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Purpose: Development of simple and computationally efficient extrapolated Tikhonov filtering
reconstruction methods for photoacoustic tomography.
Methods: The model-based reconstruction algorithms in photoacoustic tomography typically utilize
Tikhonov regularization scheme for the reconstruction of initial pressure distribution from the mea-
sured boundary acoustic data. The automated choice of regularization parameter in these cases is
computationally expensive. Moreover, the Tikhonov scheme promotes the smooth features in the
reconstructed image due to the smooth regularizer, thus leading to loss of sharp features. The pro-
posed extrapolation method estimates the solution at zero regularization assuming the solution being
a function of regularization parameter and thus posing it as a zero value problem. Thus, the numeri-
cally computed zero regularization solution is expected to have better features compared to standard
Tikhonov solution, with an added advantage of removing the necessity of automated choice of regu-
larization. The reconstructed results using this method were shown in three variants (Lanczos, tradi-
tional, and exponential) of Tikhonov filtering and were compared with the standard error estimate
technique.
Results: Four numerical (including realistic breast phantom) and two experimental phantom data
were utilized to show the effectiveness of the proposed method. It was shown that the proposed
method performance was superior than the standard error estimate technique, being at least four times
faster in terms of computation, and provides an improvement as high as 2.6 times in terms of standard
figures of merit.
Conclusion: The developed extrapolated Tikhonov filtering methods overcome the difficulty of
obtaining a suitable regularization parameter and shown to be reconstructing high-quality photoa-
coustic images with additional advantage of being computationally efficient, making it more appeal-
ing in real-time applications. © 2018 American Association of Physicists in Medicine [https://doi.org/
10.1002/mp.13023]
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1. INTRODUCTION

Photoacoustic tomography (PAT) is a noninvasive imaging
modality that combines the advantages of optical absorption
contrast and high spatial resolution.1–4 In this modality, a
short-pulsed laser beam irradiates the tissue causing an
absorption of energy by the chromophores present in the tis-
sue resulting in a small temperature rise. The increase in tem-
perature results in emission of pressure waves (in the form of
acoustic waves) due to thermoelastic expansion. The acoustic
waves (also known as photoacoustic waves), thus generated,
are collected using the ultrasound transducers placed on the
surface of the tissue. The boundary acoustic measurements
are utilized to reconstruct the initial pressure rise inside the
tissue, which reveals the tissue pathophysiological state.
Recently, PAT has extensively been applied for various

biological applications such as brain imaging,5–8 breast can-
cer imaging,9 and blood vasculature imaging.10–12

Photoacoustic (PA) image reconstruction involves determi-
nation of initial pressure distribution, which maps to the
absorbed energy, from the acoustic boundary measure-
ments.13,14 Several reconstruction algorithms exist, such as
analytical and model-based, to solve this initial value prob-
lem.13 Analytical algorithms, such as filtered back projection
(FBP) and delay & sum, as well as time-reversal-based algo-
rithms require large amount of data and their performance is
limited in terms of providing the required quantitative infor-
mation.13 Recent emphasis has been on model-based image
reconstruction algorithms, as they provide desired quantita-
tive accuracy compared to these algorithms.13,14 As the prob-
lem at hand is ill-conditioned, the computation of the
approximate solution is difficult due to the severe error
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propagation (the detailed discussion is given in Appendix-B).
Moreover, the most commonly deployed photoacoustic tomo-
graphic setups do not enclose the object, resulting in limited
data (incomplete data) problem.15 Furthermore, the number
of imaging parameters (such as pixels in the reconstructed
image) exceeding the measurements leads to these limited
data problems, which make the reconstruction problem as ill-
conditioned, necessitating the utilization of regularization in
these model-based algorithms. This work is geared toward
accelerating these model-based algorithms in limited data
cases. The Tikhonov regularization is the most commonly
utilized model-based image reconstruction algorithm in pho-
toacoustic imaging.13 An important step in Tikhonov regular-
ization is to select an appropriate regularization parameter. It
is well known that the reconstruction result is largely biased
toward regularization parameter.13,16 Moreover, the regular-
ization parameter always filters some of the natural character-
istics of the expected image. There have been attempts earlier
to mitigate the effects of regularization via applying a decon-
volution on top of the reconstruction step.17,18 Several meth-
ods were proposed in the past, for determination of
regularization parameter such as the Morozov discrepancy
principle,19 the Generalized Cross Validation (GCV),20 and
the L-curve method.21 The discrepancy principle is the sim-
plest method, to determine optimal regularization parameter,
but it requires an estimation of noise in the experimental data
and expected image. The GCV and L-curve methods do not
require any prior information as discrepancy principle.
Recently, a least-squares approach was developed and was
shown to be an effective alternative compared to the L-curve
and GCV methods for automatic selection of regularization
parameter.22 Subsequent to this work, an error estimate-based
method was proposed and shown to be computationally effi-
cient compared to the least-squares method in determining
this regularization parameter automatically.16 Despite all
these developments, automated evaluation of regularization
parameter is still computationally demanding and the metric
for an automated choice of regularization parameter may not
provide the desired reconstructed image characteristics as
regularization inherently blurs the reconstructed image.17,18

The ideal case will be to compute the regularization-free
solution that does not have the blur (filtering of high frequen-
cies) in the reconstructed image and is computationally effi-
cient to deploy in real time.

In this work, an extrapolation method was proposed that
helps to avoid the need of computing regularization parameter
in an automated fashion.23,24 As the solution is a function of
regularization parameter (k), one can accomplish this by
extrapolating the solution at k = 0, using the regularized solu-
tions computed at several values of k, thus even achieving the
unbiasedness to the regularization parameter. In simple terms,
we use the solution obtained at predetermined values of k and
extrapolate to find out the solution at k = 0. It was shown
(with an example problem) that the solution obtained at k = 0
has the lowest error metrics, thus providing the optimal solu-
tion without adding significant computational burden. The
extrapolation method was applied within the standard

Tikhonov filtering method, namely Lanczos Tikhonov. The
traditional Tikhonov and exponential filtering methods (details
are given in Section IV) were also deployed here to show the
versatility of the proposed method. The reconstruction results
obtained from the proposed extrapolation method in these
Tikhonov filtering reconstruction methods were compared
with the results obtained from utilization of standard error esti-
mate technique for evaluating regularization parameter in these
methods. It was observed that the proposed method was com-
putationally efficient, as it eliminates the burden of determin-
ing the regularization parameter explicitly and provides the
desired reconstructed image characteristics. The reconstructed
image quality was evaluated using the quantitative metrics
such as error norm, Pearson correlation, contrast-to-noise ratio,
universal image quality index, signal-to-noise ratio, and the
residual norm (data-model misfit).

2. PHOTOACOUSTIC (PA) IMAGE
RECONSTRUCTION

The mathematical model governing photoacoustic wave
propagation can be written as14

r2Pðx; tÞ #
1

c2
@2Pðx; tÞ

@t2
¼

#b

Cp

@Hðx; tÞ

@t
; (1)

where P(x,t) is the pressure at a point x and time t, c is the
speed of sound in the medium, b is the thermal expansion
coefficient, Cp is the specific heat, and H(x,t) represents the
energy deposited per unit time per unit volume. By solving
Eq. (1), the acoustic information on the boundary of the
imaging region can be obtained. This can be achieved by
using finite elements,25 finite difference,26 pseudospectral
methods,27 or Green’s function approach.28 The PA recon-
struction problem is to estimate the initial pressure that is P
(x,t) at t = 0 inside the imaging region, given the measured
acoustic data on the boundary.

