against several other existing super-resolution methods like
SRGAN, ESRGAN, EDSR and SPSR. Furthermore, we also use
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Local Attribution Maps to show how our proposed Siamese-SR
model focuses optimally on edge-semantics, which is what leads
to improvement in the image-based porosity prediction, the
permeability prediction from Multiple Relaxation Time Lattice
Boltzmann Method (MRTLBM) flow simulations as well as the
prediction of other petrophysical properties of interest derived
from Mercury Injection Capillary Pressure (MICP) simulations.

Index Terms— Image super-resolution, deep learning,
generative adversarial networks, siamese networks, digital rock
physics, petrophysics, geology, micro computed tomography,
local attribution maps.

I. INTRODUCTION

D IGITAL Rock Physics [1] is an emerging framework
utilizing advances in imaging technologies and state-

of-the-art image processing algorithms to construct digital
models of reservoir rocks, which are used to run physics
simulations to calculate several petrophysical properties of
interest. The accuracy of the digital rock workflow relies
crucially on the resolution of the acquired images [2], which
is currently limited by the hardware of the micro-CT scanning
technology. Super-resolution methods can effectively address
this limitation by digitally boosting the resolution of images
acquired using micro-CT scanners. Furthermore, for heteroge-
neous rock samples with a large Representative Elementary
Volume (REV), significant acquisition time savings can be
achieved by scanning the required large field of view with a
lower resolution followed by boosting the resolution digitally
using super-resolution [3].

Image super-resolution involves improving the resolution
characteristics of a low-resolution (LR) image to obtain an
equivalent higher resolution (HR) image by using either
classical approaches such as patch-based or dictionary-based
learning or deep learning approaches which are based on
neural networks. These super-resolution methods tend to per-
form much better than traditional interpolation methods like
bilinear and bicubic interpolation, which compromise on the
finer details in the image. Such super-resolution methods have
been widely used in a number of different application areas
such as optical imaging [4], medical imaging [5], satellite
imaging [6], and many such areas. Recently, deep-learning
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Fig. 1. Key steps involved in a typical digital rock workflow, with the role of super-resolution module highlighted in a red box and the prediction of different
petrophysical properties of interest highlighted with black arrows.

based super-resolution techniques have been employed in
Digital Rock Physics to improve the quality of the acquired
micro-CT images [7], [8], the resolution of which was hitherto
limited by the hardware of micro-CT scanning technology.

The key purpose of including the super-resolution module
in the Digital Rock workflow shown in Fig. 1 is to have
a good image quality with sufficient resolution to resolve
the sub-resolution porosity, which remains hidden due to
the limited resolution at which the images can be scanned
using micro-CT scanning technology. Hence, a digital super-
resolution method such as the one we propose (Siamese-SR)
that not only enhances the image resolution but also retains and
enhances semantic features of interest such as edges between
rock and pores leads to an improvement in the petrophysical
property prediction accuracy of the consequent steps in the
Digital Rock workflow such as Mercury Injection Capillary
Pressure (MICP) simulations which predict the capillary pres-
sure curve and the Multiple Relaxation Time Lattice Boltz-
mann Method (MRTLBM) flow simulations which predict the
permeability of the porous rock. Thus, the super-resolution
module highlighted in the red box in Fig. 1 ensures high
quality images are being supplied to the physics simulators
for petrophysical property prediction. Hence, in this study,
we have kept this ultimate goal of accurate petrophysical
property estimation at the heart of the evaluation criteria
for comparing the performance of different super-resolution
methods.

Largely speaking, there are two classes of Deep Learning
models which are typically used for super-resolution - Convo-
lutional Neural Networks (CNNs) and Generative Adversar-
ial Networks (GANs). The CNN based models started with
the traditional Super-Resolution Convolution Neural Network
(SR-CNN) [9] but later many improvements were devel-
oped such as the Deeply Recursive Convolutional Network
(DRCN) [10], the Efficient Sub-Pixel Convolutional Neural
Network (ESPCN) [11], the Enhanced Deep Super Reso-
lution (EDSR) network [12] and the Wide Activation for
Efficient and Accurate Image Super-Resolution (WDSR) [13].
While these CNN-based models are good at obtaining a high
Peak Signal to Noise Ratio (PSNR), they tend to compro-
mise on the high-frequency details like texture since they
use generic optimization functions based on Mean Squared

Error (MSE) in the image space which are defined based
on the pixel-wise differences [14]–[16]. To tackle this issue
and to improve the perceptual quality, Generative Adversarial
Networks (GANs) have been employed to generate realistic
textures. Since our aim is to boost the resolution of the
Digital Rock images whilst retaining the original texture
and high-frequency components, we have mainly focused our
attention on GANs in this study. However, we do include one
CNN based network, viz. EDSR network in our performance
benchmarking for sake of completeness.

In this work, we have proposed a novel Deep Learning
based Super-resolution architecture called Siamese-SR and
successfully demonstrated that it leads to better performance
as compared to some of the other existing super-resolution
models described in Section II in terms of more accurate
estimation of porosity and other such petrophysical properties
of interest, the estimation of which is the ultimate aim of
Digital Rock Physics. We have also proposed to move away
from image based metrics like Structural Similarity (SSIM)
and Peak Signal to Noise Ratio (PSNR) which do not correlate
with expert geological and petrophysical evaluations. Instead
of using such image based metrics, we have proposed to
use porosity, which is an important petrophysical property
of interest in the application domain, as a metric for evalu-
ation of the different GAN based super-resolution methods.
Besides using porosity as a metric for evaluation, we have
also demonstrated that the super-resolution using Siamese-
SR model not just yields better porosity but also leads to
more accurate estimation of petrophysical properties of interest
calculated using Mercury Injection Capillary Pressure (MICP)
simulations and Multiple Relaxation Time Lattice Boltzmann
Method (MRTLBM) flow simulations.

Thus, the key contributions of this work can be summarized
as follows:

• Novel architecture called Siamese-SR (with Siamese Dis-
criminator + MINC Loss Estimator) is proposed specif-
ically for super-resolution of Digital Rock images.

• The network training is performed using pairs of sep-
arately acquired LR and HR images using different
micro-CT scanning acquisition parameters as against
using synthetically under-sampled HR images to generate
LR images. Due to this reason, image based metrics like
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structural similarity (SSIM) and PSNR are found to be
sub-optimal to quantify improvements in super-resolution
algorithms.

• Instead of using image based metrics like SSIM and
PSNR, we propose to use an important petrophysical
property from the application domain i.e. porosity as the
quantitative metric to evaluate the performance of various
SR models.

• We demonstrate the efficacy of our proposed
super-resolution model for improved petrophysical
property prediction by running physics simulations using
the super-resolved images, viz. Multiple Relaxation
Time Lattice Boltzmann Method (MRTLBM) flow
simulations for permeability prediction and Mercury
Injection Capillary Pressure (MICP) simulations for
prediction of the Capillary Pressure curve from which
other petrophysical properties of interest are derived.

• We also show that our proposed architecture opti-
mally focuses on edge-semantics using Local Attri-
bution Maps(LAM) generally used for evaluating the
super-resolution network performance.

