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Abstract—The limited data photoacoustic image reconstruction
problem is typically solved using either weighted or ordinary least
squares (LS), with regularization term being added for stability,
which account only for data imperfections (noise). Numerical mod-
eling of acoustic wave propagation requires discretization of imag-
ing region and is typically developed based on many assumptions,
such as speed of sound being constant in the tissue, making it imper-
fect. In this paper, two variants of total least squares (TLS), namely
ordinary TLS and Sparse TLS were developed, which account for
model imperfections. The ordinary TLS is implemented in the
Lanczos bidiagonalization framework to make it computationally
efficient. The sparse TLS utilizes the total variation penalty to pro-
mote recovery of high frequency components in the reconstructed
image. The Lanczos truncated TLS and Sparse TLS methods were
compared with the recently established state-of-the-art methods,
such as Lanczos Tikhonov and Exponential Filtering. The TLS
methods exhibited better performance for experimental data as
well as in cases where modeling errors were present, such as few
acoustic detectors malfunctioning and speed of sound variations.
Also, the TLS methods does not require any prior information
about the errors present in the model or data, making it attractive
for real-time scenarios.

Index Terms—Image reconstruction, Lanczos bidiagonalization,
model errors, photoacoustic imaging, sparse total least squares,
total least squares, and truncated total least squares.

I. INTRODUCTION

PHOTOACOUSTIC tomography (PAT) is a non-invasive
and hybrid imaging technique combining endogenous op-

tical contrast and high ultrasonic resolution [1]–[5]. In this, a
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pulsed laser irradiates the biological tissue under investigation,
the optical energy gets absorbed by the tissue, resulting in a
temperature rise (in the order of milli Kelvin). Thus leading
to acoustic waves generation due to thermoelastic expansion.
The generated pressure waves propagate in the tissue and gets
detected by the acoustic transducers placed on the boundary of
the tissue. The recorded pressure information at the boundary
of the tissue gets utilized in a reconstruction scheme to obtain
the initial pressure rise distribution. The initial pressure rise is
proportional to the product of optical fluence and absorption co-
efficient. The absorption coefficient is internally very sensitive
to the tissue patho-physiology. So the initial pressure distribu-
tion reveals the tissue patho-physiological condition, with major
applications in oncology and physiology. Moreover, PAT can be
scalable to reveal structural, functional, and molecular informa-
tion [6]–[10].

The important step in photoacoustic tomography is image re-
construction, which enables quantification of tissue functional
properties [11]–[14]. Several reconstruction methods, includ-
ing analytical and model-based, have been proposed earlier in
the literature [14]. Analytical reconstruction algorithms (specifi-
cally, filtered back projection (FBP) and delay & sum) and time-
reversal based algorithms have been widely used to reconstruct
the initial pressure distribution [11]–[14]. These algorithms are
relatively fast compared to model-based ones with a caveat that
they require large data to provide much required quantification.
The requirement of large data in turn solicits higher instrumen-
tation cost and/or increased data acquisition time. The recent
advances in image reconstruction have enabled utilization of
model-based reconstruction schemes effectively and proven to
provide quantitatively accurate results compared to analytical
reconstruction algorithms in limited-data cases [14]–[16].

The photoacoustic tomographic setups that are commonly de-
ployed records the acoustic signals over an aperture that does
not enclose the object, which results in limited data (also known
as incomplete data) [17]–[19] or resorts to compressed sensing
approaches to accelerate data acquisition [20]. In these cases,
the PA reconstruction is an ill-posed problem, necessitating the
model-based algorithms to impose constraints on the solution
of the inverse problem by a regularization scheme [21]–[25].
The work presented here is geared towards providing practi-
cal algorithms that can work effectively in these limited data
cases (i.e., providing solution to the ill-posed problem). Most
model-based algorithms assume that the model (imperfect) is
known and does not minimize the imperfections in the model.

1077-260X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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However, model imperfections cause distortions in the image
and degrade the image quality. Recently, a reconstruction al-
gorithm to mitigate the modeling errors induced by inaccurate
knowledge of transducer impulse response was proposed and
shown to be effective in terms of improving the reconstructed
photoacoustic image quality [26]. However, explicitly account-
ing for all possible model/experimental inconsistencies in a re-
construction algorithm is computationally demanding, in turn
making the image reconstruction procedure not appealing in
real-time.

This work introduces a scheme that was based on total least
squares (TLS), which could handle modeling errors effectively.
Specifically, it introduces Lanczos truncated total least squares
(T-TLS) [27] as well as Sparse total least squares (Sparse TLS)
[28], [29], which can simultaneously handle imperfections in
the model as well as data noise. The Lanczos T-TLS was set-
up in a well-established dimensionality reduction framework
that uses least-squares QR (Lanczos bidiagonalization) decom-
position, thus adding little to no computational complexity to
perform the image reconstruction procedure. We also show that
using numerical examples that Lanczos T-TLS and Sparse TLS
can effectively handle acoustic detector malfunctioning and also
provide more robustness to noise compared to the state-of-the-
art image reconstruction methods. Similarly, another case of
handling modeling errors, such as speed of sound variation, was
also presented to show the effectiveness of the TLS methods. Fi-
nally, the experimental data generated from horse hair phantom
was utilized to validate the effectiveness of TLS methods.

II. PHOTOACOUSTIC TOMOGRAPHY: FORWARD PROBLEM

The forward problem in PAT involves collection of pressure
data on the boundary of the tissue for a given initial pressure
distribution. The acoustic wave propagation in biological tissues
can be modeled using the wave equation, given as

∇2P (d, t) − 1
c2

∂2P (d, t)
∂t2

=
−β

Cp

∂H(d, t)
∂t

, (1)

where c is the speed of sound in the medium, β is the thermal
expansion coefficient, Cp is the specific heat, and H(d, t) is
the absorbed energy per unit time per unit volume with spatial
location indicated by d. For a stationary source, the absorbed
energy can be written as H(d, t) = H(d)H(t). Under the con-
dition of stress confinement, the temporal part of the source can
be approximated by a delta function H(d, t) ≈ H(d)δ(t) [30].
Equation (1) with source term being −β

Cp
H(d) ∂δ(t)

∂ t is equivalent
to solving the following initial value problem [30]

∇2P (d, t) − 1
c2

∂2P (d, t)
∂t2

= 0, (2)

with initial conditions P |t=0 = ΓH(d), where Γ = c2 β
Cp

is the
Gruneisen parameter which denotes the efficiency of conversion
of absorbed energy to pressure and ∂P/∂t|t=0 = 0.