The forward model of PA imaging can be represented as
linear system of equations, by using system matrix
approach18,22

Ax ¼ b; (2)

where A is the system matrix containing impulse responses
of all pixels in the imaging region as columns, b is the mea-
sured acoustic data on the boundary, and x is the initial pres-
sure distribution. There are many approaches to solve for
initial pressure such as filtered back projection (FBP), Four-
ier-domain reconstruction, and time-reversal methods.13

These methods typically have a requirement of having large
boundary data.13,14 The model-based image reconstruction
techniques are often sought after in limited data cases, which
are more favorable in the experimental/clinical scenarios.

3. TIME REVERSAL METHOD

The main aim of PA image reconstruction is to estimate
the initial pressure distribution from the measured boundary
data. The k-wave time reversal is a computationally efficient
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method for estimation of initial pressure distribution, pro-
vided by an open-source k-wave toolbox.27 The time-reversal
method states that the PA solution p(x,t) inside the imaging
domain vanishes for t > L, where L indicates the longest time
taken by the PAwave to pass through the domain.18 The solu-
tion at t = 0, was obtained by imposing a zero initial condi-
tion at t = L and the measured data as the boundary
condition. The recorded data at discrete locations are interpo-
lated to increase the input data to the reconstruction and have
been shown in the case of time-reversal to improve the pho-
toacoustic image reconstruction.27 Note that the k-wave per-
forms full-wave and time-reversal-based image
reconstruction, and in this work, time-reversal method was
utilized for comparison with the proposed method.

4. MODEL-BASED RECONSTRUCTION
ALGORITHMS

4.A. Lanczos Tikhonov regularization method

The image reconstruction problem involves a cost function
(Γ) to be minimized with respect to x in the least-squares
sense

C ¼ kAx# bk22; (3)

where A is a m 9 n2 ill-conditioned system matrix, b denotes
noisy measurement vector given as b ¼ !bþ e, with !b being
noise-free measurement and e denotes the noise in the mea-
surement, and ‖.‖2 represents the ‘2 norm. The Tikhonov reg-
ularization changes the cost function to

C ¼ ðkAx# bk22 þ kkLxk22Þ; (4)

where k is a regularization parameter and L is a regulariza-
tion matrix. The closed-form solution can be obtained by
minimizing the cost function in Eq. (4) resulting in,13,17

xTik ¼ ðATAþ kLTLÞ#1ATb: (5)

The properties of the solution depend on the choice of the
regularization (L and k). The standard (zeroth order) choice
for L is identity matrix (I); thus, the solution becomes29

xTik ¼ ðATAþ kIÞ#1ATb: (6)

These regularization methods involve matrix–matrix multipli-
cations as well as solving large system of equations, which is
computationally expensive. Therefore, the Tikhonov regular-
ization was implemented in a Lanczos bidiagonalization
framework, to reduce the computational complexity.16,18,22

The Lanczos bidiagonalization of the system matrix A can be
written as22,30

Mqþ1ðb1e1Þ ¼ b (7)

ARq ¼ Mqþ1Bq (8)

ATMqþ1 ¼ RqB
T
q þ aqþ1rqþ1e

T
qþ1 (9)

where Mq = [m1,m2,. . .,mq] and Rq = [r1,r2,. . .,rq] are the
left and right orthogonal Lanczos matrices of dimensions

m 9 (q + 1) and n2 9 q respectively. The ri’s in the Rq are
the normalized residual vectors at Lanczos iteration “i”.31

The Bq is the lower bidiagonal matrix of dimension
(q + 1) 9 q with aq in the main diagonal and bq in the lower
subdiagonal, b1 is the ‘2 norm of b, and eq is a unit vector of
dimension q 9 1. Using the above Lanczos bidiagonaliza-
tion, Eq. (6) reduces to22

xðqÞ ¼ ðBT
qBq þ kIÞ#1b1B

T
q e1; xLanc ¼ Rqx

ðqÞ: (10)

This method requires a suitable number of Lanczos iterations
and value of the regularization parameter to be chosen and
we achieve these using error estimate-based method, which
was proven to be computationally efficient.16 It is briefly
reviewed here for completeness. The family of error estimate
as proposed in Refs. [32,33], is given as

kek22 & g2m :¼ em#1
o e5#2m

1 em#3
2 ; m 2 R (11)

with

eo :¼ krk22; e1 :¼ kATrk22; e2 :¼ kAATrk22; and

(12)

r = b # Ax represents the residue (data-model misfit). The
error estimate for m = 2 can be expressed as

g2 ¼
krk2kA

Trk2
kAATrk2

: (13)

The algorithm to achieve this consists of two phases. In the
first phase, one determines the required number of Lanczos
iterations at a suboptimal regularization value. The regular-
ization parameter is refined in the second phase by fixing the
number of Lanczos iterations. Interested readers can refer to
Algorithm-1 in Ref. [16], for a detailed description of the
algorithm.

4.A.1. The proposed extrapolated Lanczos
Tikhonov method

The actual minimization one wishes to perform is on cost
function given by Eq. (3), which does not involve k. Due to
the ill-conditioned nature of the problem, one has to intro-
duce the regularization functional to stabilize the solution.
One way to obtain the solution at k = 0 is to perform an
extrapolation given x at multiple values of k (assuming that
the solution is a function of k, which is true for any regular-
ization scheme). Thus, the extrapolation method avoids the
difficulty of evaluating the regularization parameter in an
automated fashion, which is computationally demand-
ing.16,23,24

Let the singular value decomposition (SVD) of the
bidiagonal matrix (which can be obtained in Oðn2Þ opera-
tions) be

Bq ¼ ÛŜV̂T ; (14)

where Û ¼ ðcU1 ;cU2 ; . . .;cUqÞ and V̂ ¼ ðV̂1; V̂2; . . .; V̂qÞ are
orthogonal matrices and Ŝ is a diagonal matrix with diagonal
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entries Ŝ1 ' Ŝ2::::: [ 0. The solution given in Eq. (10) can
be rewritten in terms of SVD of Bq as

xðqÞ ¼ ðV̂ŜT ŜV̂T þ kIÞ#1b1V̂Ŝ
TÛTe1

¼
Xq

i¼1

Ŝ2i

Ŝ2i þ k

\Ûi; b1e1 [

Ŝi
V̂i;

xLanc;k ¼ Rqx
ðqÞ

(15)

where < .,. > represents the inner product operation of the
argument vectors. Using pairwise orthogonality of Rq, Eq.
(15) can be written as

RT
q xLanc;kj ¼

Xq

i¼1

Ŝ2i

Ŝ2i þ kj

\Ûi; b1e1 [

Ŝi
V̂i; (16)

where i = 1,. . .q and kj is the jth value in the series of k’s that
can provide meaningful solutions (x). Rearranging Eq. (16),
we obtain

\Ûi; b1e1 [

Ŝi
V̂i ¼

Ŝ2i þ kj

Ŝ2i
RT

q xLanc;kj j ¼ 1; 2. . .p (17)

with p denoting the total number of k values. Summing the
above equation for given values of j,

\Ûi; b1e1 [

Ŝi
V̂i ¼

1

p

Xp

j¼1

1þ
kj

Ŝ2i

 !