The paper is organized as follows: We first present a
background of existing super-resolution methods in Section II.
Then, in Section III, we describe the proposed Siamese-
SR model, the image restoration loss functions used, the
network architecture, the figures of merit used for evaluation
and details about training and testing. We then present the
results of applying the above super-resolution models and their
evaluation using the quantitative metrics in Section IV. Then,
in Section V, we provide a brief discussions on the obtained
results. Finally, in section VI, we present the conclusions of
this study and discuss the scope for future work in this area.

II. EXISTING MODELS

In this section, we mainly focus our attention on some
of the widely used existing GAN based models for reasons
explained in Section I. The models that are mentioned in this
section are essentially used for performance benchmarking of
our proposed Siamese-SR model.

Super-resolution Generative Adversarial Network
(SRGAN) [17] incorporates an adversarial loss and a
perceptual loss based on feature space along with the basic
MSE loss. This perceptual loss between the generated image
and the HR image is based on the Euclidean distance
between their corresponding feature maps obtained from
the pre-trained VGG19 network. The generator of SRGAN
architecture comprises of a set of residual dense blocks
stacked between an input convolutional layer and the final
set of convolutional and pixel shuffler up-sampling layers.
The skip connections among these dense blocks allow the
gradients to directly flow across many layers and eliminate
issues like vanishing or exploding gradients in deeper
networks. The task of the generator is to learn to generate
realistic textures. On the other hand, the discriminator is
trained to distinguish between the generated super-resolved
image and the high-resolution image treated as a pseudo
ground truth.

Enhanced Super-Resolution Generative Adversarial Net-
work (ESRGAN) [18] is an advanced architecture which

enhances the key components of SRGAN to eliminate unde-
sired artifacts. Instead of the normal residual blocks, ESRGAN
uses residual-in-residual dense blocks that help in further
improving the recovered image quality as compared to
SRGAN. ESRGAN’s residual-in-residual dense blocks have
more skip connections compared to SRGAN’s residual blocks,
which is one of the major reasons for this improvement.
Furthermore, the relativistic-GAN based discriminator [19]
in ESRGAN predicts the relative realness of an image (real
features of the HR image) which helps the generator to
learn sharper edges than the standard discriminator which
only predicts if the image is real or not. ESRGAN also
introduces a new version of perceptual loss, which is based
on the VGG network fine-tuned using the Materials in Context
Database (MINC) loss [20]. This allows the perceptual loss to
focus more on the material texture and thus facilitates the gen-
erator to learn realistic textures of images. Occasionally, the
GAN-based methods generate undesired artefacts in the super
resolved images like wrinkles on human face in case of natural
images [18]. To remove this, ESRGAN and PSNR-based
models can be trained individually and interpolation can be
performed by combining the both the network parameters.
Ref. [18] indicates that although introducing MINC loss
provides only marginal improvement in the perceptual quality
index, but it clearly states that MINC loss helps significantly in
texture improvement. In digital rock images, we demonstrate
both qualitatively and quantitatively that introducing MINC
loss brings back the necessary texture present in the rock
images. We call this model as ESRGAN-MINC in the paper.

Structure-preserving super resolution method (SPSR)
[21], [22] is a recent super-resolution model that not only
retains the merits of GAN based methods to generate per-
ceptually pleasing features but also augments the architecture
with a gradient branch and a gradient loss to alleviate the issue
of geometric distortions commonly existing in the SR results
of perceptual-driven methods.

It is important to note that in addition to the GAN based
models mentioned in this section, we have also added one
CNN based model, viz. EDSR network in our performance
benchmarking for sake of completeness.

III. MATERIALS & METHOD

In this section, we describe our proposed Siamese-SR
model, the image restoration loss functions used, the network
architecture, the figures of merit used for evaluation and the
details about training and testing.

A. Proposed Model: Siamese-SR

The proposed Siamese-SR network, as shown in Fig. 2, con-
sists of three blocks: the generator network G̃, the relativistic
discriminator D̃ and the siamese discriminator S̃. The generator
network is a fully convolutional neural network that learns the
mapping G̃: LR �→ HR. The relativistic discriminator learns to
quantify the relative realness of the input image, whereas the
siamese discriminator learns to discriminate whether the input
image pair is a matching pair (HR, HR∗) or a non-matching
pair (SR, HR). The siamese discriminator is robust in ensuring
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Fig. 2. Proposed Siamese-SR model architecture. A block diagram of
entire SR module containing generator (G̃), Relativistic discriminator (D̃) and
Siamese discriminator (S̃).

that the generated SR image has semantic features similar to
the corresponding HR counterpart. We also incorporate a vari-
ation of perceptual loss known as Material In Context (MINC)
loss. The MINC loss helps to retain the original texture of the
Digital Rock images as discussed further in Section V.

1) GAN Objective of Relativistic Discriminator: Unlike
the normal discriminator which predicts whether a particular
sample is real or not, a relativistic discriminator predicts the
probability of relative realness of the data sample [19]. The
relativistic discriminator receives feedback from both real and
the generated data which in turn helps it guide the generator
to generate sharper textures. Apart from this, a relativistic
discriminator also stabilizes the GAN training [19]. The dis-
criminator objective function while training is given by:
max

D̃
LRe(G̃, D̃) = EH R

[
log

(
D̃(H R, G̃(L R))

)]

+ EL R
[

log
(
1 − D̃

(
G̃(L R), H R

))]
. (1)

The generator objective function is given by:
max

G̃
LRe(G̃, D̃) = EH R

[
log

(
1 − D̃(H R, G̃(L R))

)]

+ EL R
[

log
(
D̃

(
G̃(L R), H R

))]
, (2)

where D̃(x1, x2) is mathematically represented as follows:
D̃(x1, x2) = σ(C(x1) − EL R[(C(x1)]) . (3)

Here, E denotes the expectation operator over real and gen-
erated data, D̃ denotes the relativistic discriminator network,
and G̃ denotes the generator network, σ(x) is the sigmoid
function, C(x) denotes a non-transformed output of the dis-
criminator when the input is x and ELR denotes expectation
over all the generated samples which in our case is ˜G(L R).
The first term in Eq.1 represents the logarithmic probability
of the real data being more realistic than the generated data
while the second term represents the logarithmic probability
of whether the generated data is less realistic than the real
data. Networks G̃ and D̃ are trained alternately by fixing the
network parameters of one of the them and then updating the
network parameters of the other.

2) GAN Objective of Siamese Discriminator: Since the
siamese discriminator is based on the siamese twin net-
work [23], [24], it takes an image pair as input as shown
in Fig. 3(a) instead of taking a single image as input. If the
input image pair is a matching image pair (HR, HR∗), then it
results in embeddings for the two images which are closer in
the embedding space than the case where the input image pair
is a non-matching pair (HR, SR) as shown in Fig. 3(b). The
task of the siamese discriminator is to assign a high probability
value to the matching input pair and a low probability value to
the non-matching pair. While training a GAN with a siamese
discriminator, we minimize the Jensen–Shannon (JS) diver-
gence between matching and non-matching class distribution.
When trained using the siamese discriminator, the role of the
generator network is to produce an SR image which is as close
as possible to the HR image so that the siamese discriminator
assigns higher probability to the (HR, SR) input pair. Math-
ematically, the GAN objective for adversarial training using
the siamese discriminator is stated as follows:
min

G̃
max

D̃
LSiamese(G̃, S̃) = EH R

[
log

(
S̃(H R, H R∗)

)]

+ EL R
[

log
(
1 − S̃

(
G̃(L R), H R

))]
. (4)

Here, E denotes the expectation operator, S̃ denotes the
siamese discriminator network, and G̃ denotes the generator
network. The first term in Eq. 4 represents the logarith-
mic probability of the siamese discriminator predicting the
(HR, HR∗) pair as the matching sample pair. In contrast,
the second term represents the logarithmic probability of
the siamese discriminator predicting the (G̃(L R), H R) or
(SR, HR) as a non-matching sample pair. Networks G̃ and S̃
are trained alternately by fixing the network parameters of one
of them and then updating the network parameters of the other.
S̃(x1, x2) is mathematically expanded as follows:

S̃(x1, x2) = σ [β(γ (x1), γ (x2))] , (5)

β(x1, x2) = x1.x2

max(�x1�, �x2�, �) , (6)

where σ(x) represents the sigmoid function, β(x1, x2) rep-
resents the cosine distance between x1 and x2. The value
of � is chosen as 10−8 to avoid division by zero while
evaluating cosine distance. Here, (γ (x1), γ (x2)) represents the
embeddings obtained from the convolutional block present in
the siamese network for x1 and x2 respectively.

