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Approximation of Internal Refractive Index
Variation Improves Image Guided Diffuse

Optical Tomography of Breast
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Abstract—Effective usage of image guidance by incorporating
the refractive index (RI) variation in computational modeling of
light propagation in tissue is investigated to assess its impact on
optical-property estimation. With the aid of realistic patient breast
three-dimensional models, the variation in RI for different regions
of tissue under investigation is shown to influence the estimation
of optical properties in image-guided diffuse optical tomography
(IG-DOT) using numerical simulations. It is also shown that by as-
suming identical RI for all regions of tissue would lead to erroneous
estimation of optical properties. The a priori knowledge of the RI
for the segmented regions of tissue in IG-DOT, which is difficult
to obtain for the in vivo cases, leads to more accurate estimates
of optical properties. Even inclusion of approximated RI values,
obtained from the literature, for the regions of tissue resulted in
better estimates of optical properties, with values comparable to
that of having the correct knowledge of RI for different regions of
tissue.

Index Terms—Biomedical optical imaging, image reconstruc-
tion, image registration, optical tomography.

I. INTRODUCTION

D IFFUSE optical imaging uses near infrared (NIR) wave-
lengths between 600 and 1000 nm to obtain the optical

images of tissue under investigation [1], [2]. Often the experi-
mental data are collected on the boundary of the tissue and based
on these limited measurements, the internal distribution of op-
tical properties are reconstructed. When the data from multiple
wavelengths are available, diffuse optical tomography (DOT)
is capable of providing the functional images, in turn reveal-
ing the pathophysiological state of the tissue [2], [3]. Scatter-
ing dominance at NIR wavelengths makes the optical image
reconstruction a nonlinear, ill-posed, and some times under-
determined problem [4]. Moreover, diffuse optical images lack
good spatial resolution (spatial resolution ∼5 mm) [3]. Image
guided DOT (IG-DOT) overcomes this problem, where the im-
age guidance is generally through traditional medical imaging
modalities, such as mammography, tomosynthesis, ultrasound,
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and MRI. Images obtained from traditional medical imaging
modalities typically have good spatial resolution (∼1 mm), but
may not have the same capabilities as diffuse optical imaging
in providing the functional information [2], [3], [5], [6]. These
types of multimodal approaches (IG-DOT) have been reported
in the literature and shown to be more effective, in terms of qual-
ity and quantitation of optical images, compared to traditional
imaging approaches [2], [3], [5]–[8].

In IG-DOT, the image guidance is primarily in providing
the structural information, either used in the regularization
(known as “soft priors”) or parameter reduction (known as “hard
priors”) of the optical image reconstruction procedure [7],
[8]. Due to the computational complexity of the soft priors,
the hard-priors approach is more sought after, especially in
three-dimensional (3-D) diffuse optical imaging [8]. The hard
priors approach reduces the parameter space (optical properties)
into the number of regions segmented from the high-resolution
imaging modality [7], [8]. In the example of breast, this can be
adipose (fatty), fibro-glandular, and tumor [5]. As the number
of optical parameters to be reconstructed is equal to the number
of segmented regions, the image reconstruction problem tends
to be a better determined problem, compared to the traditional
reconstruction problem [8]. Earlier works presented in the lit-
erature have exploited this in providing high-resolution diffuse
optical images in IG-DOT [6], [9]. It was also shown that in the
case of breast imaging, combining MRI with DOT, the IG-DOT
was capable of eliminating the false positives of MRI [6]. The
effective image guidance in reconstructing diffuse optical im-
ages has been an active research area, and in this study, use of the
region information to improve IG-DOT images by incorporating
the refractive index (RI) variation is attempted.