RT
q xLanc;kj

" #

: (18)

The solution at k = 0 is obtained by substituting Eq. (18) in
Eq. (15),

xeLanc ¼
Xq

i¼1

1

p

Xp

j¼1

1þ
kj

Ŝ2i

 !

RqR
T
q xLanc;kj

" #

; (19)

where the super fix e denotes the extrapolated Lanczos
Tikhonov solution at k = 0. The results presented in this
work were obtained by considering five k values (i.e., p = 5)
as proposed in Ref. [24]. Note that choosing less than five
values were proven to be suboptimal for the ill-posed prob-
lems, like the one at hand.

k1 ¼ a; k2 ¼ 10#2a; k3 ¼
aþ b

2
;

k4 ¼ 102b; k5 ¼ b:
(20)

The values a and b were chosen as 1 and 1e#10, respectively,
for the presented results.

4.B. Traditional Tikhonov regularization

The Lanczos Tikhonov will be equivalent to the traditional
Tikhonov regularization when the number of bidiagonal iter-
ations q is equal to the column space of system matrix (A).
Although we have provided the Lanczos framework for the
proposed method, for completeness, the traditional Tikhonov
regularization was also introduced and utilized in this work.
The SVD of the system matrix A can be written as

A ¼ USVT; (21)

where U and V are orthogonal matrices and S is a diagonal
matrix with increasing sequence of diagonal entries
S1 ≥ S2..... > 0. The solution given in Eq. (6) can be rewritten
using the SVD of A as29

xTik ¼ VSyUTb; (22)

where

Sy ¼ diag
Fi

Si

! "
; (23)

with the filter factors Fi being

Fi ¼
S2i

S2i þ k
: (24)

Therefore, the Tikhonov solution with the filter factors
become29

xTik ¼
Xk

i¼1

S2i
S2i þ k

\Ui; b[

Si
Vi; (25)

where k = min(m,n2) with < .,. > representing the inner
product operation of the argument vectors.

As stated earlier, the automatic choice of regularization
parameter was performed using the method of error estimate,
given in detail for photoacoustic tomography in Ref. [16]. For
completeness, this is briefly reviewed here.

The regularization parameter (k) can be determined by
starting with an equally spaced grid of values chosen in the
interval between [kmin,kmax] with kmin and kmax being
1e#10 and 1, respectively. Then, for each value of k, the
regularized solution and error estimate are computed. The
parameter k, which minimizes the error estimate given in
Eq. (13), was chosen to be the regularization parameter. To
improve the accuracy of the obtained k, more points are
added around the chosen k using bisection method, until
the distance between adjacent points is less than the prede-
fined value (1e-4). In this work, SVD was computed using
“csvd”, which is a Matlab routine in the regularization
toolbox.34

4.B.1. The proposed extrapolated Tikhonov method

Using the concept of orthogonality, Eq. (25) can be writ-
ten as

\Ui; b[

Si
¼

S2i þ kj

S2i
\xkj ;Vi [ j ¼ 1; 2. . .p (26)

with p denoting the total number of k values that can be con-
sidered (ranging from minimum of 2 to k; in this work, it is
5). Summing Eq. (26) for all values of j, the relation can be
reexpressed as

\Ui; b[

Si
¼

1

p
\

Xp

j¼1

1þ
kj

S2i

! "
xkj ;Vi [ : (27)

The solution at k = 0 is obtained by substituting Eq. (27) in
Eq. (25),
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xeTik ¼
Xk

i¼1

1

p
\

Xp

j¼1

1þ
kj

S2i

! "
xkj ;Vi [Vi: (28)

where the super fix e represents the solution of extrapolated
Tikhonov corresponding to k = 0. Note that the solution
obtained in this way corresponds to the approximate solution
obtained by minimizing the cost function given in Eq. (3).
The solution can also be obtained without computing the
SVD of the system matrix and the mathematical framework is
given in Appendix A. A flowchart showing important steps
performed in the proposed scheme as well as standard Tikho-
nov method is given in Fig. 1 for easy following. The detailed
comparison of characteristics of solutions using unregular-
ized least squares, Tikhonov, and extrapolated Tikhonov
methods was discussed in Appendix B. The difference
between these methods was also clearly brought out in the
same Appendix.

4.C. Exponential filtering

The exponential filtering was recently proposed technique
for photoacoustic imaging as a generalization of the Tikho-
nov method.29 The filter factors [in Eq. (23)] for exponential
filtering are given as

Fi ¼ 1# exp
#S2i
k

! "
: (29)

The regularized exponential filtering solution using the filter
factors thus become29

xExp ¼
Xk

i¼1

#
1# exp

#S2i
k

! "$
\Ui; b[

Si
Vi: (30)

The exponential filtering and Tikhonov filter factors
become equal when S2i \\ k, logically making exponen-
tial filtering perform as an asymptotic regularization. The
spectral filtering methods discussed so far, Tikhonov and
exponential filtering has a major limitation in terms of

computation of SVD of system matrix, which is of
Oðm ( n4Þ complexity, but the decomposition can be per-
formed a-priori and can be seen as a one-time overhead
for a fixed data collection geometry.

The suitable regularization parameter k in case of expo-
nential filtering method can be chosen in a similar way as
Tikhonov method. The only difference is that the exponential
filter factors are used instead of Tikhonov filter factors, while
computing the regularized solution (details are given in Ref.
[16]).

4.C.1. The proposed extrapolated exponential
filtering method

The Eq. (30) can be rewritten using the orthogonality
property of Vi as

\xk;Vi [ ¼
Xk

i¼1

#
1# exp

#S2i
k

! "$
\Ui; b[

Si
; (31)

The notation is similar to the one utilized in Section 4.B.1.
Rearranging Eq. (31), we obtain

\Ui; b[

Si
¼

1

1# exp
#S2

i

kj
s

% &\xkj ;Vi [ j ¼ 1; 2. . .p

(32)

where p represents the total number of k values (in here also
it is 5). Summing the relation in Eq. (32) for all values of j,
the equation can be rewritten as

\Ui; b[

Si
¼

1

p
\

Xp

j¼1

1

1# exp
#S2

i

kj

% & xkj ;Vi [ : (33)

The solution at k = 0 is obtained by substituting Eq. (27) in
Eq. (25),

xeExp ¼
Xk

i¼1

1

p
\

Xp

j¼1

1

1# exp
#S2i
kj

% & xkj ;Vi [Vi: (34)

5. PERFORMANCE METRICS/FIGURES OF MERIT

The following performance metrics were utilized to evalu-
ate the quantitative accuracy of the reconstructed photoacous-
tic images.

5.A. Residual norm

Residual norm (also known as data-model misfit) is a
measure of discrepancy of the expected solution from the
computed solution. It is defined as

ResidueðRÞ ¼ kb# Axreconk2: (35)

In real clinical scenarios, the expected x is unknown; thus,
the residue is a good measure of tractability of the computed
solution.