Applying Fourier Transform to (1) gives the well-known
Helmholtz equation

(∇2 + k2)P (d, ω) =
−jωβ

Cp
H(d, ω), (3)

where k = ω
c with ω as the angular frequency and P (d, ω) is the

Fourier transform of the acoustic pressure P (d, t). The solution
to the above equation can be expressed using Green’s function
as

P (d, ω) =
−jωβ

Cp
H(d, ω)G(d, ω), (4)

where G(d, ω) = −i
4 H

(1)
0 (k|d|) with H

(1)
0 being the Hankel

function of the first kind of order zero [31], [32]. The impulse
response for the acoustic wave equation in the time domain is
obtained by applying inverse Fourier transform to (4). In this
work, the above described Green’s function approach was de-
ployed to solve (1). Note that, the system matrix-based approach
was utilized here to represent the forward problem as a linear
system of equations [33]–[35]. The forward problem in PAT
thus becomes

Ax = b, (5)

with A having a dimension of m × n2 with its columns being
the impulse responses of corresponding pixels, x being initial
pressure distribution (in a lexicographic manner, dimension:
n2 × 1, with imaging region having a size of n × n) and b
being the recorded photoacoustic data stacked in a single column
(dimension: m × 1, with m equal to the product of number of
transducers and time steps used for recording the photoacoustic
signal).

III. PHOTOACOUSTIC TOMOGRAPHY: INVERSE PROBLEM

The inverse problem involves the estimation of initial pressure
distribution (x in (5)) from boundary measurements (b) using
a reconstruction algorithm [14]. Note that A represents a time-
variant casual system and is ill-posed due to the limited-data
cases considered. Thus finding x requires the utilization of reg-
ularization to constrain the solution space and this regularization
dictates characteristics of x.

The proposed method, known as the total least squares (TLS)
is a generalized version of original least squares method, which
seeks the solution to the equation that has perturbations both in
A and b [27]. An efficient implementation of the same based on
the Lanczos bidiagonalization was utilized in this work to pro-
vide practical utility for the proposed TLS, named as Lanczos
T-TLS. The Sparse TLS method that utilizes the well known
total variation (TV) penalty term was also deployed in the TLS
framework. Note that for completeness, the Lanczos bidiagonal-
ization performed in the Tikhonov framework [33], which was
earlier utilized to effectively solve the PAT inverse problem,
was deployed in this work as conventional/standard regular-
ization method. The asymptotic regularization [36], based on
exponential filtering of singular values, was shown as state-of-
the-art method was also deployed here to compare with the TLS
methods. These methods, Lanczos Tikhonov and Exponential
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filtering will be discussed along with the Lanczos T-TLS and
Sparse TLS methods in following subsections.

A. Time Reversal Method

The k-wave time reversal is a single-step image reconstruction
method, which is a standard method used for estimating the
initial pressure distribution. The aim is to reconstruct the initial
pressure distribution (at t = 0) given the measured boundary
acoustic data (at time t). The k-wave time reversal was provided
by an open-source k-wave toolbox [37]. It assumes that the
photoacoustic solution vanishes inside the imaging region for
t > T , where T is the longest time taken by the wave to pass
through the domain [37]. A zero initial condition at t = T and
the boundary condition being the measured data was imposed on
the wave equation to obtain the solution at t = 0. To improve the
PA image reconstruction, the interpolated measurement vector
was given as an input to the time reversal algorithm. In this
work, initially this method was utilized for comparison with the
proposed method.

B. Lanczos Tikhonov Regularization

The details of this method were described previously in [33],
in here, it is briefly reviewed for completeness. The least-squares
QR [33] based on Lanczos bidiagonalization offers a two-level
regularization, one with respect to Lanczos bidiagonalization
iterations and another using the reduced dimension matrices in
the Tikhonov regularization framework. The Tikhonov regular-
ization framework will minimize the following with respect to
x, i.e.,

Ω = ||Ax − b||22 + λ||x||22 (6)

with λ being the regularization parameter that dictates the re-
constructed image characteristics. The l2-norm is represented
by ||.||2 . The least-squares solution for this minimization is

x = (AT A + λI)−1AT b (7)

with I representing the identity matrix. Computing x using the
above equation is aO(n6) procedure, making it prohibitively ex-
pensive in terms of computation. The earlier work by our group
utilized the Lanczos bidiagonalization to make estimation of x
computationally efficient with an added advantage of enabling
automatic estimation of λ [33]. In this, the system matrix A gets
related to left and right Lanczos and bidiagonal matrices as [21]

Uk+1(β1e1) = b (8)

AVk = Uk+1Bk (9)

AT Uk+1 = VkBT
k + αk+1vk+1e

T
k+1 (10)

where Uk+1 and Vk are left and right orthogonal Lanczos ma-
trices of dimensions m × (k + 1) and n2 × k respectively, β1 is
the l2 norm of b, ek is a unit vector of dimension k × 1, and Bk

is the lower bidiagonal matrix of dimension (k + 1) × k hav-
ing αk in the main diagonal and βk in the lower subdiagonal.
The Lanczos bidiagonalization was performed using the Matlab
based regularization toolbox [38]. The minimization function of

the least squares problem (given by (6)) with the bidiagonaliza-
tion procedure reduces to [33]

Ω̄ = ||Bkx(k) − β1e1 ||22 + λ||x(k) ||22 (11)

where x(k) is the dimensionality reduced version of x. The
solution of (11) is

x
(k)
est = (BT

k Bk + λI)−1β1BT
k e1 ; xest = Vkx

(k)
est (12)

where x
(k)
est is the estimated version of x(k) . Note that for the PAT

system matrix (A), k � n2 , thus providing a computationally
efficient estimation of x.

C. Exponential Filtering or Showalter Method

The Lanczos bidiagonalization was combined in the
Tikhonov regularization framework to provide a computation-
ally efficient estimate of x. Recent works, have also shown that
Showalter/exponential filtering method is more generic in na-
ture, wherein the Tikhonov regularization solution (7) becomes
a special case of this [36].