In IG-DOT, the high-resolution images from traditional imag-
ing modalities are used to obtain the finite-element meshes with
segmented regions [9]. Identification/segmentation of these re-
gions is an active area of research, as the uncertainties in the
segmentation could influence the final outcome of the optical-
image reconstruction procedure [2], [3], [7]. Typically, the dif-
fusion equation (DE), which is valid for thick tissues, often
solved on these meshes using finite-element method (FEM).
Even though RI of each segmented region is known to be dif-
ferent [10], [11], a uniform RI is typically used in solving the
DE [5], [7], [8], thus leading to inaccurate modeling of NIR light
propagation in tissue [12], [13]. This uniform modeling of RI is
primarily due to the fact that the RI for the segmented regions is
often not known, especially in in vivo. Moreover, finding the RI
distribution for the tissue under investigation should be posed as
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a new reconstruction problem, which is not so straightforward
in the case of unknown optical properties [14]. Earlier investi-
gations in breast imaging, limited to two dimensions (2-D) (also
not in the context of IG-DOT), have shown that the uniform
modeling of RI will have minimal effect on the estimated op-
tical properties [13]. This paper mainly aims to show that the
approximation of internal RI values for the segmented regions
(obtained from the literature) in IG-DOT will lead to improved
estimates of optical properties. Note that the example shown in
this paper pertained to MRI-guided DOT for 3-D breast cancer
imaging. Results from cases where the exact RI is assumed to
be known a priori are also presented for fair comparison along
with the uniform RI cases. From the simulation studies, it will be
shown that assuming uniform RI could lead to errors up to five
times in terms of quantitation of optical properties in IG-DOT.

II. METHODS

A. Diffusion-Based Forward Model

The light propagation in the breast tissue is modeled using the
DE, which is an approximation to radiative transport equation
(RTE) [4]. In the frequency domain, it can be written as follows:

−∇.D(r)∇Φ(r, ω) +
(

µa(r) +
iω

c

)
Φ(r, ω) = Qo(r, ω)

(1)
where Φ(r, ω) is the photon density at position r with the ω as
the NIR light modulation frequency (=2πf, with f = 100 MHz).
Speed of light in tissue is given by c (=Cv/n, with Cv represent-
ing the speed of light in the vacuum and n is the RI of the tissue)
with isotropic source term represented by Qo(r, ω). The optical
absorption and diffusion coefficients are given by µa(r) and
D(r), respectively, with D(r) = 1/[3(µa(r) + µ′

s(r))]. Here,
the µ′

s(r) represents the reduced scattering coefficient, which
is equivalent to µs(1 − g), with µs as the scattering coefficient
and g as the anisotropy factor. The RI mismatch between the
breast boundary and air is modeled by using a Type-III bound-
ary (Robin-type) condition [15]. The DE is solved using the
FEM [16] and the modeled data in the frequency domain are the
natural logarithm of the amplitude and phase of the computed
signal. This forward model is used repeatedly in an iterative
procedure to estimate the optical properties of the tissue under
investigation [4]. The RI modeling used in this paper is described
in [12].

B. Estimation of Optical Properties Using Hard Priors

The estimation of optical properties in the hard-priors ap-
proach is performed using Levenberg–Marquardt (LM) mini-
mization [8]. The objective function in this case is given by

Ω = ‖y − G(D,µa)‖2 (2)

where G is the diffusion-based forward model described ear-
lier and y is the experimental measured data. The aim of this
approach is to match the modeled data (G(D,µa)) with the ex-
perimental data (y) in the least-squares sense, by changing the
optical properties (D,µa ). This minimum is achieved when the
first derivative of Ω (2) with respect to D and µa equal to zero.

This leads to updated equation as follows [8]:
[
JTJ + λI

]
(�D,�µa) = JT (y − G(D,µa)) (3)

where �D and �µa are the updates in D and µa , respectively.
J is the Jacobian matrix, which is the first derivative of for-
ward model (G) with respect to optical properties (D,µa ) and
has the dimension of 2NM × 2NR in the case of IG-DOT,
where NM represents the number of measurements and NR
represents the number of regions. The multiplication of factor
of 2 in the measurements is because of treatment of ampli-
tude and phase of signal separately. The information of NR
is obtained through the image guidance provided by the tradi-
tional imaging modality (here, it is MRI). In traditional DOT,
NR is equal to number of FEM nodes present in the finite-
element mesh. In the case of breast imaging, the NR is equal
to three, representing fatty (adipose), fibro-glandular, and tu-
mor regions [5]. λ in (3) represents the regularization parameter
with a starting value of 1 (in this study) and reduced by 100.25

in every iteration [8]. The iterative procedure is stopped when
the Ω (2) did not improve by more than 0.001% in successive
iterations.

The Jacobian (J) in this paper is calculated using a pertur-
bation approach, with J = (G(µ + δµ) − G(µ))/δµ. Here, µ
could be either D or µa and the δµ is 1% of the average value of
µ. Even though the traditional method of calculation of J using
adjoint method could also be employed, resulting in dimension
of 2NM × 2NN (where NN represents number of FEM nodes),
and subsequently, reducing it to 2NM × 2NR, as given in [7].
Note that the perturbation approach is more memory efficient
as compared to the adjoint method, with later method requiring
to store a large J (with NN = 10 000 or more in 3-D).

