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Purpose: To optimize the data-collection strategy for diffuse optical tomography and to obtain a set
of independent measurements among the total measurements using the model based data-resolution
matrix characteristics.
Methods: The data-resolution matrix is computed based on the sensitivity matrix and the regular-
ization scheme used in the reconstruction procedure by matching the predicted data with the actual
one. The diagonal values of data-resolution matrix show the importance of a particular measurement
and the magnitude of off-diagonal entries shows the dependence among measurements. Based on the
closeness of diagonal value magnitude to off-diagonal entries, the independent measurements choice
is made. The reconstruction results obtained using all measurements were compared to the ones ob-
tained using only independent measurements in both numerical and experimental phantom cases.
The traditional singular value analysis was also performed to compare the results obtained using the
proposed method.
Results: The results indicate that choosing only independent measurements based on data-resolution
matrix characteristics for the image reconstruction does not compromise the reconstructed image
quality significantly, in turn reduces the data-collection time associated with the procedure. When the
same number of measurements (equivalent to independent ones) are chosen at random, the recon-
struction results were having poor quality with major boundary artifacts. The number of independent
measurements obtained using data-resolution matrix analysis is much higher compared to that ob-
tained using the singular value analysis.
Conclusions: The data-resolution matrix analysis is able to provide the high level of optimiza-
tion needed for effective data-collection in diffuse optical imaging. The analysis itself is indepen-
dent of noise characteristics in the data, resulting in an universal framework to characterize and
optimize a given data-collection strategy. © 2012 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4736820]
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I. INTRODUCTION

Near infrared (NIR) diffuse optical tomography is an emerg-
ing imaging modality that has been widely investigated for
breast, brain, and small animal imaging.1–4 Diffuse optical
tomography uses a finite set of boundary measurements us-
ing light in the spectral range of 600–1000 nm to recon-
struct/estimate the internal distribution of optical properties.5

The probing media, which is the NIR light, in these studies
is delivered through optical fibers and the transmitted light is
also collected through the same fibers which are in contact
with the external surface of the tissue. Using these measure-
ments, distributions of absorption and scattering coefficients
of the tissue are reconstructed via a model-based iterative
algorithm.6 As NIR light is nonionizing, it has the advantage
of providing functional changes in a tissue over a prolonged
time.

The dominance of light scattering in soft-tissue at NIR
wavelengths makes the reconstruction (also known as the in-
verse problem) a nonlinear, ill-posed, and sometimes under-
determined problem.5 This leads to infinitely many solutions

possible for the inverse problem. To overcome this difficulty,
typically a regularization term is added to provide a unique
solution to the image reconstruction problem. Choice of regu-
larization influences the outcome of the reconstruction proce-
dure and is known to be biasing the solution space. This reg-
ularization is typically chosen based on the prior information
(or experience) available about the imaging problem, includ-
ing the noise characteristics of the data-collection system.

The data-collection systems or strategies play an impor-
tant role in determining the reconstructed image character-
istics and there have been techniques that were proposed
to evaluate them. These methods quantitatively evaluate the
data-collection strategies in terms of the number of useful
measurements as well as the reconstructed image quality.
Culver et al.7 have performed the singular value analysis of
the weight/sensitivity matrix to determine the optimal data-
collection strategy for a simple slab medium. Xu et al.4

have extended this approach for heterogeneous and irregu-
lar imaging domains to determine the best data-collection
strategy for small animal imaging studies. The same analysis
was also used by Yalavarthy et al.8 to determine the critical
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computational parameters in a circular tomographic imaging,
with an emphasis on number of measurements. Chen and
Chen9 have used Cramer–Rao lower bounds to perform the
same optimization with an advantage that their analysis pro-
vided direct estimations of parameters without solving the in-
verse problem. Also Dehghani et al.10 studied the total sensi-
tivity to make a choice of the data-collection strategy in brain
imaging with dense imaging arrays.