FIG. 1. Flowchart showing the major steps for standard Tikhonov and extrap-

olated Tikhonov methods discussed in Section 4.B.
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5.B. Error norm

Error norm (also known as reconstruction error) measures
the deviation of the reconstructed image from the expected
target image. It is expressed as

Errðx; xreconÞ ¼ kx# xreconk2 (36)

where x and xrecon corresponds to the target and the recon-
structed image, respectively. This provides a measure of how
close is the reconstructed solution with respect to the
expected one. The lower the value better is the performance
of the reconstruction algorithm.

5.C. Pearson correlation (PC)

Pearson correlation (PC) is a quantitative metric to mea-
sure the degree of correlation between the expected and the
reconstructed image.16,35 It is defined as

PCðx; xreconÞ ¼
covðx; xreconÞ

rxrxrecon
(37)

where x is the expected initial pressure distribution, xrecon is
the reconstructed initial pressure distribution, cov is the
covariance, and r represents the standard deviation. The value
of PC ranges from #1 to 1. Higher value of PC indicates bet-
ter detectability of the targets in the reconstructed image.

5.D. Contrast to noise ratio (CNR)

Contrast to Noise Ratio (CNR) is an another performance
metric, which is defined as16

CNR ¼
lroi # lback

ðr2roiaroi þ r2backabackÞ
1=2

(38)

where l denotes the mean and r represents the standard
deviation. The “roi” and “back” represent the region of
interest and the background correspondingly in the recon-
structed image. The area ratio is represented as aroi ¼

Aroi

Atotal

and aback ¼ Aback

Atotal
. Higher value of CNR indicates better

the differentiability of the region of interest from the back-
ground.

5.E. Universal image quality index (UIQI)

Universal Image Quality Index (UIQI) is a quantity
defined to measure the distortion in the reconstructed image.

It is defined as36:

UIQI ¼
4 covðx; xreconÞlxlxrecon

ðr2x þ r2xreconÞðl
2
x þ l2xreconÞ

(39)

It can be observed that this measure is a combination of three
factors: correlation coefficient to measure the degree of cor-
relation, luminance distortion to measure the closeness of
mean luminance, and contrast distortion to measure the simi-
larity of contrasts in the target and the reconstructed images.

5.F. Signal-to-noise ratio (SNR)

The computation of above figures of merit, excluding the
residue norm, requires one to know the expected target image
(x). In experimental cases, the x is unknown, the figure of
merit that was utilized to quantify the reconstruction perfor-
mance was signal-to-noise ratio (SNR). It can be written as

SNRðdBÞ ¼ 20) log10
S

n

! "
; (40)

where S indicates the peak-to-peak signal amplitude and n

denotes the standard deviation of the background.

6. NUMERICAL AND EXPERIMENTAL
EVALUATIONS

6.A. Numerical phantoms evaluation

Four numerical phantoms were considered with three of
them having unipolar (binary) distributions of initial pres-
sure, to prove the efficacy of the proposed method. A numeri-
cal blood vessel phantom [shown in Fig. 2(a)] with initial
pressure rise of 1 kPa was used, as photoacoustic imaging is
widely used for visualizing internal blood vessel structures.
A Derenzo phantom consisting of small and large target dis-
tributions was also chosen as shown in Fig. 2(b). A target
with alphabets “PAT” [shown in Fig. 2(c)] was used for eval-
uating the performance of the proposed method in recon-
structing sharp edges. To further evaluate the ability of the
proposed method, a realistic numerical breast phantom cre-
ated from contrast-enhanced magnetic resonance (MR) imag-
ing data was considered.37,38 This phantom facilitates more
realistic simulations, as they closely represent patient anatom-
ical structures. A YZ slice of the right breast of a healthy vol-
unteer, having dimension of 374 9 460 9 712 was shown in
Fig. 2(d). The considered slice of the numerical breast

FIG. 2. Numerical phantoms used in this work (a). Blood vessel phantom, (b). Derenzo phantom, (c). PAT phantom, (d). Realistic breast phantom. [Color figure

can be viewed at wileyonlinelibrary.com]
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phantom has varying initial pressure distribution from 0 to 3,
in contrast to the numerical phantoms which have only binary
initial pressure distribution.

The computational domain having 401 9 401 pixels span-
ning 20.1 9 20.1 mm was considered (also shown in
Fig. 3). The acoustic data were generated on a 401 9 401
grid using an open source k-wave toolbox27 and the recon-
structions were done on a 201 9 201 grid. To mimic the
experimental data, the collected data were added with 1%
white gaussian noise, having a signal-to-noise (SNR) ratio of
40 dB. Sixty detectors that are equispaced, having a center
frequency of 2.25 MHz, and 70% bandwidth were placed on
the surface of the imaging region of radius 22 mm. The data
were recorded for a total of 512 time steps with a step size
50 ns. The medium was assumed to be homogeneous, having
speed of sound as 1500 m/s, with no absorption and disper-
sion. The system response for all pixels, to be filled in the
corresponding columns of matrix A were obtained using the
Green’s function, which is an impulse response of the system.
For the simulations presented in this work, the Green’s func-
tion involving Hankel function of the first kind of order zero
was utilized to generate the impulse response.28 Note that in
all simulations, data were collected on a higher dimensional
grid (401 9 401) and reconstructions were performed on a
lower dimensional grid (201 9 201). The schematic of the
acquisition setup was shown in Fig. 3, with imaging domain
indicated as a shaded region. A Linux workstation with dual
six-core Intel Xeon processor having a speed of 2.66 GHz

FIG. 3. Schematic of the photoacoustic data acquisition setup. Detectors are

placed in equispaced circular fashion around imaging domain (shaded

region). The number of pixels considered for the computational grid is speci-

fied in the top left corner of the imaging region. [Color figure can be viewed

at wileyonlinelibrary.com]

(a)

(b) (c)

FIG. 4. (a) Schematic showing the major components of experimental system used for photoacoustic data acquisition CRP: Circular rotating plate, SM: Stepper

motor, P1,P2,P3,P4: Uncoated right-angled prisms, L1: Plano-concave lens, R/A/F: Receiver, Amplifier, and Filter for photoacoustic signal, DAQ: Data Acquisi-

tion Card, UST: Ultrasound Transducer. (b) Photograph of triangular-shaped horse hair phantom. (c) Photograph of circular-shaped tubes filled with Indian black

ink that were used in this work. [Color figure can be viewed at wileyonlinelibrary.com]

Medical Physics, 45 (8), August 2018

3755 Gutta et al.: Accelerated photoacoustic imaging 3755

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


with 64 GB RAM was used for all the computations per-
formed in this work.