C. Simulation Studies Using Realistic 3-D Breast Models

To study the effect of RI variation on the estimation of
optical properties using hard priors, we have considered six
3-D meshes in total. These were obtained from segmenting and
meshing of MRI T1-weighted images acquired on Dartmouth
MRI–NIR imaging system [17] on patients with breast cancer.
The procedure of volumetric meshing and segmenting of these
MRI images is given in [9]. These patient 3-D breast meshes
are given an unique number (namely, 1915, 3007a, 1917, 501,
501c, and 1907), and each of the FEM node in these meshes
are labeled to uniquely identify the three regions (adipose,
fibro-glandular, and tumor) of the breast. Along with these re-
gions, the source/detector locations are also identified to perform
the image reconstruction procedure. In total, 16 fiber bundles
(source/detector) were placed in contact with skin in the middle
plane of the breast [shown as filled circles on the target µa distri-
bution of Fig. 1 (second row, first column)] similar to Dartmouth
MRI–NIR imaging system [17] and when one source is used as
a source, rest acted as detectors, thus resulting in NM = 240
(16 × 15).

We have used the following properties (mimicking the typ-
ical breast [7], [11]) to generate numerical experimental data
(with 1% noise added) to act as target meshes. The properties
for adipose region: µa = 0.01 mm−1 , µ′

s = 1.0 mm−1 , and
RI = 1.467; fibro-glandular region: µa = 0.015 mm−1 , µ′

s =
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Fig. 1. Reconstructed distributions of (top) µa and (bottom) µ′
s using the

three strategies discussed in Section II-C. (given on top of each column) along
with the target distributions (first column) for 1915 mesh. The source/detector
fibers are indicated by filled circles in the µa distribution of the target. The
estimated optical properties for this 1915 mesh are also listed in Table I.

1.5 mm−1 , and RI = 1.389; and tumor: µa = 0.02 mm−1 , µ′
s =

2.0 mm−1 , and RI = 1.390. Three different strategies were em-
ployed in this study in regard to show the effect of RI on the
optical-parameter estimation. They are given as follows along
with the abbreviation for each of the strategy.

1) RI-U: The RI of each region is assumed to be uniform and
equal to 1.467 (mimicking the adipose tissue values [11]).

2) RI-E: The RI of each region was same as used in the target
mesh.

3) RI-A: The RI is approximated by taking the average values
from the earlier reports [10]–[13], [18], for each region. These
are for adipose region: RI = 1.455; fibro-glandular region: RI
= 1.4; and tumor: RI = 1.4.

Note that in all three strategies, an uniform initial guess (same
as the adipose) for the optical properties is used.

Further in case of RI-U strategy, to know the improvement in
the optical property estimation with multilayer data, a numer-
ical investigation that uses data from three fiber layers (fibers
arranged similar to single plane) was also taken up. These three
fiber layers (or rings) are 10 mm apart in the Z-direction (with
one layer above and another below to the single layer), and
when one fiber is used as a source, the fibers in the same fiber
layer acted as detectors (three layers in-plane strategy in [19]),
resulting in NM = 720 (3 × 16 × 15). As typical RI values
of 1.4 and 1.33 are used in the literature under the uniform RI
assumption [1], [5], an investigation with these values (along
with 1.467) as test conditions is carried out to deduce a suitable
RI that could be used in RI-U strategy.

The FEM meshes used in this paper had 12 000 nodes (up
to 70 000) corresponding to 60 000 (up to 390 000) tetrahedral
elements. The computations were carried out on a Linux work-
station with dual quad-core Intel Xeon processor 2.33 GHz with
64 GB RAM. The typical computation time for each iteration
was ∼3 (up to 8) min.