In this work, a singular value decomposition (SVD) will be
performed on A making it

A = USVT , (13)

where U and V are left and right orthogonal matrices and S is
a diagonal matrix containing the singular values on its diagonal
with their magnitudes reducing as one moves from the first to
last diagonal entries. Substituting (13) in (7), the x becomes
[36]

x = VS†UT b, (14)

where S† = diag
(

Fi

Si

)
, with Fi denoting the filter factors and

Si represents the ith diagonal value of S. For the Tikhonov case,
these become [36]

Fi =
S2

i

S2
i + λ

(15)

The exponential filtering seeks to integrate the initial value prob-
lem up to a value equal to 1/

√
λ, making filter factors as [36]

Fi = 1 − exp

(−S2
i

λ

)
. (16)

This type of regularization is also known to be asymptotic
regularization (making the exponential filter factors equal to
Tikhonov filter factors for a case S2

i � λ). As this method per-
forms spectral filtering with decreasing weights with decreasing
in magnitude of singular values, it acts as an effective low-pass
filter, thus providing better performance compared to state-of-
the-art methods [36]. One major limitation of this method is
that it requires a singular value decomposition of system ma-
trix, which is a O(m ∗ n4) procedure, making it prohibitive to
perform in real-time. In this work, the computation of SVD
was performed using ‘csvd’, which is a Matlab routine in the
regularization toolbox [38].
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D. Lanczos Truncated Total Least Squares (Lanczos T-TLS)

The total least squares (TLS) is a method that is effective to
handle Ax ≈ b, where both A and b are subject to imperfections
[27]. It provides a generalization of minimizing ||Āx − b̄||22 ,
with ‘ .̄ ’ representing the perfect version of the entry. Note that
earlier discussed methods, exponential filtering and Lanczos
Tikhonov, provide an approximate solution to this minimization.
The TLS seeks an approximate solution to ||Ax − b||22 , where
A and b are prone to errors. The minimization function (Γ) that
needs to be minimized in this case becomes [27]

Γ = ||[A, b] − [Ā, b̄]||22 subject to Āx = b̄. (17)

Generally this problem will be solved with utilization of SVD
of the augmented matrix [A, b] [27]. To effectively handle the
noise, the smaller singular values of augmented matrix are trun-
cated, leading to truncated TLS (T-TLS) solution [27]. The main
limitation of T-TLS method is that it is computationally expen-
sive due to the requirement to compute the SVD of the aug-
mented matrix.

The Lanczos bidiagonalization based T-TLS provides a su-
perior alternative to traditional T-TLS in terms of computation.
The Lanczos T-TLS performs the bidiagonalization on A. Uti-
lization of (8)–(10) in (17) converts it to [27]

Γ̄ =
∣∣∣∣
∣∣∣∣UT

k+1([A, b] − [Āk , b̄k ])
(

Vk 0
0 1

)∣∣∣∣
∣∣∣∣
2

2

subject to UT
k+1ĀkVkx(k) = UT

k+1 b̄k .

Rewriting it (similar to (11)) makes the minimization problem
into [27]

Γ̄ = ||[Bk , β1e1 ] − [B̄k , ēk ]||22 subject to B̄kx(k) = ēk .
(18)

where B̄k and ēk are full. The Lanczos T-TLS is equivalent to
LSQR (without Tikhonov regularization) Algorithm-1, if B̄k =
Bk . The above optimization problem can be solved using the
truncated TLS algorithm, giving the Lanczos T-TLS solution.

Note that performing SVD of the augmented matrix
[Bk , β1e1 ] requires only O(k2) operations with k � n2 , thus
making it very efficient in terms of computation [27].

1) Automated Estimation of Reconstruction Parameters us-
ing Error Estimates: All model-based reconstruction schemes
performance depends on the choice of reconstruction parame-
ters, such as λ and k, we have utilized the recently proposed
error estimates [39] for an automated choice. This method was
proven to be effective in terms of finding direct and iterative
regularization schemes, including Lanczos Tikhonov, Exponen-
tial filtering, and non-smooth reconstruction methods. This also
provides an optimal number of Lanczos iterations k. The error
estimates for the norm of the error [40] is given as

‖e‖2
2 ≈ η2

ν := eν−1
o e5−2ν

1 eν−3
2 , ν ∈ R (24)

where

eo := ‖r‖2
2 , e1 := ‖AT r‖2

2 , e2 := ‖AAT r‖2
2 , and

(25)

Algorithm 1: Algorithm showing main steps of Lanczos
T-TLS algorithm [27].
1 Compute the Lanczos bidiagonalization of A for an

optimal k

AVk = Uk+1Bk and β1u1 = b (19)

2 Compute the SVD of the augmented matrix [Bk , β1e1 ]

(Bk , β1e1) = Ũ(k)S̃(k)(Ṽ(k))T (20)

3 Partition the matrix Ṽ(k)

Ṽ(k) =

⎛
⎝ Ṽ(k)

11 Ṽ
(k)
12

Ṽ
(k)
21 Ṽ

(k)
22

⎞
⎠ (21)

where Ṽ(k) ∈ R(k+1)×(k+1) , Ṽ(k)
11 ∈ R(k)×(k) , and

Ṽ
(k)
12 ∈ R(k)×(1)

4 The TLS solution is given as

x
(k)
est = −Ṽ

(k)
12 (Ṽ (k)

22 )−1 = −Ṽ
(k)
12 (Ṽ (k)

22 )T ||Ṽ (k)
22 ||−2

2
(22)

5 The final solution is

xest = −Vkx
(k)
est (23)

r = b − Ax, denotes the residual vector. The error estimate for
ν = 2 (which was found to be optimal [40], [41]) can be ex-
pressed as

η2 =
‖r‖2‖AT r‖2

‖AAT r‖2
. (26)

The regularization parameter λ can be obtained by minimizing
(26)

λ = arg min
λ∈R>0

η2(λ) = argmin
λ∈R>0

‖r‖2
2‖AT r‖2

2

‖AAT r‖2
2

. (27)

The required number of steps k and the regularization parameter
λ was found at the iteration, where the value of η2 becomes min-
imum. The detailed description of the algorithm can be found
in [39].

In the case of Lanczos T-TLS, the number of Lanczos itera-
tions k must be chosen and it plays the role of the regularization
parameter. The residual vector in the case of Lanczos T-TLS
can be written as

||rk || = ||(Bk , β1e1) − (B̄k , ēk )||. (28)

The approach is similar to the one described in [41]. The number
of steps k was obtained by performing Lanczos T-TLS for a
specified fixed number of iterations (in here, it being 50) and
then selecting the xk corresponding to the minimum of η2(k).