6.B. Experimental phantoms evaluation

The experiment was conducted using the imaging system
shown in Fig. 1(a) similar to Fig. 1(e) of Ref. [39]. A
Q-switched Nd:YAG-pulsed laser (Continuum, Surelite Ex)
capable of delivering 532 nm wavelength light of 5 ns dura-
tion and 10 Hz repetition rate was utilized. Laser pulses
were delivered to the sample using four right-angle
uncoated prisms (PS911, Thorlabs) and one uncoated Plano-
concave lens L1 (LC1715, Thorlabs). The energy density on
the phantom was * 9 mJ/cm2, within ANSI safety limit
(20 mJ/cm2).40 To experimentally evaluate the proposed
method, a triangular-shaped horse hair phantom [Fig. 4(b)]
and circular-shaped ink-tube phantom [Fig. 4(c)] were used.
The horse hair diameter and side length were * 0.15 and
* 10 mm, respectively, and was glued to the pipette tips
adhered on acrylic slab.41 The circular-shaped phantom was
made using low-density polyethylene (LDPE) tubes having
5 mm inner diameter and filled with black Indian ink. The
tubes were affixed at the bottom of the acrylic slab and

placed in PAT scanner at 0 and 15 mm from the scanning
center. The photoacoustic data were collected around these
phantoms in full 360 degree using a 2.25 MHz flat ultra-
sound transducer (Olympus-NDT, V306-SU) of 13 mm
diameter active area and * 70% nominal bandwidth. The
distance from the center of the PAT scanner to the face of
the ultrasonic transducer was 37.02 mm for horse hair phan-
tom and 38.22 mm for tube phantom. The detected PA sig-
nals were preprocessed (amplification and filtration) using a
pulse amplifier (Olympus-NDT, 5072PR) and then saved
using a data acquisition (DAQ) card (GaGe, compuscope
4227) inside a windows 10 desktop system having Intel
Xeon 3.7 GHz 64-bit processor and 16 GB RAM. Sync sig-
nal from laser was used to synchronize the data acquisition
with laser illumination. Even though the data were collected
using a sampling frequency of 25 MHz, simulations were
performed at a rate of 12.5 MHz (as we have considered
only 512 time samples alternatively from the detected 1024
samples). The reconstruction region consists of 200 9 200
pixels on a size of 40 9 40 mm. The dimension of the
system matrix built for this geometry was 51,200 9 40,000:
51,200 corresponds to 512 time samples each of 100 detec-
tors and 40,000 corresponds to the total number of pixels in

(a)

(e)

(i)

(m) (n) (o)

(j) (k)

(p)

(l)

(f) (g) (h)

(b) (c) (d)

FIG. 5. Reconstructed images for Lanczos Tikhonov regularization discussed in Section 4.A using time-reversal (a,e,i,m), standard error estimate (b,f,j,n) and

proposed extrapolated Lanczos Tikhonov method (c,g,k,o). A one-dimensional profile plot for the reconstructed images along the line in numerical phantoms

was shown in (d,h,l,p). The residual norm and performance metrics corresponding to these reconstruction results were given in Fig. 6. [Color figure can be

viewed at wileyonlinelibrary.com]
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the imaging grid. The ground truth for these experimental
cases is hard to determine and therefore is not available.

7. RESULTS

The reconstructed initial pressure distribution for blood
vessel phantom [Fig. 2(a)] using time reversal (discussed in
Section III), error estimate in Lanczos Tikhonov method, and
proposed extrapolated Lanczos Tikhonov method (discussed
in Section 4.A) were shown in Figs. 5(a), 5(b), and 5(c),
respectively. A one-dimensional profile plot for the recon-
structed results along the line in the target blood vessel

phantom [as given in Fig. 2(a)] was shown in Fig. 5(d). It is
evident from these results that the time-reversal method per-
formance is poor compared to other methods due to the avail-
able data being limited. As this work mainly focused on
utilizing the limited data, for rest of this work, the time-rever-
sal method was not considered as a standard method for eval-
uating the reconstruction performance. From profile plot, it
can be seen that the quantitative accuracy of reconstructed
image using proposed method was superior to error estimate.
The residual norm and performance metrics of these recon-
structions were shown in Fig. 6. The typical computation
time taken for both the methods was given in Table I. The

FIG. 6. For the reconstructed results presented in Figs. 5, 7, 8, the figures of merit (a). Residual norm (Section 5.A) (the lesser value indicates better reconstruc-

tion performance), (b). Error norm or reconstruction error (Section 5.A) (the lesser value indicates better reconstruction performance), (c). Pearson Correlation

(Section 5.C) (the higher value indicates better reconstruction performance), (d). Contrast to noise ratio (Section 5.D) (the higher value indicates better recon-

struction performance), and (e). Universal image quality index (Section 5.E) (the higher value indicates better reconstruction performance). [Color figure can be

viewed at wileyonlinelibrary.com]
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system matrix building time (* 116 s) was excluded from
the computation time reported in Table I. From Table I, it
was evident that the proposed method was four times com-
putationally faster than the standard method (error esti-
mate). The reconstruction results for the Derenzo phantom
[Fig. 2(b)] were shown in Figs. 5(e), 5(f), and 5(g), with
the profile plot shown in Fig. 5(h). Similar trend as
observed earlier for the blood vessel phantom was followed
for the Derenzo phantom. Reconstruction results pertaining
to “PAT” phantom were presented in Figs. 5(i), 5(j), and
5(k), with the profile plot along the line given in Fig. 2(c)
was shown in Fig. 5(l). The reconstruction results using
time reversal, error estimate in Lanczos Tikhonov method,
and proposed extrapolation methods for the numerical
breast phantom were shown in Figs. 5(m), 5(n), and 5(o),
respectively. Red arrows numbered 1 and 3 in Fig. 5(o)
indicate that the proposed extrapolation method was able to
reconstruct varying initial pressure distribution better than

TABLE I. Computational time (in seconds) for the reconstruction results

shown in Figs. 5, 7, 8, and 9. One-time computation of building the system

matrix (116 s, applicable to all methods) and SVD (300.7 min, applicable to

only Tikhonov and exponential filtering) was excluded.

Figure Method

Phantom

(detectors)

Standard

(error

estimate)

Proposed

(extrapolation)

5(b) and 5(c) Lanczos

Tikhonov

Blood vessel (60) 116.83 28.49

7(a) and 7(b) Tikhonov Blood vessel (60) 312.23 73.91

8(a) and 8(b) Exponential

filtering

Blood vessel (60) 310.79 72.63

9(a) and 9(b) Lanczos

Tikhonov

Horse hair (100) 140.61 26.03

9(d) and 9(e) Tikhonov Horse hair (100) 330.37 65.27

9(g) and 9(h) Exponential

filtering

Horse hair (100) 344.17 65.17

(a)

(d)

(g)

(j) (k) (l)

(h) (i)

(e) (f)

(b) (c)

FIG. 7. Reconstructed images for traditional Tikhonov regularization discussed in Section 4.B using error estimate (a,d,g,j) and proposed extrapolated Tikhonov

method (b,e,h,k). A one-dimensional profile plot for the reconstructed images along the line in numerical phantoms was shown in (c,f,i,l). The residual norm and

performance metrics corresponding to these reconstruction results were given in Fig. 6. [Color figure can be viewed at wileyonlinelibrary.com]
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compared to standard error estimate method. The numbered
2 red arrow in Fig. 5(o) shows that the proposed method
has better structural visibility than the standard method.
The profile plot was shown in Fig. 5(p) and the quantita-
tive metrics were compiled in Fig. 6. In case of the numer-
ical breast phantom, the large difference between the target
and the reconstructed initial pressure distribution is due to
the limited bandwidth of the transducers utilized to collect
the photoacoustic data along with the target dynamic range
being much larger compared to other numerical phantoms
considered. The regularization parameter determined using
the standard error estimate method for the results shown in
Figs. 5(b), 5(f), 5(j), 5(n) were 0.0415, 0.0241, 0.0389, and
0.0396, respectively, with q, that is, number of Lanczos
iterations being 90.