These kind of optimization techniques are critical in de-
signing a data-collection system for diffuse optical imaging
studies, where building and testing of these data-collection
arrays becomes expensive, time-consuming, and sometime
not feasible due to limited resources. The optimization tech-
niques discussed in the literature were able to provide the
optimal data-collection strategy, which is typically based on
the number of useful measurements. But none of these tech-
niques were able to assess the independent measurements
for a given data-collection strategy, specifically they are un-
able to provide the information whether a particular measure-
ment is independent or not. This specific information about
the independent measurements rather than the number alone
is of particular importance for the instrumentation aspect of
the diffuse optical tomographic imaging system. Knowing
this information reduces the data acquisition time, in turn
reducing the overall protocol time. This work aims to intro-
duce a novel way of optimizing the data-collection strategies,
with a capability of providing specific information about the
independent measurements, based on the data-resolution ma-
trix. This data-resolution matrix is primarily based on the sen-
sitivity/weight matrix and the regularization scheme used in
the reconstruction.

In the present work, three-dimensional (3D) cylindrical
and patient breast imaging geometries were chosen to assess
the developed methodology to provide independent measure-
ments. As the emphasis is on presenting a novel optimization
method for evaluating a data-collection strategy, continuous
wave (CW) case alone is considered here, where only the am-
plitude data are considered with optical absorption coefficient
being the unknown imaging parameter. For completeness, the
results in here also include the comparison with traditional
singular value based analysis. As presented analysis provides
the information about independent measurements, the effect
of omission of dependent measurements on the reconstructed
absorption image quality is studied systematically using both
numerical and phantom experiments. It will be proved that the
omission of dependent measurements has no significant effect
on the reconstructed image quality.

II. DIFFUSE OPTICAL TOMOGRAPHY: FORWARD
PROBLEM

Continuous wave NIR light propagation in a biological
tissue like breast can be modeled using diffusion equation
(DE),5, 11 given as

−∇.D(r)∇�(r) + μa(r)�(r) = Qo(r), (1)

where the optical diffusion and absorption coefficients are
given by D(r) and μa(r), respectively. The continuous wave

light source, represented by Qo(r), is modeled as isotropic.
�(r) is the photon fluency density at a given position r. The
diffusion coefficient is defined as

D(r) = 1

3[μa(r) + μ′
s(r)]

, (2)

where μ′
s(r) is the reduced scattering coefficient, which is

defined as μ′
s = μs(1 − g) with μs as the scattering coef-

ficient and g as the anisotropy factor. In the present work,
μ′

s is assumed to be known and remains constant through-
out the domain. The finite element method (FEM) is used to
solve Eq. (1) to generate modeled data for a given distribu-
tion of the absorption coefficient μa(r). Under the Rytov ap-
proximation, the modeled data become the natural logarithm
of the intensity (A). A Type-III boundary condition is em-
ployed to account for the refractive index mismatch at the
boundary.12 This forward model is used repeatedly in an it-
erative manner to estimate the optical property of the tissue
under investigation.5

III. DIFFUSE OPTICAL TOMOGRAPHY: INVERSE
PROBLEM

The inverse problem primarily involves the estimation of
optical absorption coefficients from the CW boundary mea-
surements using a model-based approach. This is achieved by
matching the experimental measurements with model-based
ones iteratively in the least-squares sense over the range of
μa. This minimization problem can be solved using several
approaches with most common one involving computing of
repeated solutions of the forward model [including Jacobian
(J)] and solving linear system of equations.

The Levenberg–Marquardt (LM) optimization scheme is
most popular in solving the inverse problem,13 where the ob-
jective function is defined as

� = ‖y − G(μa)‖2, (3)

where y is the natural logarithm of the amplitude of exper-
imental data and G(μa) represents the modeled data. Mini-
mization of this objective function is achieved by setting the
first-order derivative of � (Ref. 13) with respect to μa equal
to zero

∂�

∂μa

= JT δ = 0, (4)

where δ is the data-model misfit, δ = (y − G(μa)), and J rep-
resents the Jacobian [J = ∂G(μa)/∂μa]. The Jacobian matrix
has the dimensions of NM × NN, where NM represents the
number of measurements and NN represents the number of
nodes in the finite element mesh. The Jacobian (also known
as sensitivity matrix) maps the changes in logarithm of am-
plitude to the absorption changes at each node of the FEM
model.