E. Sparse Total Least Squares (Sparse TLS)

The TLS framework introduced till now favors the smooth
solutions of x as the penalty (regularization) term is quadratic
in nature. This also discourages the sharp edges in the
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reconstructed initial pressure rise (x), the framework that will
be introduced in this section promotes these sharp edges with an
assumption that the solution is sparse in nature with the penalty
term being imposed as a total variation (TV) of the expected
x. This method is known as Sparse TLS [28], [29] and an al-
ternating descent type algorithm is typically used to solve this.
The algorithm involves alternate updating of unknown pressure
distribution and error in the model matrix [28], [29]. The Sparse
TLS will minimize the following with respect to x, i.e.,

Λ = ||[A, b] − [Ā, b̄]||22 + λ TV (x) subject to Āx = b̄, (29)

where TV (x) =
∑n2

i=1 ||Dix||1 , with Di representing the fi-
nite difference operator at pixel i. This optimization problem is
non-convex in nature, unlike the traditional TLS, and the con-
vergence to a global optimum is not guaranteed with a convex
optimization solver [28], [29].

Typically for these type of non-convex optimization prob-
lems, the alternating descent-type algorithms were proven to be
effective in terms of finding a solution. Let the error in model
matrix to be denoted as Δ, which is defined as Δ = A − Ā.
For a fixed model error Δ, Sparse TLS framework reduces to a
Sparse LS problem and x can be computed. Similarly for a fixed
x, the model error Δ can be obtained by solving a constrained
Least-Squares (LS) problem. Therefore, x and Δ gets updated
at every iteration of alternating descent algorithm [28], [29]. The
detailed description of the algorithm is given in Algorithm-2.
Note that the initial x (after first iteration) is a Sparse LS solu-
tion as the initial Δ = 0. The Sparse LS problem in step-2 can
be solved using any total variation solver, and the method used
in this work can be found in [39], [42]–[44].

Algorithm 2: Algorithm for solving Sparse TLS.

1 Initialize: Iteration number j = 0 and Δ(j) = 0
2 Minimize Λ1 for x(j)

Λ1 = ||b − b̄||22 + λTV (x) subject to [A + Δ(j)]x = b̄
(30)

3 Define

Λ2 = ||Δ||22 + ||b − Ax(j) − Δx(j)||22 (31)

Minimize Λ2 for Δ(j + 1) by making the first derivative
equal to zero

Δ(j + 1) = [b − Ax(j)]xT (j)[I + x(j)xT (j)]−1 (32)

Equivalently, using Sherman-Morrison identity

Δ(j + 1) = [b − Ax(j)]xT (j)
[
I − x(j)xT (j)

1 + xT (j)x(j)

]

(33)

4 if Δ(j + 1) − Δ(j) < 10−3 then
stop

else
update j = j + 1 and go to step-2

F. Figures of Merit

The efficiency of reconstruction methods was evaluated using
the following metrics.

1) Pearson correlation (PC): Pearson correlation (PC) was
used to measure the correlation between the expected (target)
and the reconstructed image. It is a quantitative metric, widely
used in statistical analysis and image processing. It is given as
[45]

PC(x, xest) =
cov(x, xest)
σ(x)σ(xest)

, (34)

where x is the expected initial pressure distribution, xest is the
reconstructed initial pressure distribution, σ denotes the stan-
dard deviation, and cov is the covariance. It can have values
ranging from −1 to 1. Higher value of PC indicates the higher
degree of correlation between the target and the reconstructed
image.

2) Contrast to noise ratio (CNR): Contrast to noise ratio
(CNR) was another quantitative metric used to measure the
image quality of the reconstructed image. It can be defined as
[45]

CNR =
μroi − μback

(σ2
roiaroi + σ2

backaback )1/2 , (35)

where μ denotes the mean and σ represents the standard de-
viation. The ‘roi’ and ‘back’ represent the region of interest
and the background correspondingly in the reconstructed im-
age. The aroi = Ar o i

At o t a l
and aback = Ab a c k

At o t a l
represents the area

ratio, where Aroi indicates the number of pixels with non-zero
initial pressure distribution in the target, Atotal denotes the to-
tal number of pixels in the reconstructed domain, and Aback is
the number of pixels with zero initial pressure rise in the target
phantom. Higher value of CNR indicates better differentiability
of the region of interest with respect to background.

3) Signal to noise ratio (SNR): Signal to noise in dB was
computed using the expression

SNR(dB) = 20 × log10

(
M

n

)
, (36)

where M denotes the peak-to-peak signal amplitude and n in-
dicates the standard deviation of the noise. Note that this figure
of merit was used for the experimental data, where the target
initial pressure was unknown.

IV. NUMERICAL AND EXPERIMENTAL SIMULATIONS

A. Numerical Experiments

To prove the efficacy of the TLS methods, in this work four
numerical phantoms were considered as shown in Fig. 1. These
phantoms mimic spatial features that will be typically encoun-
tered in photoacoustic imaging, starting from blood vessel net-
work (Fig. 1(a)), varying sizes of objects (Fig. 1(b)), and sharp
edges (Fig. 1(c)), all having only binary initial pressure dis-
tributions. The fourth phantom represents a numerical breast
phantom created from contrast-enhanced magnetic resonance
imaging data [46], [47]. One slice of this numerical breast
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Fig. 1. Target phantoms used in this work (a). Blood Vessel phantom, (b). Derenzo phantom, (c). PAT phantom, and (d). Realistic Breast phantom.

phantom was considered here, having varying initial pressure
distribution from 0 to 3 (Fig. 1(d)).

These original objects have a size of 401 × 401 spanning
20.1 mm × 20.1 mm imaging region. The imaging set-up has
been discussed in [34], [36] with only difference is that the
experimental data was generated using higher dimensional (401
× 401) object and the reconstructions were performed on a
lower dimensional (201 × 201) grid. The data generated using
the higher dimensional (401× 401) object was added with white
gaussian noise to result in the required signal-to-noise ratio
(SNR), varied from 60 dB to 10 dB, to serve as experimental
data.