The results pertaining to blood vessel phantom for Tikho-
nov method were shown in Figs. 7(a) and 7(b) for error esti-
mate and proposed extrapolated Tikhonov filtering method

(discussed in Section 4.B), respectively. The profile plot cor-
responding to these results was shown in Fig. 7(c). From the
results, it was observed that the quantitative accuracy of pro-
posed method was superior to error estimate. The figures of
merit (performance metrics) corresponding to the presented
results were plotted in Fig. 6. The computational time for the
methods discussed were compiled in Table I. It was clearly
evident that the proposed method was four times computa-
tionally efficient, indicating the effectiveness of the method
avoiding the need of computing an appropriate regularization
parameter. Similar trend was observed for the Derenzo phan-
tom as shown in Figs. 7(d) and 7(e). Reconstructed results for
PAT phantom containing sharp edges were presented in
Figs. 7(g) and 7(h). The profile plots corresponding to
Derenzo and PAT phantom were shown in Figs. 7(f) and 7(i),
respectively. The reconstruction results for realistic breast
phantom were shown in Figs. 7(j) and 7(k), along with the
profile plot in Fig. 7(l). Similar trend as observed in the case

(a)

(d)

(g)

(j) (k) (l)

(h) (i)

(e) (f)

(b) (c)

FIG. 8. Reconstructed images for exponential filtering discussed in Section 4.C using error estimate (a,d,g,j) and proposed extrapolated exponential filtering

method (b,e,h,k). A one-dimensional profile lot for the reconstructed images along the line in numerical phantoms was shown in (c,f,i,l). The residual norm and

performance metrics corresponding to these reconstruction results were given in Fig. 6. [Color figure can be viewed at wileyonlinelibrary.com]
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of Tikhonov regularization, being the proposed method has
better structural recovery compared to standard method, was
indicated by the red arrows in Fig. 7(k). The k values deter-
mined using standard error estimate method for the results
presented in Figs. 7(a), 7(d), 7(g), 7(j) were 0.0414, 0.0241,
0.0392, and 0.0400, respectively.

The reconstruction results for exponential filtering using
error estimate and proposed exponential filtering method
(discussed in Section 4.C) for blood vessel network were
shown in Figs. 8(a) and 8(b). The profile plot for the
demonstrated results was shown in Fig. 8(c). It was
observed that the proposed method performs superior to
the standard method in terms of quantitative accuracy. The
performance metrics for these results and the residual norm
were compiled in Fig. 6. The computational time taken for
the methods was given in Table I. Note that for Tikhonov
regularization and exponential filtering methods, there is a
one-time overhead of computing the SVD of the system
matrix, which took 300.7 min. Even in this case, the pro-
posed extrapolation method was four times computationally
faster compared to error estimate. The efficiency of the
proposed method was that it avoids the need of determin-
ing a suitable regularization parameter, which is a compu-
tationally expensive process. The results for Derenzo and
PAT phantom were shown in Figs. 8(d), 8(e), and 8(g),

8(h), respectively. The profile plots corresponding to these
results were shown in Figs. 8(f) and 8(i). The residual
norm was given in Fig. 6. From the presented results, it
was clearly evident that the same trend has been followed
for all the phantoms. The results pertaining to breast phan-
tom were given in Figs. 8(j) and 8(k). The red arrows in
Fig. 8(k) indicate the advantages of proposed method over
standard technique, being better varying initial pressure
reconstruction and structural visibility. The presented
results for standard method as shown in Figs. 8(a), 8(d),
8(g), 8(j) were for the k values 0.0594, 0.0340, 0.0533,
and 0.0573, respectively.

The figures of merit for the results discussed till now are
given in Fig. 6. From the results, it is clear that the proposed
method outperforms rest in terms of all metrics. For results
pertaining to Fig. 5(a)–5(c), the universal image quality index
(UIQI) for the time-reversal method is 0.017 and for the stan-
dard Lanczos Tikhonov method is 0.03, and for the proposed
method is 0.08 (providing atleast 2.6 times improvement over
standard error estimate method).

The results obtained for experimental horse hair phantom
were shown in Fig. 9. Signal-to-noise ratio computed for
these results was given below each reconstruction. It was evi-
dent from these values that the proposed extrapolated method
has around 9 dB better SNR compared to the standard error

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIG. 9. Reconstructed initial pressure distribution using methods discussed in Section 4 [standard error estimate (a, d, g) and proposed extrapolated method (b,

e, h)] with a horse hair phantom (discussed in Section 6.B). The SNR and residue (R) calculated for these reconstructed methods are listed below each image.

The higher value of SNR and lower value of R indicates the better performance of reconstruction method. A one-dimensional profile plot for the reconstructed

images along the line given in (a) was shown in (c, f, i). The computational time corresponding to these reconstruction results were given in Table I. [Color figure

can be viewed at wileyonlinelibrary.com]
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estimates method. The computational time taken for these
reconstructions was given in Table I. Note that a Linux work-
station with 16 cores of Intel Xeon processor having a speed
of 2.3 GHz and 256 GB RAM was utilized for experimental
phantom data. It should be noted that the proposed method
was at least five times faster compared to the standard
method.

The reconstructions corresponding to ink-tube phantom
were shown in Fig. 10. Signal-to-noise ratio computed for
these results were given below each reconstruction. It can be
seen from the Fig. 10 that the proposed extrapolation method
provides superior performance in terms of reconstruction of
structure of tubes. In other words, tubes are better filled in
case of proposed method compared to the standard method.
A one-dimensional profile plot along the red line in Fig. 10(a)
was shown corresponding to each reconstruction to clearly
see this effect.

Typically, the sensor geometry in photoacoustic tomog-
raphy does not enclose the full object, thereby resulting in
the limited-view problem. Considering only upper half of
detectors (semicircle from 9 ‘o’ clock to 3 ‘o’ clock posi-
tion in the clockwise direction, making total number of
available detectors being 50) for the case of ink-tube phan-
tom, the reconstructed results were shown in Fig. 11. The
same trend of better filled circles as seen earlier was also
observed here. The one-dimensional profile along the red

line shown in Fig. 11(a) was given in the last column of
Fig. 11 corresponding to the reconstructions against reach
row. The performance metrics SNR and residue were speci-
fied below each reconstruction and as seen earlier, the pro-
posed methods provide superior performance even in this
case.

8. DISCUSSION

The methods proposed in this work were mainly evalu-
ated using four numerical and two experimental phantoms.
The numerical blood vessel phantom with an initial pres-
sure rise of 1 kPa represents the internal blood vessel
structures. This phantom mimics the common vasculature
imaging scenario applied in photoacoustic imaging. The
Derenzo phantom consisting of small and large size initial
pressure distributions was also utilized in this work. This
phantom represents the capability to image small to large
objects (resolution) using the proposed and standard recon-
struction methods. To evaluate the methods for reconstruct-
ing sharp edges, a target with alphabets “PAT” was
considered. All these three phantoms have unipolar pres-
sure distribution. To evaluate methods for varying initial
pressure distributions, a realistic breast phantom created
from contrast-enhanced magnetic resonance imaging data
was considered. The experimental phantoms, horse hair

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIG. 10. Reconstructed initial pressure distribution using methods discussed in Section 4 [standard error estimate (a, d, g) and proposed extrapolated method (b,

e, h)] with an ink-tube phantom (discussed in Section 4.B). The SNR and residue (R) calculated for these reconstructed methods are listed below each image.