III. RESULTS AND DISCUSSION

The reconstructed µa and µ′
s distribution using 1915 3-D

breast mesh along with the target distribution (first column)
are given in Fig. 1. The corresponding reconstruction strategies
used to obtain the same are given on top of each column of
Fig. 1. To analyze the results more carefully, the estimated op-
tical properties for each region using three strategies mentioned

TABLE I
ESTIMATED OPTICAL PROPERTIES (IN MM−1 ) OF EACH REGION USING THE

THREE STRATEGIES DISCUSSED IN SECTION II-C FOR SIX MESHES

in the Section II-C are compiled in Table I. It is evident from
Table I and Fig. 1 that the estimated optical properties were er-
roneous when the RI was considered to be identical in all three
regions of mesh, especially for cases of 1915, 501, and 501c.
The error in estimating the optical properties µa & µ′

s in the
tumor region of the cases mentioned are 505% and 98.5%, 55%
and 39.5%, and 40% and 16.5%, respectively (see Table I and
Fig. 1). Knowing the exact RI of each region gave better accu-
rate results, but extracting the same information in in vivo cases
is difficult and typically requires a new inverse problem to be
formulated [14]. As it is evident from Fig. 1 and Table I that even
an approximation of RI (RI-A), which was obtained by taking
the average value of the RI using the literature [10], [13], [18],
lead to better estimation of optical properties. In all six cases,
the performance of RI-A strategy is at par with the RI-E (where
RI is assumed to be known a priori for all regions). Moreover,
in terms of computational complexity rather than using RI as
an unknown, approximation of the same for different regions of
tissue provides optimal solution.

Note that when the same study was carried out in 2-D (not
shown here), the estimated optical properties were identical
(variation of only ∼5%). As there are more degrees of free-
dom for the light propagation in 3-D as compared to 2-D (also
3-D model being more accurate compared to 2-D), the effect
of reflection due to RI change might be more apparent in
3-D, thus leading to changes in the estimated optical proper-
ties. Moreover, the number of parameters to be estimated in
IG-DOT is equal to be number of regions and any modeling er-
ror (here, the RI change) has to reflect in estimated region optical
properties. Note that in only three out of six cases considered
here (see Table I) resulted in more erroneous results for the
reconstruction strategy of RI-U. In other three cases, the esti-
mated optical properties were identical within 10%. The RI-A
strategy resulted in erroneous results (not shown here), when
the target RI values are not within ∼35% of the approximated
values. The variations in RI for each region of breast reported
in the literature is well within this range [10]–[13], [18].

The results obtained using three fiber layers data are given
in Table II, with varying RI (given in the first column) for
the RI-U strategy in the case of 1915 mesh. When compared
to the estimated optical properties using single layer data (see
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TABLE II
ESTIMATED OPTICAL PROPERTIES (IN MM−1 ) OF EACH REGION OF 1915

MESH USING THREE FIBER LAYERS WITH RI-U STRATEGY

FOR RI = 1.467, 1.4, AND 1.33

Table I, third row), the errors have decreased by four times. But,
they are still erroneous compared to RI-E and RI-A strategies
(see Table I, fourth and fifth rows). Among the uniform RI
values (1.467, 1.4, and 1.33; in RI-U strategy) for the meshes
considered in this paper, RI value of 1.4 lead to lesser erroneous
estimates of optical properties (also reflected in Table II). When
results obtained using RI-U strategy with RI = 1.4 are compared
against RI-E and RI-A strategies, the later strategies resulted in
error reduction of at least 30%. Note that a similar trend was
observed for other meshes (not shown here), indicating that the
assumption of uniform RI in the IG optical imaging of breast
leads to inaccurate estimation of optical properties.

The simulation studies with multiple tumors (specifically,
breast having four regions with two of them being tumor region)
were performed on the breast meshes. These results (not shown
here) closely followed the observed trends of the case where
breast had three regions (with only one tumor region).

Also, the estimated optical properties values did not change
significantly (not more than ∼5%) when the λ in (3) was var-
ied from 0.01 to 1000, which is expected in the case of LM
minimization with J being close to positive definite (as NM �
NR) [8]. The effect of RI in traditional DOT is being explored
currently, as it requires development of computationally effi-
cient techniques in the estimation of optical properties along
with the new methodology for the estimation of RI.

IV. CONCLUSION

In this letter, effect of RI in estimating optical properties in
IG-DOT was studied using realistic patient 3-D breast meshes. It
was shown that by assuming identical RI for different regions in
breast could lead to erroneous estimation of optical properties.
The a priori knowledge of RI should lead to accurate estima-
tion of optical properties. More importantly, in cases where it
is not feasible to obtain the RI of different regions of breast,
using even approximate values of RI for each region of breast
could lead to better estimates of optical properties in IG-DOT.
Even though this study pertains to breast imaging, the trends
and observations made in this study should hold good for other
IG-DOT studies as well, including brain imaging. In conclu-
sion, effective usage of image guidance by incorporating the RI
variation (by approximation) in the computational model has
improved the estimation of optical properties in IG-DOT.
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