3) Significance of HR∗: Ideally, a perfectly matching pair
in our case should be (HR, HR), but the embeddings obtained
from the convolutional block in the siamese network will
always be the same for this image pair. In other words,
irrespective of weights in the network, the output for (HR, HR)
input image pair will remain the same, leading to inefficient
learning. Hence, in order to avoid the inefficient learning,
instead of passing (HR, HR) we pass (HR, HR∗) where HR∗
is the slightly perturbed version of HR image, such that
HR∗ = HR + ILR − IHR, where ILR and IHR represent the
average intensity of LR and HR images respectively. Note
that this perturbation is not pixel specific i.e., we add a
small perturbation in HR image which is the same across all
pixels. Adding such type of perturbation changes the intensity

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 25,2022 at 09:31:33 UTC from IEEE Xplore.  Restrictions apply. 



AHUJA et al.: SIAMESE-SR: SIAMESE SUPER-RESOLUTION MODEL FOR BOOSTING RESOLUTION OF DIGITAL ROCK IMAGES 3483

Fig. 3. (a) Basic structure of the siamese discriminator. (b) Demonstration of the working of siamese discriminator.

levels across all the pixels equally and does not introduce
unnecessary high-frequency artifacts.

B. Image Restoration Losses

In this sub-section, we describe the loss functions used
while training our network.

1) L1-Norm Based Loss Function: The generic mean
squared error loss function suffers from various limitations
when used for image restoration problems. The L2-norm based
loss does not significantly match the image quality with what
humans perceive [25]. Using L1-norm based loss function
instead of L2-norm based loss function significantly reduces
various image artifacts [26]. L1-norm based cost function
weighs the error differently compared to the L2-norm based
cost function; L2-norm based loss over-weighs the error while
back-propagating the error through the network layers. Math-
ematically, the L1-norm based loss can be stated as follows:

L�1(I) = 1

N

∑

i∈I

|x(i) − y(i)|, (7)

where I indicates the image whose pixel indices are repre-
sented by i, x(i) represents the pixel value in the ground truth
image and y(i) represents the pixel value in the predicted
image.

2) Materials In Context (MINC) Loss Function: The orig-
inal VGG network is trained on the ImageNet dataset,
which typically contains natural images. However, since rock
images are very different from natural images, we might
not achieve the relevant texture in the output while using
the ImageNet-trained VGG network for calculation of the
perceptual loss. Instead of training the VGG network using
the ImageNet database, we use the Material in Context

Database (MINC) [20], which is widely used for material
recognition tasks. This database consists of almost 3 million
samples which belong to materials around us like stone, wood,
ceramic, etc. So, MINC loss is also a perceptual loss calculated
using the VGG-19 network which is trained on the MINC
database. Mathematically, the MINC loss function can be
expressed as follows:

LMINC(I, Iest) = 1

C ∗ W ∗ H
||φ(I) − φ(Iest)| |2, (8)

where φ(.) represents the feature maps obtained from a pre-
trained VGG-19 network on the MINC database. We use the
16th convolutional layer of the VGG network to obtain the
feature maps. Here C, W, and H represents the number of
feature-maps, width, and height of the features maps.

Thus, the overall image restoration loss used in the
Siamese-SR model is given by:

LOIR = αLMINC + βL�1, (9)

where α and β are tunable weights. Detailed steps involved
in training the Siamese-SR model are summarized in the
algorithm described in the Supplementary Information file.

C. Network Architecture

The architecture of the proposed Siamese-SR model,
as shown in Fig. 2, consists of the generator and the relativistic
discriminator adapted from ESRGAN [18] with the addition
of a siamese discriminator for improved super-resolution. The
details of the three blocks are as follows:

1) Generator: The generator consists of an input convo-
lutional layer, a stack of eight residual blocks with skip
connections, a middle convolutional layer, a pixel shuffler-
based upsampling block, and finally an output convolutional
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layer. Instead of the normal residual blocks, the generator uses
residual-in-residual dense blocks that help in further improving
the recovered image quality. Residual scaling with a scale
factor of 0.2 was used to improve the stability of the network
[27], [28]. We observed that using more than eight residual
blocks did not improve the performance and hence we have
used a stack of eight residual blocks.

2) Relativistic Discriminator: The discriminator network
has a chain of convolutional layers with a kernel size of 3×3,
each having a LReLU (leaky ReLU) activation function. This
chain is followed by two final linear layers with the same
kernel size. The relativistic-GAN based discriminator [19]
helps the generator to incorporate sharper edges than the
standard discriminator which is only capable of producing an
output of whether the image is real or not.

3) Siamese Discriminator: The siamese discriminator uses a
siamese twin network [24] architecture, as shown in Fig. 3(a),
consisting of series of convolutional layers which use filters
of varying kernel sizes. We use 64 filters (kernel size:10×10)
in the 1st convolutional layer followed by 128 filters (kernel
size:7 × 7), 128 filters (kernel size:4 × 4) and 64 flters
(kernel size:4 × 4) in the 2nd, 3rd and 4th convolutional layers
respectively. Each of the four convolutional layers is followed
by a ReLU activation and a MaxPool layer. The complete
convolutional block is followed by a couple of fully connected
layers whose output serves as the final embedding. This
final embedding is then used to compute the cosine distance
followed by application of a sigmoid activation function.

D. Figures of Merit

Traditionally, image based metrics such as Peak Signal to
Noise Ratio (PSNR) and Structural Similarity Index (SSIM)
are commonly used for quantitative evaluation of the per-
formance of super-resolution models. However, it has been
shown in the literature that PSNR is often a poor metric
to judge an SR model performance as its purely based on
pixel values and does not guarantee a direct correlation with
a visually appealing image [29]. Particularly, PSNR favours
overly smoothed images [30], which do not retain the original
texture in the image. On the other hand, SSIM evaluates
the quality of an image based on structures, luminance, and
contrast. Hence, SSIM is a widely accepted and used metric to
evaluate the perceptual quality of the images [31]. It should
be noted however that most of the existing super-resolution
studies [9]–[12], [17] are generally performed on synthetically
generated LR images which are simply down-sampled versions
of HR images. However, in our study, as shown in Fig. 4,
we acquire LR volumes from a separate micro-CT scanning
acquisition rather than merely down-sampling the HR volumes
to generate the corresponding LR volume. Our approach of
using different acquisitions for obtaining the HR and LR
image pairs for training ensures that the model learns a
robust mapping between an LR image and an HR image.
However, since both the HR and LR images are acquired using
separate micro-CT scanning acquisitions, issues like mismatch
in contrast, luminance and improper image registration might
occur, resulting in poor image quality assessment when using

Fig. 4. Figure highlighting the difference between existing training method-
ologies for super-resolution using down-sampled HR images as LR images
vis-à-vis our methodology of using different acquisitions for LR & HR images.
The figure also highlights the difference in the way micro-porosity shows
up as well as the difference in contrast and intensities when two separate
acquisitions are used for LR & HR images.