Sixty detectors were placed around the tissue surface equidis-
tantly on a circle of radius 22 mm. The detectors were considered
to be point detectors having a center frequency of 2.25 MHz and
70% bandwidth. The time step of 50 ns with a total of 512 time
steps were chosen to record the forward and experimental data.
The medium was assumed to be homogeneous with no absorp-
tion and dispersion of sound. For all cases discussed here, the
speed of sound was assumed to be having a uniform value of
1500 m/s. A Linux workstation with 16 cores of Intel Xeon
processor having a speed of 2.3 GHz with 256 GB RAM was
utilized for performing all computations presented in this work.

As discussed earlier, the system matrix approach was uti-
lized, with impulse responses being recorded using analytical
Green’s function approach (as explained earlier in Section II).
For the reconstruction, the system matrix A was built on a 201
× 201 computational grid, thereby introducing discretization
errors (the data was generated on 401 × 401 grid). The time
taken to record the response of a single pixel using the Green’s
function approach was around 2.67 milli seconds. Therefore,
building the whole system matrix (having a dimension of 30720
× 40401, making m = 30720 and n = 201) took 107.51 sec-
onds. Note that this system matrix needs to be built only once
for each detection geometry and considered to be part of the
problem setting. Also, the experimental data (b) for all cases
was generated using the pseudo-spectral method (k-wave tool
box [37]), which also has the capability to model the speed of
sound variations. Note that the photoacoustic data was filtered
prior to the reconstruction to realistically simulate the effect of
finite bandwidth of acoustic transducers.

To show the effectiveness of the TLS methods, we have con-
sidered a case where two out of the sixty detectors were mal-
functioning when the imaging object was Derenzo phantom
(Fig. 1(b)). This was mimicked by making the recorded data
corresponding to these detectors have a SNR of 5 dB and rest
detectors have a SNR of 60 dB. The position of the detectors

that were malfunctioning was at 8 o’clock position, assuming
that the object was centered around origin.

To further validate the TLS methods, speed of sound variation
was considered to include the modeling errors. The phantom
used for this study was Derenzo phantom (Fig. 1(b)), with a
speed of sound of 1540 m/s where the initial pressure is one and
rest (background) with 1500 m/s. The generated experimental
data was also corrupted with noise to result in SNR of 60 dB.
Note that the system matrix (A) was constructed assuming that
speed of sound is 1500 m/s throughout the domain, thus explic-
itly introducing modeling errors.

B. Horse Hair Phantom Experiment

The PAT imaging system used for conducting experiments is
shown in [48, Fig. 1(e)]. A Q-switched Nd:YAG laser was used
for delivering 532 nm wavelength pulsed laser of 5 ns dura-
tion at 10 Hz repetition rate. Four right-angle uncoated prisms
(PS911, Thorlabs) and one uncoated Plano-concave lens L1
(LC1715, Thorlabs) were used to deliver the laser pulses to the
sample. The laser energy density on the phantom was∼9 mJ/cm
2 (< 20 mJ/cm2 : ANSI safety limit [49]). A triangular shaped
horse hair phantom was utilized to evaluate the TLS methods.
The side-length and diameter of hair are ∼10 mm and 0.15
mm, respectively. The hair phantom was glued to the pipette
tips adhered on acrylic slab [50]. The photoacoustic data was
collected using a 2.25 MHz flat ultrasound transducer (Olympus
NDT, V306-SU) with 13 mm diameter active area and ∼70%
nominal bandwidth. The ultrasound transducer acquires the data
continuously around the hair phantom in full 360 degree for an
acquisition time of 240 sec with a rotational speed of 1.5 deg/sec,
which corresponds to 2400 A-lines averaged over 6 times re-
sulting in 400 detected signals. The phantom and the ultrasound
transducer are immersed in water to enable ultrasound coupling.
The acquired PA signals were first amplified and filtered using
a pulse amplifier (Olympus-NDT, 5072PR) and then recorded
using a data acquisition (DAQ) card (GaGe, 112 compuscope
4227) inside a desktop (Intel Xeon 3.7 GHz 64-bit processor,
16 GB RAM, running windows 10 operating system). All PA
data was acquired with sampling frequency of 25 MHz and sim-
ulations were performed at a rate of 12.5 MHz (as the original
signal was subsampled to 512 time points keeping only alterna-
tive signal values of total 1024 time samples). Synchronization
of data acquisition with laser illumination was achieved using a
sync signal from laser. The reconstructed photoacoustic imag-
ing region has a size of 40 mm × 40 mm containing 200 × 200
pixels. The system matrix built for this detection geometry has a
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Fig. 2. Reconstructed images using the discussed methods (displayed on top of each column: Lanczos Tikhonov (Section III-B), Exponential Filtering
(Section III-C), Lanczos T-TLS (Section III-D), and Sparse TLS method (Section III-E)) for varying SNR (displayed against each row: 60 dB, 40 dB, 20 dB, and
10 dB) in the data. The corresponding target image is given in Fig. 1(a). The figures of merit corresponding to these results are given in Fig. 8.

TABLE I
COMPUTATIONAL TIME (IN SECONDS) FOR THE RECONSTRUCTION METHODS

USED TO GENERATE THE RESULTS GIVEN IN FIGS. 2(A)–(E) AND 9(A)–(D)

Figure SVD Time Lanczos Exp. Lanczos Sparse
of A Rev. Tikhonov Filtering T-TLS TLS

2(a-e) 9,324 129 28.7 (28.1) 5.8 (111.2) 17.42 2313
9(a-d) 16,200 – 43.5 (96.1) 9.2 (321.5) 38.32 3624

The numbers in the parenthesis represent the computational time required for choosing the
regularization parameter automatically. The computational time taken for the SVD of the
system matrix for these results has been indicated in the second column.

dimension of 51200 × 40000 (51200: 512 time samples for 100
detector positions and 40000: 200 × 200 reconstruction grid).
Note that only 100 detectors (down sampled by 4 times) were
considered to represent the limited data case. In these experi-
mental scenario, it is very hard to determine the initial pressure
rise (target values).