The higher value of SNR and lower value of R indicates the better performance of reconstruction method. A one-dimensional profile plot for the reconstructed

images along the line given in (a) was shown in (c, f, i). [Color figure can be viewed at wileyonlinelibrary.com]
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and tube phantoms, represent the ability to image high
contrast objects that are typically expected in real-time pho-
toacoustic imaging. This controlled experimental data, one
representing small objects (horse hair) and another thick
objects (ink-tube phantom), was used in this work to evalu-
ate the performance of the proposed algorithms.

The selection of a and b in Eq. (20) is in accordance with
the minimum and maximum regularization parameters cho-
sen for the standard error estimate method.16 From the simu-
lations, we have observed that irrespective of values of a and
b, the solution obtained using five k values was same. Note
also that the initial pressure reconstructions using these five k
values can be computed in parallel, thus further reducing the
computation time reported in Table I for the proposed extrap-
olated method. The current limitation of the methods dis-
cussed here lies with utilizing the system matrix-based
approach. For three-dimensional case, the system matrix size
will be large and becomes intractable as the discretization
becomes finer. The slice-by-slice reconstruction approach
can be applied to recover a three-dimensional volumetric ini-
tial pressure distribution.

Figure 12 shows the plot of residual norm [Eq. (35)], error
norm (kx# xreconk), Pearson correlation [Eq. (37)], and con-
trast to noise ratio [Eq. (38)] for varying range of regulariza-
tion parameter for both the standard and proposed Tikhonov
method corresponding to PAT phantom [Fig. 7(g) and 7(h)].

As the results obtained by the extrapolation method is an
approximate solution, there is a discrepancy between the
standard and proposed method with standard method errors
being lower for all values of k other than k = 0. The pro-
posed method provides significantly improved results in
terms of all metrics shown in Fig. 12 at k = 0. Note that
obtaining solution at k = 0 using standard method (equiva-
lent to no regularization) is not plausible due to the ill-condi-
tioned nature of the problem. It is evident from these plots
the solution obtained at k = 0 (proposed method) provides
less errors in terms of residual and error norms along with
improved PC and CNR.

Figure 13 shows a plot of residual norm (kb# Axreconk2)
vs the number of Lanczos iterations for the result presented
in Fig. 5(k). It was observed from the plot that the variation
in residual norm becomes insignificant after 25 Lanczos iter-
ations. Therefore, there is no need to determine optimal
Lanczos iterations for the proposed method. The standard
method [result of Fig. 5(j)] uses error estimate to determine
optimal number of Lanczos iterations, and for this case, it
was 90. For a fair comparison, the computational time given
in Table I for the proposed method was 90 Lanczos itera-
tions. If 25 iterations were utilized instead of 90 iterations,
the speedup factor of the proposed method becomes 13
times (as opposed to 4.1 times) in comparison to standard
method.

(a)

(d)

(g) (h) (i)

(e) (f)

(b) (c)

FIG. 11. Reconstructed initial pressure distribution for the limited-view case using methods discussed in Section 4 [standard error estimate (a, d, g) and proposed

extrapolated method (b, e, h)] with an ink-tube phantom (discussed in Section 4.B). The SNR and residue (R) calculated for these reconstructed methods are

listed below each image. The higher value of SNR and lower value of R indicates the better performance of reconstruction method. A one-dimensional profile

plot for the reconstructed images along the line given in (a) was shown in (c, f, i). [Color figure can be viewed at wileyonlinelibrary.com]
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To estimate the bias, reconstructions using standard and pro-
posed Lanczos Tikhonov methods were performed on a PAT
phantom data without adding any noise. The root-mean-squared

error in reconstructed initial pressure distribution was found
to be 0.2806 and 0.2198 for standard Lanczos Tikhonov and
proposed extrapolated Lanczos Tikhonov methods, respec-
tively. This suggests that the proposed extrapolated method
has less bias compared to the standard error estimates
method.

It is evident from Fig. 6 that the proposed extrapolated
method was able to perform better than the earlier standard
error estimate method in three different regularization
frameworks with an added advantage of proposed method
being computationally efficient (Table I). The simplicity of
the proposed method does not compromise the recon-
structed image quality and in fact, as stated earlier, pro-
vides better image characteristics in realistic breast
phantom case.

Note that even though the attempt here was to find the
solution corresponding to k = 0 via the extrapolation
scheme, the method is generic enough to find the solution at
any other k value.24 For example, if one finds the k using
Lanczos Tikhonov method as detailed in,22 the solution can
be found at that particular k using this scheme. The solution

FIG. 12. Plot of residual norm (35), error norm (kx# xreconk), Pearson correlation (PC) (37), and contrast to noise ratio (CNR) (38) for varying range of regular-

ization parameter for both the standard and proposed Tikhonov method for PAT phantom shown in Figs. 7(g) and 7(h). [Color figure can be viewed at wileyon

linelibrary.com]

FIG. 13. Plot of the variation of Residual norm [Eq. (35)] using the proposed

extrapolated Lanczos Tikhonov method as a function of number of Lanczos

iterations for numerical PAT phantom [Fig. 5(k)]. [Color figure can be

viewed at wileyonlinelibrary.com]
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at k = 0 will have the best resolution characteristics (evi-
denced by Fig. 12 also), as the regularization is known to blur
the reconstructed image17,18 and this will give an estimate of
deblurred reconstructed image.

The inherent limitation of this method is that it relies on
utilization of solution obtained at various values of k.
These k values have to be separated reasonably [as chosen
via Eq. (20)] and obtaining these solutions requires one to
perform either computationally expensive SVD of system
matrix or utilize the solution via equivalent of [Eq. (6)].
This, in general, requires number of operations being O(n3)
or higher. Furthermore, due to the discrepancy between the
extrapolated solution and standard method (please see
Fig. 12) obtaining solution other than k = 0 may not be
worthwhile using the proposed method as the solution is
only an approximation to the expected one at all other k
values.

It is important to note that the extrapolated method has
been implemented in the Tikhonov filtering framework
(with three of such variants presented in here, namely
Lanczos Tikhonov, traditional Tikhonov, and exponential
filtering) and proven that it provides solutions that are less
biased to regularization. The extrapolated method is also
very generic in nature, it can be extended to other regular-
ization schemes, which use nonsmooth regularizers (like ‘1
or total variation based), as long the minimization results
are available for large number of regularization parameter
realizations. In simple terms, one need to compute solu-
tions for more than five k values. Computing these solu-
tions for large realizations of k (regularization parameter)
values might not be providing any competitive advantage in
terms of computational efficiency compared to the error
estimate method proposed earlier16 for nonsmooth regular-
ization schemes.