Fig. 5. Comparison of PSNR and SSIM for bicubic and super-resolved
image using Siamese-SR. Bicubic image though is not perceptually good in
comparison to SR image but still is given higher number for both PSNR
and SSIM.

SSIM as a metric. It is also important to note that it is precisely
these differences between the LR & HR images obtained from
different acquisitions, because of which the additional siamese
discriminator in the proposed Siamese-SR model helps in
generating better super-resolution. To further illustrate with an
example the misleading evaluations based on the PSNR and
SSIM metrics, in Fig. 5, we show that both the PSNR and
SSIM metrics for the bicubic interpolated LR image are higher
compared to the SR image, even though SR has clearly a
higher perceptual quality in comparison to bicubic interpolated
LR image. Therefore, we propose to move away from these
image based metrics and rather focus on the estimation of
accurate petrophysical properties of interest as the metrics for
evaluation.

Since the ultimate objective of the Digital Rock workflow
is to estimate accurate petrophysical properties of interest,
we propose to subject the super-resolved images to the conse-
quent step in the workflow i.e. segmentation to calculate the
porosity. Porosity is one of the most fundamental properties,
the accurate estimation of which from CT images is absolutely
necessary for the accuracy of the entire Digital Rock work-
flow [32]. Hence, the different SR models were compared
based on the estimation of porosity from the super-resolved
images rather than image based metrics like PSNR and SSIM.
Furthermore, we also demonstrate with an example that once
a more accurate porosity is obtained using super-resolution,
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it also implies improvement in accuracy of the other petrophys-
ical properties of interest that are dervied from the segmented
image using Mercury Injection Capillary Pressure (MICP)
simulations [33], [34] and Multiple Relaxation Time Lattice
Boltzmann Method (MRTLBM) flow simulations [35], [36].
We now further describe image based porosity, MICP simula-
tions and MRTLBM simulations below:

1) Image Based Porosity: A porous media broadly con-
sists of two phases - the solid phase and the pore phase.
The solid phase is made of various materials, while the
pore phase is essentially the empty space in the media.
Total porosity is defined as the ratio of total pore space
volume to the total volume of the porous media. Various
methodologies have been proposed in the literature to esti-
mate porosity efficiently [37]–[40]. We estimate the porosity
from segmented micro-CT rock volumes as described in
Ref. [41]. We segment the super-resolved images using the
spatial Fuzzy C Means (sFCM) [42] clustering algorithm in
the similar fashion as presented in Ref. [41]. The sFCM
segmentation algorithm requires selecting seed points (cluster
centers) to initialize the segmentation process. We used the
same co-ordinates for cluster centers across all the different
super-resolution models as well as the HR image for consis-
tency. For the LR image as well, we used the corresponding
co-ordinates using the appropriate scaling factor between HR
and LR. The way we used porosity as a metric for evaluation
of the different super-resolution models is that we subject
the reconstructed SR volumes as well as the HR volumes to
sFCM segmentation and evaluate which of the super-resolution
models leads to a porosity value closest to that obtained via
the HR volume, which is our reference.

2) Mercury Injection Capillary Pressure (MICP) Simula-
tion: The MICP simulation essentially simulates the exper-
iment of injecting mercury into the rock sample at various
applied pressures to estimate several petrophysical properties
of interest. [33]. We have used the SatuDict module of
the GeoDict 2020 software package [34] to run the MICP
simulations and calculate the Capillary Pressure curves, from
which we have derived the following petrophysical properties
of interest: (a) the true porosity (ϕ∞), which is a corrected
version of the simple image-based porosity because it is the
porosity that mercury would invade at infinite applied pressure,
(b) the pore throat size distribution which can be captured
quantitatively through the nature of the MICP curve repre-
sented by the pore geometrical factor G obtained by fitting the
Thomeer equation [43], and (c) the displacement pressure (Pd)
which is directly related to the dominant pore throat size. The
MICP simulation demonstrates that the advantage of obtaining
the super-resolved images is not just restricted in improving
segmentation accuracy, but also in the subsequent steps based
on physics simulations where petrophysical properties of inter-
est are calculated.

3) Multiple Relaxation Time Lattice Boltzmann Method
(MRTLBM) Flow Simulation: The MRTLBM method [35],
which is an improvement over the Bhatnagar-Gross-
Krook [44] method, is widely used to simulate single-phase
flow of fluids through digital rock samples to calculate
permeability, which is an important petrophysical property

TABLE I

DETAILS OF THE DATASETS UTILIZED IN THIS WORK

of interest. We have run the distributed parallel implementa-
tion [36] of the MRTLBM method on general-purpose graph-
ics processing units, which is useful for the rapid and scalable
computation of absolute permeability from high-resolution
3D micro-CT images.

E. Training & Testing Dataset

The dataset used in this study consists of micro-CT images
of four sandstone rocks and a sphere pack. Most of the recent
SR studies have used a simple down-sampling of HR images
to generate the LR dataset. However, this can never entirely
duplicate the original relationship between the LR and HR
images. Such an approach might mislead the network to learn
the reverse-down-sampling operation rather than capturing the
complexities of the real differences between an LR & an HR
image. All the samples have been acquired at low and high
resolutions using the micro-CT scanner with a scale factor
of 2x as shown in Fig. 4. Two challenges arise when using
separately acquired LR and HR images for super-resolution in
the Digital Rock workflow. Firstly, the HR images capture a
smaller field-of-view than the corresponding LR images due
to the micro CT hardware’s inherent limitations [3]. Hence as
a part of pre-processing, we register the LR and HR volumes
and crop the LR image appropriately to match the field-of-
views. The LR-HR image pairs are obtained by slicing both the
volumes in the z-direction. Secondly, due to different scanning
times, the LR and HR images may vary in their grayscale
values at any particular location. A grayscale correction is
performed by histogram matching of the LR and HR images.
Although this does not mean that the corresponding grayscale
values match exactly across LR and HR images, but the
difference is minimized to a significant degree and the still
remaining difference is handled well by the siamese discrimi-
nator. Details of the different rocks samples, the corresponding
dimensions and resolution and the number of slices used for
the train-test split for each rock are shown in Table I. We have
restricted our testing to B2 and B3 rock samples because
they have the best resolution i.e. 1 − 1.5μm for the high
resolution images, which is the desired resolution range for the
desired accuracy of the digital rock workflow and hence these
two samples lend themselves to be the best testing dataset
for clear differentiation between the different super-resolution
methods for their performance in the digital rock workflow.
However, to have a sufficiently large and diverse training
dataset, we have used three other samples - two sandstone
rocks (A1, A2) and a sphere pack (SP2) which are at a slightly
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different resolution range but they have similar number of
voxels for resolving the pore throats (referred to as the N value
in the MICP simulations).