V. RESULTS

The reconstruction results pertaining to methods discussed in
this work, including TLS methods, for the blood vessel phan-
tom (Fig. 1(a)) were given in Fig. 2. Note that the fourth column
gives the Lanczos T-TLS and last column gives the Sparse TLS
method results with first, second, and third columns correspond-
ing to Time reversal, Lanczos Tikhonov, and Exponential filter-
ing. Each row in Fig. 2 corresponds to particular SNR of the data,
in here varied from 60 dB to 10 dB, as indicated against each
row. The figures of merit, namely PC and CNR, for these results
had been reported in Fig. 8. It is evident from these results that

TABLE II
THE COMPUTED RECONSTRUCTION PARAMETERS FOR OBTAINING THE

RESULTS PRESENTED IN THIS WORK

SNR Lanczos Exponential Lanczos Sparse
Figure Sub in Tikhonov Filtering T-TLS TLS

Fig. data (λ, k) λ k j

2 b-e 60 dB (0.0564,49) 0.0043 45 14
g-j 40 dB (0.0710,44) 0.0179 43 14
l-o 20 dB (0.5380,31) 0.1316 26 35
q-t 10 dB (0.7617,17) 0.3383 14 49

3 a-d 60 dB (0.0634,49) 0.0034 46 14
e-h 10 dB (0.6905,17) 0.2414 15 49

4 a-d 60 dB (0.0564,49) 0.0050 47 12
e-h 10 dB (0.7617,17) 0.3523 15 48

5 b-e 40 dB (0.0123,47) 0.0022 45 12
g-j 40 dB (0.0127,59) 0.0029 57 14

6 a-d 40 dB (0.4794,35) 0.0747 29 17

7 a-d 40 dB (0.0602,45) 0.0118 43 21

9 a-d – (0.0220,43) 0.0081 41 16

Note that these were found in an automated fashion using the error estimates [39].

the performance of Lanczos T-TLS and Sparse TLS methods
are better compared to the discussed methods and the improve-
ment is appreciable for the low SNR cases (where noise is more).
More importantly, the recovered contrast from the TLS methods
was at least 4 times more compared to Lanczos Tikhonov and
Exponential filtering. From the presented results (Figs. 2 and 8),
it is evident that the performance of the time reversal method is
poor compared to all other methods discussed as the data avail-
able is limited. For the rest of the work, time reversal method
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Fig. 3. Reconstructed images using the discussed methods (displayed on top of each column: Lanczos Tikhonov (Section III-B), Exponential Filtering
(Section III-C), Lanczos T-TLS (Section III-D), and Sparse TLS method (Section III-E)) for highest (60 dB) and lowest (10 dB) SNR (displayed against each
row) in the data. The corresponding target image is given in Fig. 1(b). The figures of merit corresponding to these results are given in Fig. 8. The one-dimensional
profile plot along the red-line, as shown in (a), for all results presented in this figure for 60 dB (a)–(d) was given in (i) and 10 dB (e)–(h) was given in (j).

Fig. 4. Reconstructed images using the discussed methods (displayed on top of each column: Lanczos Tikhonov (Section III-B), Exponential Filtering
(Section III-C), Lanczos T-TLS (Section III-D), and Sparse TLS method (Section III-E)) for highest (60 dB) and lowest (10 dB) SNR (displayed against each row)
in the data. The corresponding target image is given in Fig. 1(c). The figures of merit corresponding to these results are given in Fig. 8.

was not considered as a standard method for comparison as
the aim is to improve the model-based reconstruction methods
that are capable of handling limited data cases effectively. The
observed computational times for obtaining the reconstruction
results corresponding to Fig. 2(a)–(e) were given in Table I. Note
that the exponential filtering requires one time computation of
SVD of A, which takes 2.59 hours of computational time. The
sparse TLS method required around 160 seconds to solve step-
2 of Algorithm-2 at each iteration, and around 5.16 seconds
to update the model error as given in step-3 of Algorithm-2.
To meet the stopping criteria, the sparse TLS required about 14

iterations. The recorded reconstruction parameters for obtaining
these results were reported in Table II.

The reconstructed results for the highest (60 dB) and lowest
(10 dB) SNR data corresponding to Derenzo phantom (Fig. 1(b))
were shown in Fig. 3. The figures of merit, namely PC and CNR,
for these results had also been reported in Fig. 8. Again, the same
trend as observed in the case of blood vessel phantom had been
followed, with the TLS methods showing the best performance
in terms of contrast recovery and discussed figures of merit.
The reconstruction parameters for obtaining these results were
reported in Table II.
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Fig. 5. Reconstructed images using the discussed methods (displayed on top of each column: Lanczos Tikhonov (Section III-B), Exponential Filtering
(Section III-C), Lanczos T-TLS (Section III-D), and Sparse TLS method (Section III-E)) for detectors considered being 60 (first row) and 200 (last row)
respectively. The corresponding target image is given in Fig. 1(d). The figures of merit corresponding to these results are given in Fig. 8. The computational times
involved for obtaining (a)–(e) are same as the ones reported for Fig. 2(a)–(e) in Table I, similarly for (f)–(j) corresponds to last row of results reported in Table I.

Fig. 6. Reconstructed results corresponding to mimicking the two detector malfunctioning using the discussed methods (displayed on top of each column: Lanczos
Tikhonov (Section III-B), Exponential Filtering (Section III-C), Lanczos T-TLS (Section III-D), and Sparse TLS method (Section III-E)). The corresponding target
image was given in Fig. 1(b). The one-dimensional profile plot along the red-line, as shown in (a), for all results presented in this figure was given in (d). The
figures of merit corresponding to these results are given in Fig. 8.

The results pertaining to reconstruction of sharp boundaries
pertaining to the PAT phantom (Fig. 1(c)) were presented in
Fig. 4. Again, only reconstruction results corresponding to high
and low SNR data were shown and figures of merit for these
results were given in Fig. 8. Further, the same trend as ob-
served earlier was also demonstrated here with the TLS methods
showing better performance in terms of contrast recovery and
computed figures of merit. Similar to earlier, the recorded recon-
struction parameters for obtaining these results were reported in
Table II.

The reconstructed results for the realistic (numerical) breast
phantom (Fig. 1(d)) were shown in Fig. 5. The number of de-
tectors used for obtaining the reconstruction results were listed
against each row. The method used was listed on top of each col-
umn. The original number of time steps (512) with 200 detectors
will result in system matrix size of 102,400 × 40401, making
the problem intractable as one has to apply SVD on this matrix.
So only 256 time steps with a sampling time of 100 ns (similar
to the experimental conditions reported in [51]) was considered
to generate the data from 200 detectors. The figures of merit,

namely PC and CNR, for these results had also been reported in
Fig. 8. The computational times involved for obtaining these re-
sults were same as the ones reported in Table I with last row in the
table corresponding to the last row of results (Fig. 5) and corre-
spondingly second row in the table to first row of results shown in
Fig. 5. The reconstruction parameters for obtaining these results
were reported in Table II. The results indicate that even with 200
detectors, the time reversal method performance is poor com-
pared to others. The proposed methods were able to provide
better quality PA images, including improved contrast recov-
ery, compared to its counter parts. The results obtained with
200 detectors were less prone to the streak artifacts that were
observable in the case of results obtained using 60 detectors.