The error estimate method is inherently a sequential
method, which requires the previous iteration as an input to
determine the current iteration results and parallelizing this
method using General Purpose-Graphics Processing Units
(GP-GPUs) may not be providing significant speedup and the
same is true with most methods (including GCV and Minimal
Residual Method22). Thus, obtaining fourfold speedup with
the proposed method (with exclusion of estimating the regu-
larization parameter) is a significant reduction in computa-
tional time. Moreover, the reconstruction results obtained
using proposed method are superior compared to standard
methods, such as error estimate (please refer to Figs. 6, 9, 10,
11, and 12).

9. CONCLUSION

Model-based reconstruction techniques were shown to
be effective in limited data cases, providing better quantita-
tive accuracy. These model-based reconstruction schemes
often utilize regularization to provide meaningful results
and an automated choice of regularization is often consid-
ered as a computationally demanding procedure. Moreover,

among these model-based techniques, the standard Tikho-
nov filtering techniques assume that the expected acoustic
image is smooth and piecewise constant, thus making the
reconstructed image with regularization loose sharp fea-
tures. In this work, a simple and effective extrapolation
technique was proposed that provides the solution at k = 0,
mitigating the effect of blur induced by the regularization
as well as removing the necessity of computing regulariza-
tion parameter. It was shown with numerical as well as
experimental phantom data that the proposed method is
superior in terms of providing quantitatively accurate recon-
structions and is atleast four times computationally efficient
compared to earlier proposed error estimate method that
evaluates the regularization parameter in an automated
fashion.
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APPENDIX A

EXTRAPOLATED SOLUTION WITHOUT THE NEED
OF COMPUTING THE SVD

The closed-form regularized Tikhonov solution can be
expressed as

xkj ¼ ðATAþ kjIÞ
#1ATb: (41)

where j = 1,2. . .p with p denoting the total number of k val-
ues. Rearranging the above expression, we obtain:

ðATAþ kjIÞxkj ¼ ATb: (42)

Summing the above equation for all values of j with p defined
as in Eq. (14),

1

p

Xp

j¼1

ðATAþ kjIÞxkj

" #

¼ ATb: (43)

ATA
Xp

j¼1

xkj

 !

þ
Xp

j¼1

kjxkj ¼ pATb: (44)
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Multiplying with xTkj on both sides toward the right of Eq.
(44) results in

ATA
Xp

j¼1

xkj

 !

xTkj þ
Xp

j¼1

kjxkj

 !

xTkj ¼ pATb
' (

xTkj : (45)

Solving the Eq. (45) for ATA, we obtain

ATA ¼ pATbxTkj #
Xp

j¼1

kjxkj

 !

xTkj

 !
Xp

j¼1

xkj

 !

xTkj

 !#1

:

(46)

The solution at k = 0 is obtained by substituting Eq. (46) in
Eq. (41),

xe¼ pATbxTkj #
Xp
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xTkj

 !#1
2

4

3

5
#1

ATb

¼ pATb#
Xp

j¼1

kjxkj

 !
Xp

j¼1

xkj

 !#1
2

4

3

5
#1

ATb

¼
Xp

j¼1

xkj

 !

pATb#
Xp

j¼1

kjxkj

 !#1

ATb

¼
Xp

j¼1

xkj

 ! pATb#
Pp

j¼1

kjxkj

 !T

jðpATb#
Pp

j¼1

kjxkjÞj
2
ATb:

(47)

where e in the superfix denotes the extrapolated solution at
k = 0.

APPENDIX B

COMPARISON OF SOLUTIONS OBTAINED USING
LEAST SQUARES, TIKHONOV, AND
EXTRAPOLATED TIKHONOV METHODS:

The unregularized least-squares problem [same as Eq. (3)]
minimizes the following objective function with respect to x:

C ¼ kAx# bk22; (48)

where A is the system matrix and x represents the parameter
of interest (initial pressure distribution). The least-squares
solution (from normal equations) for Eq. (48) is

xLS ¼ ðATAÞ#1ATb ¼ Ayb (49)

where A† denotes the Moore-Penrose pseudo inverse of A.
The measured data b can be represented as b ¼ !bþ n, with
!b corresponding to the noise-free measurement and ξ as the
noise in the data. Rewriting Eq. (49) results in

xLS ¼ Ay!bþ Ayn ¼ !xþ !LS (50)

where !x represents the noise free solution and eLS = A†ξ rep-
resents the inverse noise in the reconstructed solution. The

unregularized least-squares solution in terms of SVD can be
written as:

xLS ¼
Xk

i¼1

\Ui; !b[

Si
Vi þ

Xk

i¼1

\Ui; n[

Si
Vi: (51)

For an ill-conditioned system (like the one at hand), the sin-
gular values are either small (Si?0) or the system has high
condition number (the ratio of maximum to minimum singu-
lar value Smax

Smin
! 1). In this case, xLS ! 1 as 1=Si ! 1.

Regularization aims at reducing the inverse noise, where
the Eq. (48) is replaced with a nearby problem whose solu-
tion is less sensitive to noise ξ. The resultant cost function,
which also known as Tikhonov regularization, becomes:

c ¼ kAx# bk22 þ kkxk22; (52)

where k is the regularization parameter and is strictly greater
than zero (k > 0). The solution of Eq. (52) can be expressed
using normal equations as:

xTik ¼ ðATAþ kIÞ#1ATb: (53)

If k is too high, the algorithm penalizes the solution spaces
(removing all high-frequency components), resulting in over-
smoothing. Lower value of k leads to the reconstructed image
to have more inverse noise (but retains high-frequency com-
ponents). Thus, the choice of k dictates the reconstructed
image characteristics. The Tikhonov solution in terms of
SVD can be expressed as:

xTik ¼
Xk

i¼1

S2i
S2i þ k

\Ui; !b[

Si
Vi

þ
Xk

i¼1

S2i
S2i þ k

\Ui; n[

Si
Vi: (54)

Regularization adjusts the filter factors (Fi ¼
S2i

S2i þk
) by damp-

ing the solution for cases Si?0. The filter factors Fi?1 for
singular values much larger than k and Fi?0 for singular val-
ues much smaller than k. Note that when k = 0, the solution
of unregularized least squares [Eq. (49)] and Tikhonov solu-
tions [Eq. (53)] become equal.

The extrapolated solution at k = 0 in terms of SVD for the
Tikhonov regularization case [Eq. (28)] is:

xeTik ¼
Xk

i¼1

1

p
\

Xp

j¼1

1þ
kj

S2i

! "
xkj ;Vi [Vi; (55)

where e in the super fix denotes the extrapolated solution at
k = 0. It is important to note that the extrapolated solution
depends only on the regularized least-squares solutions (xkj )
computed at predefined values of regularization parameters
(kj). The tables given below showcase the solution character-
istics for the methods discussed in this Appendix, mainly
highlighting the case of k = 0.

From Tables-II and III, it is very clear that the least-
squares solution (xLS) does not even exist for the ill-condi-
tioned system. The Tikhnov regularization demands k > 0
for an ill-conditioned system, essentially computing of xTik
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with k = 0 case same as least-squares case, where the solu-
tion does not exist. The only way to compute the solution via
numerical approximation for the case of k = 0 is to use
extrapolated Tikhonov (xeTik), which depends only on the pre-
computed Tikhonov solutions (xkj with kj [ 0).

a)Author to whom correspondence should be addressed. Electronic mail:
yalavarthy@iisc.ac.in.
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