F. Training Details

Data augmentation operations like horizontal flip and ver-
tical flip were performed on the training image pairs. For
the training, the Adam optimizer was used and the β value
was set from 1 to 0.9 for all the models. Its important to
note that during the process of hyperparameter tuning and
training, we observed that the discriminator network learns
faster than the generator network. If the discriminator reaches
its threshold, it would not propagate any non-zero gradients to
the generator which inhibits the generator from learning any
further. To handle this issue, we set the discriminator’s learning
rate to 1/10th of the generator’s learning rate. After studying
the results for a range of epochs, we found 100 epochs to
be ideal. The hardware used for training was a worksta-
tion with an NVIDIA Quadro RTX 8000 48GB GPU. The
typical training time for each of the deep learning model
depends on the size of dataset, the depth of the network and
the corresponding number of hyperparameters. With the cur-
rent dataset and parameters, our Siamese-SR model requires
about 5-6 hours to train with around 195 million trainable
parameters.

IV. RESULTS

In this section, we present the qualitative and quantita-
tive performance benchmarking of our proposed Siamese-SR
model against several different existing SR models (SRGAN,
ESRGAN, ESRGAN-MINC, EDSR and SPSR). The qualita-
tive comparison involves visual inspection of the images by
the trained eye of a geologist and the quantitative compari-
son involves estimation of porosities from the super-resolved
outputs of the different SR models as well as those of the
acquired LR and HR volumes for reference. Furthermore,
we present two ablation studies – one for the weights assigned
to the different loss functions in our proposed Siamese-SR
model and one for highlighting the impact of different loss
functions that make up Siamese-SR. Another important point
we discuss in this section is the evaluation of the different
methods from an image-analysis point of view. As we already
mentioned several reasons in Section III-D for why it is not
possible to use a standard quantitative image-based metric
like PSNR and SSIM, we explore a different approach here
which although is qualitative but still is widely used for the
evaluation of super-resolution methods - Local Attribution
Maps (LAMs).

A. Qualitative Performance Benchmarking

For qualitative inspection, we show representative slices
from each of the two rock volumes in the testing dataset
- B3 (Fig. 6(I)) and B2 (Fig. 6(II)). The yellow arrows in
this figure indicate regions of microporosity, which are the
key regions that are not very well captured at low resolution
leading to the lower porosity obtained from LR images, and
hence these are the regions of interest that the super-resolution

TABLE II

COMPARISON OF SUPER-RESOLUTION METHODS IN TERMS OF
ESTIMATED POROSITY. CLOSEST POROSITY VALUES TO THE

ACTUAL HR POROSITY ARE SHOWN IN BOLD. WE ALSO

INCLUDE PERCENTAGE ERROR FOR THE ESTIMATED

POROSITY CONSIDERING HR POROSITY
AS REFERENCE

models must capture well. Furthermore, we zoom into certain
regions represented with the green box and show the zoomed
in version as an inset in the bottom left of the figures for a
closer evaluation. To the trained eye of the expert geologists
& petrophysicists, it was clear that the Siamese-SR model
was indeed performing better than the other models but for
a more easily tractable evaluation, we resort to quantiative
performance benchmarking described below.

B. Quantitative Performance Benchmarking

We estimated the porosity of all the rock volumes obtained
using the different SR models using sFCM segmentation for
quantitative comparison. We consider the estimated porosity
of the HR volume as reference porosity and thus the model
which estimates the closest porosity to the HR porosity is
considered to perform best among all SR models. Estimated
porosity values and percentage errors in the estimated porosity
for the super-resolved rock volumes B2 and B3 based on
the HR porosity as reference are shown in Table II. It is
evident that the proposed SR method (Siamese-SR) has the
least absolute error in porosity (vis-a-vis the HR porosity) as
compared to the other SR models. Furthermore, as can be seen
from Table II, some of the other SR methods like EDSR and
SPSR are not robust because they sometimes under-predict
and sometimes over-predict the porosity. Particularly, under-
prediction of porosity can be considered as a serious flaw in the
super-resolution because the whole idea of super-resolution is
to reveal the sub-resolution porosity in the image and thereby
increase the porosity estimate by resolving the under-resolved
pores.

Furthermore, to demonstrate that the improvement due to
super-resolution using Siamese-SR is not just restricted to the
porosity, but rather carries forward to the consequent steps in
the Digital Rock workflow, we have also performed Mercury
Injection Capillary Pressure (MICP) simulations. Since the
B3 sample showed the most significant difference in the
LR and HR porosities (see Table II), we have used this
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Fig. 6. Representative slice from the rock samples B3 (I) and B2 (II) for visual inspection. A region of interest (ROI) is highlighted in a green box and it’s
zoomed-in version is placed as an inset at the bottom left of every image. Yellow arrows indicate efficacy of Siamese-SR to capture lost micro-porosity in
comparison to other models. The efficacy in capturing micro-porosity is backed by quantitative results for B3 and B2 as shown in Table:II . [I] (a): LR, (b): HR,
(c): SRGAN, (d): ESRGAN, (e): ESRGAN-MINC, (f): EDSR, (g): SPSR, (h): Siamese-SR(Proposed). [II] (i): LR, (j): HR, (k): SRGAN, (l): ESRGAN,
(m): ESRGAN-MINC, (n): EDSR, (o): SPSR, (p): Siamese-SR(proposed).

sample for demonstrating the effect of a better segmented
image on more accurate petrophysical parameter estimation
from MICP simulations and Multiple Relaxation Time Lattice
Boltzmann Method (MRTLBM) flow simulations. The MICP
simulations were performed using the SatuDict module of
the GeoDict 2020 software package [34] with two different
sets of boundary conditions. In the first case, we have used
isotropic boundary conditions wherein the non-wetting phase
mercury invades from Z+, Y+ and X+ directions and the

wetting phase leaves from Z−, Y− and X− directions and
in the second case, the Z-direction is used as the flow
direction and symmetric boundary conditions are used in the
other two directions. Table III summarizes the petrophysical
properties of interest obtained by fitting the MICP simulation
curves (shown in the supplementary information file) with the
Thomeer equation [43]. It can be clearly seen that irrespective
of the boundary conditions used for the MICP simulations,
our proposed Siamese-SR model leads to the most accurate

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 25,2022 at 09:31:33 UTC from IEEE Xplore.  Restrictions apply. 



3488 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 31, 2022

TABLE III

ESTIMATED PETROPHYSICAL PROPERTIES FOR ROCK SAMPLE B3 OBTAINED FROM MICP SIMULATIONS WITH ISOTROPIC AND ANISOTROPIC
BOUNDARY CONDITIONS. CLOSEST PARAMETER VALUES TO THOSE OF HR (WHICH IS USED AS REFERENCE) ARE SHOWN IN BOLD

TABLE IV

ESTIMATED PERMEABILITIES FOR ROCK SAMPLE B3 OBTAINED FROM

MRTLBM SIMULATIONS. CLOSEST PERMEABILITY VALUE TO THE
ACTUAL HR PERMEABILITY IS SHOWN IN BOLD. WE ALSO

INCLUDE PERCENTAGE ERROR FOR THE ESTIMATED

PERMEABILITIES CONSIDERING HR
PERMEABILITY AS REFERENCE

estimation of the petrophysical properties which are closest
to those obtained from the HR volumes used as reference.
Table IV summarizes the permeability values obtained from
MRTLBM simulations of the super-resolved outputs of the
various SR models. As is clearly evident, our proposed
Siamese-SR method produces permeability estimate which is
closest to the HR permeability, which is used as the reference.