The results corresponding to the case of two detectors mal-
functioning were exhibited in Fig. 6 for all four methods dis-
cussed in this work, including TLS methods (Lanczos T-TLS
and Sparse TLS). The corresponding figures of merit were plot-
ted as a bar graph in Fig. 8 (reconstruction parameters were given
in Table II). It was evident from these results that the traditional
methods, such as Lanczos Tikhonov and Exponential filtering,
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Fig. 7. Reconstructed results corresponding to speed of sound variations using the discussed methods (displayed on top of each column: Lanczos Tikhonov
(Section III-B), Exponential Filtering (Section III-C), Lanczos T-TLS (Section III-D), and Sparse TLS method (Section III-E)). The corresponding target image
was given in Fig. 1(b). The one-dimensional profile plot along the red-line, as shown in (a), for all results presented in this figure was given in (d). The figures of
merit corresponding to these results are given in Fig. 8.

Fig. 8. Comparison of performance metrics (PC and CNR) for the reconstructed images presented in Figs. 2, 3, 4, 5, 6, and 7.(a)Pearson correlation (PC),
(b) Contrast to Noise Ratio(CNR).

had streak artifacts manifested due to detectors malfunctioning.
The TLS methods were more robust to these scenarios and the
observed image quality is on par with the results presented for
the case of 60 dB noise (first row of Fig. 3).

Finally, the reconstructed results for speed of sound variations
were presented in Fig. 7. The figures of merit corresponding

to these results were shown in Fig. 8, with the reconstruction
parameters given in Table II. From these results, even though
the SNR of the data is 60 dB, the small variation of speed of
sound (modeling error) has considerably degraded the results
(comparing Fig. 3(a)–(c) with Fig. 6(a)–(c)) and the TLS meth-
ods (Lanczos T-TLS and Sparse TLS) were able to exhibit
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Fig. 9. Reconstructed images using the discussed methods (displayed on top of each column: Lanczos Tikhonov (Section III-B), Exponential Filtering
(Section III-C), Lanczos T-TLS (Section III-D), and Sparse TLS method (Section III-E) for experimental horse hair phantom data. The one-dimensional profile
plot along the red-line, as shown in (a), for all results presented in this figure was given in (d). The SNR corresponding to these results are given correspondingly
at the bottom of the each image.

better performance especially in terms of Pearson correlation
(Fig. 8(a)).

The experimental results obtained using horse hair phantom
were shown in Fig. 9. From the reconstructions, it was evident
that the Lanczos T-TLS and Sparse TLS methods have bet-
ter contrast recovery compared to the state-of-the-art methods,
Lanczos Tikhonov and Exponential filtering. The computational
times for obtaining the reconstruction results corresponding to
Fig. 9(a)–(d) were given in Table I. Note that the SVD of A
(size being 51200 × 40401, same dimensions corresponding
to the results shown in Fig. 5(f)–(j)) takes 4.5 hours of com-
putational time. As the ground truth for the experimental data
is unavailable, the SNR as given in (36) was utilized to eval-
uate the methods. The reconstructions from Lanczos Tikhonov
and Exponential filtering were dominated by noise, whereas
the TLS methods were more robust in providing better SNR
images.

VI. DISCUSSION

The traditional regularization methods, including Lanczos
Tikhonov and Exponential Filtering, relies on the assumption
that noise exists only in the data (b). As stated earlier, solving
wave equation using any numerical method requires discretiza-
tion of imaging domain, making it susceptible to numerical
errors. Additionally, to make these numerical methods have
manageable computational complexity, simplifications on the
physics of the problem (example being speed of sound being
constant through out the imaging domain) makes the model have
imperfections. This leads to errors in the underlying model (A)
as well. In these scenarios, traditional regularization schemes
may not be effective in terms of providing a good quality pho-
toacoustic image as seen in the presented results. The total
least squares (TLS) provides a generic framework to effectively
handle imperfections arising in A. The application of TLS to
ultrasound inverse scattering [52], inverse problem in Electro-
cardiography (ECG) [53], and Phillips test problem [27] has
shown its efficacy in terms of handling both geometrical and

discretization errors. The same trend was observed in here for
photoacoustic imaging as well as the primary assumption of
this method is that model (A) is inaccurate. Note that tradi-
tional T-TLS uses SVD, which is computationally demanding,
making it prohibitive for large scale problems like the one at
hand.

In this work, Lanczos bidiagonalization was utilized to accel-
erate the T-TLS as the system matrix A for the photoacoustic
tomography was sparse and structured (please see Fierro et al.
[27]). Note that the iterative methods with a suitable precondi-
tioner can be solved in O(Ln4) operations, where L denotes
the number of iterations, which in terms of computational com-
plexity can be equivalent to Lanczos bidiagonalization. How-
ever, choosing an appropriate preconditioner is a challenging
task and most often the convergence (L) depends on the precon-
ditioner choice [54]. The Lanczos T-TLS method does not have
any explicit regularization parameter, rather applies regulariza-
tion in terms of number of Lanczos bidiagonalization iterations,
giving an additional gain in terms of computational efficiency.
However, an explicit regularization parameter can be included in
the Lanczos T-TLS method, but, there is no significant improve-
ment in the image quality. The traditional LSQR method [21]
that also uses Lanczos bidiagonalization is equivalent to conju-
gate gradient method applied to normal equations and spurious
solutions are possible when exact arithmetic was not used [27].
In addition, the traditional LSQR is also not very effective in
handling large data-model misfits, such as the one experienced
in detector malfunctioning (Fig. 6). The spurious solutions can
be effectively handled when an explicit regularization gets de-
ployed, as in the case of Lanczos Tikhonov, but these methods
rely on inverse noise arising out of only data noise (b).

As expected, when the SNR reduces (noise increases), the
regularization parameter (λ) becomes larger to effectively miti-
gate the noise in the data. The same trend was observed for the
results presented in this work (please refer to Table II). The re-
verse trend needs to be observed in terms of Lanczos iterations,
that is lower k representing more filtering. This was followed in
presented results of Table II. Note that all these reconstruction
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parameters (λ and k) were found in an automated fashion using
the error estimates [39]. Even though, figures of merit such as
PC can better assess the reconstructed image quality, the resid-
ual error has been commonly used to compare the quality of
reconstruction algorithms in tomographic problems [55]. In ad-
dition, in practice as the initial pressure distribution is unknown,
it is not plausible to use other figures of merit to determine the
optimal value of k.

The TLS methods does not have any knowledge of noise in
A and b, making it very appealing in all experimental scenarios.
The results presented in this work does not commit any inverse
crime [56], that is the experimental data was generated on 401
× 401 grid and reconstructions were performed on 201 × 201
computational grid.

It should also be observed from presented results, especially
in terms of figures of merit (Fig. 8), the improvement observed
using low SNR (high noise) data was substantial (as high as
50%) making the TLS methods very compelling to be utilized
in these scenarios. However, it should be noted that for weakly
ill-posed problem (such as full-data case), the method may not
give an observable advantage [27], [52]. Advanced instrumen-
tation currently allows photoacoustic tomographic scanners to
acquire large amounts of data [60] and in these scenarios, pro-
posed method will be impractical to apply given the compu-
tational complexity involved. Table I shows the computational
times involved for obtaining the SVD of the system matrix (A)
and migrating from 60 to 100 detectors doubles the computa-
tional time needed. Having large system matrix (corresponding
to full data case) will also be impractical as the computational
complexity becomes intractable. In many practical scenarios, it
is not possible to obtain the full-data [19], [61]–[65]. In these
cases, the inverse problem becomes ill-posed and working with
limited data necessitates the usage of regularization to constrain
the solution space [18], [66]. The proposed method has a dis-
tinct advantage in terms of handling large data-model misfits
without adding any additional computational burden (as evi-
dent from Table I). The major drawback of system matrix-based
algorithms is the requirement to store a large model matrix.
However, by exploiting the sparsity of the model matrix, the
system matrix can be stored efficiently using many available
efficient storage modes [57]. Even though the direct fully three-
dimensional reconstruction can be challenging as it is going to
be computationally demanding, in practice, one could perform
slice by slice two-dimensional reconstruction and combine these
slices to form a three-dimensional volume.

The speed of sound variation, especially between glandular
versus fat tissues encountered in breast imaging, can be as high
as 10% [58]. In here, the variation was kept at 2.67% and still the
performance of the Lanczos Tikhonov and Exponential filter-
ing methods has degraded considerably. As expected, the TLS
methods were able to handle these modeling errors effectively
resulting in more desirable reconstructed images (Fig. 7). It is
important to note that modeling errors can be result of limitation
of available information, for example even though it is possi-
ble to model the speed of sound variations, knowing the speed
of sound for tissues under examination is not possible in real-
time. Moreover, the estimation of speed of sound is an unstable

process especially when it is jointly estimated along with initial
pressure [59]. In this work, the speed of sound variation was
considered as a modeling error and the proposed method was
able to handle these without effecting the reconstructed initial
pressure distribution. It is important note that, the modeling er-
rors in terms of speed of sound variations that were considered
in this work are only effecting about 15% of the total imaging
domain. When these errors are present in 50% of the imaging
domain, the proposed method will not be able to handle these er-
rors as the mathematical framework is capable of handling only
perturbations. In most practical scenarios, the background speed
of sound can be estimated quite accurately and the difficulty lies
with knowing the speed of sound in the regions of interest. All
the forward models that are existing in photoacoustic imaging
largely assume that the speed of sound is constant throughout
the domain and equal to the background region speed of sound.
Thus these modeling errors invariably creep in and having a
method that can handle these effectively will provide accurate
reconstruction results.

It is important to note that the Sparse TLS method that utilizes
the total variation (TV) penalty term provides marginal improve-
ment over the Lanczos T-TLS, at the same time, adding atleast
130 times more computational complexity (Table I). Also, the
Sparse TLS method that was presented in [28], [29] deployed

1-norm based penalty, whereas in this work, a TV penalty was
utilized. Note that the Lanczos bidiagonalization framework per-
forms the dimensionality reduction, thus making it equivalent to
a sparse recovery method. The implementation of Sparse TLS
was performed in the original domain, without applying any
dimensionality reduction to preserve the desired singular val-
ues. As the Sparse TLS problem is non-convex in nature [29],
unlike ordinary TLS that can be globally optimized, finding the
solution involves penalizing equivalent of trace norm (sum of
singular values), thus truncation of singular values may lead to
irregular or no convergence of the algorithm.

The TLS methods introduced in this work does not require
either pre-filtering or any post-processing of the data and it can
be used for any kind of model imperfections such as transducer’s
malfunctioning, speed of sound variations, as well as mismatch
in modeling the impulse response properties of the transducers.
Even though the method has been known, the proposed frame-
work was applied and successfully shown to be effective for the
reconstruction of photoacoustic images. The code along with
necessary phantom images were provided as an open-source to
the enthusiastic users [67].

VII. CONCLUSION

This work introduced two variants of total least squares
(TLS), a Lanczos bidiagonalization based truncated total least
squares (T-TLS) and Sparse TLS for effectively handling large
data-model misfits and proven to be more robust to noise com-
pared to the state-of-the-art methods in limited data photoacous-
tic tomography. The Lanczos T-TLS method was implemented
in the Lanczos bidiagonalization framework to provide com-
putationally efficient reconstruction results with an added ad-
vantage of being effective in handling imperfections in acoustic



GUTTA et al.: MODELING ERRORS COMPENSATION WITH TOTAL LEAST SQUARES FOR LIMITED DATA PHOTOACOUSTIC TOMOGRAPHY 6800214

wave propagation model. This method was also proven to be
competent in handling experimental deficiencies, such as de-
tector malfunctioning and speed of sound variations without
adding any additional computational burden. The Sparse TLS
method performance was on par with the Lanczos T-TLS, but
the computational complexity involved may be a deterrent to
make it appealing for real-time scenarios. The results were also
validated experimentally using horse hair phantom. The tra-
ditional methods assume that the underlying forward model
is perfect, thus attributing discrepancies between data-model
as the noise in the data, leading to either over or under reg-
ularized solution. The TLS methods introduced here explicitly
assumes that the model has imperfections and handles these dis-
crepancies competently to provide better quality photoacoustic
images.
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