C. Ablation Study for the Weights of the Different
Loss Functions

In this sub-section, we present a quick ablation study
which demonstrates that we tried applying different weights
α and β for the two loss functions as declared in Eq. 9.
The images from this ablation study are shown in Fig. 7
and the quantitative results of the ablation study are sum-
marized in Table V. As can be seen from the results,
it was challenging to tune the weights in a way that we
achieve the best prediction for the petrophysical proper-
ties of interest like porosity as well as permeability cal-
culated using Multiple Relaxation Time Lattice Boltzmann
Method (MRTLBM) flow simulations. Hence, we have chosen
to weigh the two loss functions equally, without any loss of
generality.

D. Ablation Study for the Impact of Different
Loss Functions

In this sub-section, we present an ablation study to high-
light the impact of the different loss functions that make
up Siamese-SR. The images from the ablation study are
presented in Fig. 8 and the quantitative results of the abla-
tion study have been presented in Table VI. It can be
clearly seen from the results that while the addition of
the MINC loss and the Siamese discriminator individually
help improve the performance, its actually their combination
that makes Siamese-SR so powerful in terms of accurate
prediction of petrophysical properties of interest such as
porosity as well as permeability calculated using Multiple
Relaxation Time Lattice Boltzmann Method (MRTLBM) flow
simulations.

E. Local Attribution Maps for Evaluation
of SR Methods

In this sub-section, we present the use of Local Attribution
maps (LAM) [45], which are a recently developed tool used
to evaluate super-resolution networks. LAMs have been devel-
oped to essentially find input features that strongly influence
the network outputs. Basically, path integral gradients are
employed to conduct attribution analysis as described in [45].
Although, this is not a quantitative image-based metric like
PSNR or SSIM (which we have already highlighted as metrics
that are not applicable due to various reasons mentioned in
Section III-D), but to the best of our knowledge, LAMs are
the only image-based evaluation technique for super-resolution
available in the literature that ties well with the features of
interest (edge-semantics) that we are interested in enhancing
with super-resolution.

Firstly, to deep dive into the impact of various losses from
the image enhancement perspective, we have shown Local
Attribute Maps for the Siamese-SR model with both the MINC
loss and the Siamese discriminator included as well as by
excluding one or both of these. It can be clearly seen from the
results shown in Fig. 9 that while the addition of the MINC
loss and the Siamese discriminator individually help focus on
different types of features, its actually their combination that
makes Siamese-SR optimally focus on edge-semantics, which

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 25,2022 at 09:31:33 UTC from IEEE Xplore.  Restrictions apply. 



AHUJA et al.: SIAMESE-SR: SIAMESE SUPER-RESOLUTION MODEL FOR BOOSTING RESOLUTION OF DIGITAL ROCK IMAGES 3489

Fig. 7. Ablation study highlighting the effect of different weights for the different losses of our proposed Siamese-SR model on a representative slice from
the rock sample B3. A Region of interest (ROI) is highlighted in a green box and its zoomed-in version is placed as an inset at the bottom left of every
image. The quantitative results (porosity and permeability) corresponding to each sub-figure are shown in Table V.

TABLE V

ABLATION STUDY HIGHLIGHTING THE EFFECT OF DIFFERENT WEIGHTS FOR MINC LOSS AND L1 LOSS ON ESTIMATED POROSITY AND PERMEABILITY.
CLOSEST POROSITY AND PERMEABILITY VALUES TO THE ACTUAL HR POROSITY AND PERMEABILITY ARE SHOWN IN BOLD

Fig. 8. Ablation study highlighting the effect of different losses on a representative slice from the rock sample B3. A Region of interest (ROI) is highlighted in
a green box and its zoomed-in version is placed as an inset at the bottom left of every image. The quantitative results (porosity and permeability) corresponding
to each sub-figure are shown in Table VI.

is what makes it so powerful in terms of accurate prediction
of petrophysical properties of interest.

Secondly, for highlighting the difference between our pro-
posed Siamese-SR model and other methods in terms of opti-
mal focus on the features of interest, we have presented LAMs
for the different super-resolution methods in Fig. 10. As can
be seen from the comparison of the LAMs of our proposed
Siamese-SR with the other methods, our proposed Siamese-SR
method provides optimal focus on edge-semantics, which
is what essentially translates to a more accurate porosity
estimate, which is the metric that tallies well with expert
petrophysical and geological opinion.

V. DISCUSSION

The main difference between the porosities estimated from
LR and HR images stems from the fact that some of the
micro-porosity is missed when the sample is scanned at a
lower resolution and it only becomes visible at a higher
resolution. This micro-porosity gets hidden in the LR images
due to the coarser voxel size leading to the regions with
the micro-pores getting smudged out with an intermediate
intensity value which leads to misclassification during seg-
mentation. Therefore, the task of the super-resolution mod-
els is to capture well these regions of micro-porosity from
the LR image and yield a super-resolution image that has
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TABLE VI

ABLATION STUDY HIGHLIGHTING THE EFFECT OF DIFFERENT LOSSES ON ESTIMATED POROSITY AND PERMEABILITY. CLOSEST POROSITY
VALUES TO THE ACTUAL HR POROSITY AND PERMEABILITY ARE SHOWN IN BOLD. WE ALSO INCLUDE PERCENTAGE

ERROR CONSIDERING HR POROSITY AND PERMEABILITY AS REFERENCE

Fig. 9. Local attribution maps for two different marked-out Regions of interest (ROI-1 and ROI-2) in a super-resolved slice of rock sample B3. Qualitatively,
our proposed Siamese-SR model (with both siamese siscriminator and MINC loss), achieves the optimal focus between background and edge semantics
compared to other ablation settings. This is also quantitatively backed by computation of porosity and permeability values across various ablation settings as
shown in Table VI.

more or less the same structure as the HR image. Since
this is quite a challenging task, its understandable that the
super-resolution methods are not exactly able to match the
HR image porosity and do tend to slightly over-predict the
porosity in the cases that we have studied but we clearly see
that the proposed Siamese SR model gives the closest porosity
to the HR image as can be seen from Table II). Furthermore,
the superior performance of the Siamese-SR model is also
evident from the accuracy of the petrophysical properties esti-
mated via MICP simulation curves as well as permeabilities
estimated from MRTLBM simulations, as can be seen from
Table III and Table IV, which is a testimony to the hypoth-
esis that a better segmented image is crucial for the better

prediction of petrophysical properties from the Digital Rock
workflow.

Using LR and HR images acquired separately from different
micro-CT acquisitions introduces challenges like intensity
variation between the LR and HR pairs as well slight dif-
ferences in noise characteristics. It is to overcome these chal-
lenges that we have introduced the siamese discriminator in
our Siamese-SR network, which is based on similarity learning
network, also known as siamese twin network, which is robust
enough to provide optimally denoising and accounting for
intensity variation. The siamese discriminator checks whether
the generated super-resolution (SR) image has the required
semantic features such as edge information similar to the
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Fig. 10. Local attribution Maps of the highlighted Regions of interest (ROIs) for two sets of super-resolved images of rock sample B3 from various
super-resolution methods. Qualitatively, our proposed model Siamese-SR achieves the optimal focus between background and edge semantics when compared
to other models. This is quantitatively backed by petrophysical properties of interest shown in Table II, Table III and Table IV.

Fig. 11. Qualitative performance study showing the various super-resolution
models alongside the LR and HR images as reference (a): LR, (b): HR, (c):
SRGAN, (d): ESRGAN, (e): ESRGAN-MINC, (f): Siamese-SR(proposed).
Yellow circle, Red arrow, Green arrow indicates texture preservation, Sharp
edge profile and edge preservation respectively.

actual HR image as compared to simply determining if the
SR image is real or fake image like a normal discriminator.
To elucidate this further with an example, we have shown a
zoomed-in part of a slice from the B2 rock sample obtained
from the various super-resolution methods in Fig. 11. It can
be seen that Siamese-SR turns out to be the optimal network
in terms of texture preservation, sharpness of the pore-grain
boundary as well as edge preservation. We observe that
SRGAN and ESRGAN network output have very smooth edge
profile at the grain-pore boundary (as indicated by red arrows
in Fig. 11(c) and (d)) because these networks tend to produce
over-smoothed images which compromises on the texture and
loss of finer details (as indicated by the yellow circle and green
arrows in Fig. 11 (c) and (d)). To retain these finer details and
texture, the MINC loss was introduced instead of conventional
perceptual loss while training the ESRGAN-MINC network.
The MINC loss tends to bring back the necessary texture
and finer details in the output (as indicated by green arrow

and a yellow circle in Fig. 11(e)) but it tends to compromise
on the sharpness at the grain-pore boundary by making the
image slightly more noisy (as indicated by the red arrow
in Fig. 11 (e)). The addition of the siamese discriminator
provides optimal denoising without compromising finer details
and also preserves the texture in the image as can be seen
in Fig. 11(f).

VI. CONCLUSION & SCOPE FOR FUTURE WORK

We have proposed a novel super-resolution model called
Siamese-SR for boosting the resolution of 3D Digital Rock
images acquired using micro-CT scanning technology. The
proposed Siamese-SR model improves upon the ESRGAN
architecture by the addition of a siamese discriminator which
provides optimal de-noising and captures important semantic
features present in the rock images. The efficacy of the
proposed model is backed both qualitatively using visual
inspection by experts as well as quantitatively by analyzing
the accuracy of the estimation of petrophysical properties
of interest by subjecting the super-resolved images to the
physics simulations in the consequent steps of the Digital
Rock workflow. The petrophysical properites of interest that
we estimate are image-based porosity, permeability from
MRTLBM flow simulations and Capillary Pressure curve and
other derived properties from MICP simulations.Thus, we have
proposed a move away from image based metrics and rather
proposed to use the quantitative metrics from the application
domain based on the estimation of petrophysical properties.
Furthermore, we have also used Local Attribution Maps to
highlight the optimal focus of our proposed Siamese-SR model
on edge-semantics which leads to our Siamese-SR model
outperforming several existing SR methods like SRGAN,
ESRGAN, EDSR and SPSR in terms of accurate estimation
of the above-mentinoed petrophysical properties of interest.
While we have applied our model to Digital Rock Physics,
it is important to note that our model can also benefit the
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medical image processing community, where reconstructing
accurate structures and features of interest is more important
than simply the perceptual quality.

A natural next step would be to extend the Siamese-SR
model so that it can include the 3D context present in the
3D micro-CT volumes while training instead of training on
2D slices extracted from the volume like we have done in
this present study. Hence, we are working towards exploring
3D models for Super Resolution and evaluating the same for
their integration into the workflow. The 3D super-resolution
models operate on 3D mini-cubes instead of 2D slices and
therefore should be able to provide even more enhanced
Super-Resolution in principle because they are capable of
learning from the 3D context and also produce a 3D output
with lesser artifacts. This will also take away the anisotropy
in the way 2D super-resolution is applied by slicing along one
direction and then training the model slice-by-slice. However,
there are also hardware limitations based on GPU memory
which can limit the size of the mini-cubes that can be used for
training, let alone the higher compute times associated with the
training. Thus, the application of 3D models for boosting the
resolution of Digital Rock images will be separately evaluated
in a future study.

ACKNOWLEDGMENTS

The authors thank Shell International Exploration and
Production Inc., for permission to publish this work.
They would like to thank specially Justin Freeman,
Kunj Tandon, Steffen Berg, F. O. Alpak, Bochao Zhao, and
Chaitanya Pradhan for discussions and Pandu Devarakota for
his critical review, which significantly improved the paper.

CODE, DATA, AND MATERIALS AVAILABILITY

The paper has supplementary downloadable material pro-
vided by the authors, which includes the algorithm for training
the proposed Siamese-SR model and the Mercury Injection
Capillary Pressure (MICP) simulation curves. The associated
code and data that support the findings of this study are avail-
able from the corresponding author upon reasonable request.
Contact vishal.ahuja@shell.com for further questions about
this work.

REFERENCES

[1] H. Al-Marzouqi, “Digital rock physics: Using CT scans to compute rock
properties,” IEEE Signal Process. Mag., vol. 35, no. 2, pp. 121–131,
Mar. 2018.

[2] N. Saxena, R. Hofmann, F. O. Alpak, J. Dietderich, S. Hunter, and
R. J. Day-Stirrat, “Effect of image segmentation & voxel size on
micro-CT computed effective transport & elastic properties,” Mar.
Petroleum Geol., vol. 86, pp. 972–990, Sep. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0264817217302593

[3] Z. Li, Q. Teng, X. He, G. Yue, and Z. Wang, “Sparse representation-
based volumetric super-resolution algorithm for 3D CT images of
reservoir rocks,” J. Appl. Geophys., vol. 144, pp. 69–77, Sep. 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0926985117303592

[4] C. Qiao et al., “Evaluation and development of deep neural networks for
image super-resolution in optical microscopy,” Nature Methods, vol. 18,
no. 2, pp. 194–202, Feb. 2021.

[5] Z. Chen, X. Guo, P. Y. M. Woo, and Y. Yuan, “Super-resolution enhanced
medical image diagnosis with sample affinity interaction,” IEEE Trans.
Med. Imag., vol. 40, no. 5, pp. 1377–1389, May 2021.

[6] F. Deeba et al., “A plexus-convolutional neural network framework for
fast remote sensing image super-resolution in wavelet domain,” IET
Image Process., vol. 15, no. 8, pp. 1679–1687, Jun. 2021.

[7] Y. D. Wang, R. T. Armstrong, and P. Mostaghimi, “Enhancing res-
olution of digital rock images with super resolution convolutional
neural networks,” J. Petroleum Sci. Eng., vol. 182, Nov. 2019,
Art. no. 106261.

[8] H. Chen, X. He, Q. Teng, R. E. Sheriff, J. Feng, and S. Xiong, “Super-
resolution of real-world rock microcomputed tomography images using
cycle-consistent generative adversarial networks,” Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 101, no. 2, Feb. 2020,
Art. no. 023305.

[9] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using
deep convolutional networks,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 2, pp. 295–307, Feb. 2015.

[10] J. Kim, J. K. Lee, and K. M. Lee, “Deeply-recursive convolutional
network for image super-resolution,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 1637–1645.

[11] W. Shi et al., “Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016,
pp. 1874–1883.

[12] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep
residual networks for single image super-resolution,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jul. 2017,
pp. 1132–1140.

[13] J. Yu et al., “Wide activation for efficient and accurate image
super-resolution,” in Proc. 30th Brit. Mach. Vision Conf. (BMVC),
2018.

[14] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in Proc. 37th Asilomar Conf.
Signals, Syst. Comput., vol. 2, Jul. 2003, pp. 1398–1402.

[15] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli,
“Image quality assessment: From error visibility to structural sim-
ilarity,” IEEE Trans. Image Process., vol. 13, no. 4, pp. 600–612,
Apr. 2004.

[16] P. Gupta, P. Srivastava, S. Bhardwaj, and V. Bhateja, “A modified PSNR
metric based on HVS for quality assessment of color images,” in Proc.
Int. Conf. Commun. Ind. Appl., Dec. 2011, pp. 1–4.

[17] C. Ledig et al., “Photo-realistic single image super-resolution using
a generative adversarial network,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 105–114.

[18] X. Wang et al., “ESRGAN: Enhanced super-resolution generative adver-
sarial networks,” in The Eur. Conf. Comput. Vis. Workshops (ECCVW),
Sep. 2018, pp. 1–16.

[19] A. Jolicoeur-Martineau, “The relativistic discriminator: A key element
missing from standard GAN,” 2018, arXiv:1807.00734.

[20] S. Bell, P. Upchurch, N. Snavely, and K. Bala, “Material recogni-
tion in the wild with the materials in context database,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 3479–3487.

[21] C. Ma, Y. Rao, Y. Cheng, C. Chen, J. Lu, and J. Zhou, “Structure-
preserving super resolution with gradient guidance,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2020, pp. 7769–7778.

[22] C. Ma, Y. Rao, J. Lu, and J. Zhou, “Structure-preserving image super-
resolution,” IEEE Trans. Pattern Anal. Mach. Intell., early access,
Sep. 22, 2021, doi: 10.1109/TPAMI.2021.3114428.

[23] N. A. Kande, R. Dakhane, A. Dukkipati, and P. K. Yalavarthy, “Siame-
seGAN: A generative model for denoising of spectral domain optical
coherence tomography images,” IEEE Trans. Med. Imag., vol. 40, no. 1,
pp. 180–192, Jan. 2021.

[24] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks
for one-shot image recognition,” in Proc. ICML Deep Learn. Workshop,
Lille, France, vol. 2, 2015, pp. 1–30.

[25] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “A comprehen-
sive evaluation of full reference image quality assessment algo-
rithms,” in Proc. 19th IEEE Int. Conf. Image Process., Sep. 2012,
pp. 1477–1480.

[26] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image
restoration with neural networks,” IEEE Trans. Comput. Imag., vol. 3,
no. 1, pp. 47–57, Mar. 2017.

[27] Y. D. Wang, R. T. Armstrong, and P. Mostaghimi, “Enhancing resolu-
tion of digital rock images with super resolution convolutional neural
networks,” J. Petroleum Sci. Eng., vol. 182, Nov. 2019, Art. no. 106261.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0920410519306825

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 25,2022 at 09:31:33 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TPAMI.2021.3114428


AHUJA et al.: SIAMESE-SR: SIAMESE SUPER-RESOLUTION MODEL FOR BOOSTING RESOLUTION OF DIGITAL ROCK IMAGES 3493

[28] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-ResNet and the impact of residual connections on learning,”
in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–4284.

[29] V. Chudasama and K. Upla, “Computationally efficient progressive
approach for single-image super-resolution using generative adversarial
network,” J. Electron. Imag., vol. 30, no. 2, pp. 1–36, Jan. 2021, doi:
10.1117/1.JEI.30.2.021003.

[30] K. Zhang et al., “NTIRE 2020 challenge on perceptual extreme super-
resolution: Methods and results,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 2045–2057.

[31] Z. Wang, J. Chen, and S. Hoi, “Deep learning for image super-resolution:
A survey,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 43, no. 10, pp. 3365–3387, Mar. 2020.

[32] N. Saxena et al., “Rock properties from micro-CT images: Digital rock
transforms for resolution, pore volume, and field of view,” Adv. Water
Resour., vol. 134, Dec. 2019, Art. no. 103419. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0309170819301435

[33] W. R. Purcell, “Capillary pressures–their measurement using mercury
and the calculation of permeability therefrom,” J. Petroleum Technol.,
vol. 1, no. 2, pp. 39–48, Feb. 1949.

[34] L. L. Schepp et al., “Digital rock physics and laboratory considerations
on a high-porosity volcanic rock,” Sci. Rep., vol. 10, no. 1, pp. 1–16,
2020.

[35] D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L. S. Luo,
“Multiple–relaxation–time lattice Boltzmann models in three dimen-
sions,” Philos. Trans. Roy. Soc. London A, Math., Phys. Eng. Sci.,
vol. 360, no. 1792, pp. 437–451, 2002.

[36] F. O. Alpak, F. Gray, N. Saxena, J. Dietderich, R. Hofmann, and
S. Berg, “A distributed parallel multiple-relaxation-time lattice Boltz-
mann method on general-purpose graphics processing units for the rapid
and scalable computation of absolute permeability from high-resolution
3D micro-CT images,” Comput. Geosci., vol. 22, no. 3, pp. 815–832,
Jun. 2018.

[37] E. M. Withjack, “Computed tomography for rock-property determination
and fluid-flow visualization,” SPE Formation Eval., vol. 3, no. 4,
pp. 696–704, Dec. 1988.

[38] S. Akin, M. Demiral, and E. Okandan, “A novel method of porosity
measurement utilizing computerized tomography,” In Situ, vol. 20, no. 4,
pp. 347–365, 1996.

[39] H. Taud, R. Martinez-Angeles, J. F. Parrot, and
L. Hernandez-Escobedo, “Porosity estimation method by X-ray
computed tomography,” J. Petroleum Sci. Eng., vol. 47, nos. 3–4,
pp. 209–217, Jun. 2005. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0920410505000586

[40] L. L. Schepp et al., “Digital rock physics and laboratory
considerations on a high-porosity volcanic rock: Micro-XRCT
data sets,” Math2Market GmbH, Berlin, Germany, Tech. Rep.,
2020.

[41] N. Saxena et al., “Rock properties from micro-CT images:
Digital rock transforms for resolution, pore volume, and
field of view,” Adv. Water Resour., vol. 134, Dec. 2019,
Art. no. 103419.

[42] K.-S. Chuang, H.-L. Tzeng, S. Chen, J. Wu, and T.-J. Chen,
“Fuzzy c-means clustering with spatial information for image
segmentation,” Comput. Med. Imag. Graph., vol. 30, pp. 9–15,
Jan. 2006.

[43] J. H. M. Thomeer, “Introduction of a pore geometrical factor defined
by the capillary pressure curve,” J. Petroleum Technol., vol. 12, no. 3,
pp. 73–77, Mar. 1960, doi: 10.2118/1324-G.

[44] P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for col-
lision processes in gases. I. Small amplitude processes in charged
and neutral one-component systems,” Phys. Rev., vol. 94, p. 511,
May 1954.

[45] J. Gu and C. Dong, “Interpreting super-resolution networks with local
attribution maps,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2021, pp. 9199–9208.

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on May 25,2022 at 09:31:33 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1117/1.JEI.30.2.021003
http://dx.doi.org/10.2118/1324-G


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