Due to the ill-conditioned nature of the problem, the update
for the optical properties at iteration “i” is written as13

�μi
a = [

JT J + λI
]−1

JT δi−1 (5)
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or equivalently14 from the Appendix

�μi
a = JT

[
JJT + λI

]−1
δi−1, (6)

where �μi
a represents the update of the optical property μa

at the ith step with λ as the regularization parameter, which
stabilizes the solution and ensures the convergence.15 The λ

value here is decreased by a small factor with every iteration
as given in Ref. 13.

In Eqs. (5) and (6), the regularization parameter λ (strictly
positive) is chosen empirically and is multiplied by the max-
imum of the diagonal values of JJT .13 In the presented work
using simulated data, 1% normally distributed Gaussian noise
was added to the amplitude, which is a typical noise observed
in the experimental data.16 The iterative procedure is stopped
when the L2 norm of the data-model misfit (δ) does not im-
prove, by more than 2%.

III.A. Data-resolution matrix

The resolution characteristics of the inverse problem are
primarily dependent on the model used in solving the same.
The model here refers to both the forward model and stabi-
lization scheme. This approach primarily relies on matching
the inverse solution using model with the expected distribu-
tion of the optical properties.15, 17

Expanding G(μa) using Taylor series around μa0 (where
μa0 represents some initial guess for μa) gives

G(μa) = G(μa0) + G′(μa)(μa − μa0)

+ · · · (μa − μa0)T G′′(μa)(μa − μa0) + · · · , (7)

where G′(μa) = J is the Jacobian and G′′(μa) is the Hessian.
Neglecting the higher order terms results in

G(μa) = G(μa0) + J(μa − μa0), (8)

where �μa = μa − μa0 is the update and assuming that G(μa)
= y leads to

J�μa = δ′ (9)

with δ′ = y − G(μa0), representing the data-model misfit for
using a perfect model [arising when G(μa) = y]. Substituting
for �μa from Eq. (6) in Eq. (9) leads to[

JJT
[
JJT + λI

]−1
]
δ = δ′ (10)

define

N = JJT
[
JJT + λI

]−1
, (11)

where “N” is known as the data-resolution matrix (dimension:
NM × NM), ideally giving the relation between using a per-
fect model to its linearized version. If N = I, then δ′ = δ.

In Eq. (11), if λ is equal to zero, then the data-resolution
matrix is an identity matrix resulting in maximum resolu-
tion. The case of λ = 0 does not arise as JJT is always ill-
conditioned and requiring stabilization (λ > 0) to obtain �μa.
In which case (λ > 0), the data-resolution matrix instead de-
scribes how the inverse solution modifies the original model
into a recovered model.

It is to be noted that the data-resolution matrix does not de-
pend on specific data (y) or error in it but are exclusively the

properties of J and the regularization (λ) used. The closer it is
to the identity matrix, the smaller are the prediction errors for
δ. Also, note that each predicted data point is a weighted aver-
age of the observed data. So the rows of N show how well the
data can be independently predicted or resolved, with magni-
tude of values being between 0 and 1. The diagonal entries of
N indicate the weight of a data point on its own prediction, in
turn indicating the importance of the data. The higher magni-
tude of off-diagonal entries in a particular row i indicate their
dependency on measurement i, resulting in a methodology to
predict the dependent measurements. This is described algo-
rithmically in Subsection III.B.

III.B. Determining the independent measurements

The process of determining independent measurements is
given in Algorithm 1. As with the iterative procedure of re-
constructing optical properties start with an initial guess typ-
ically obtained using calibration procedure, the same uni-
form initial guess is used in calculating J. The calibration
procedure typically assumes that the imaging domain is ei-
ther infinite or semi-infinite for which analytical solutions
are readily available. Using these analytical solutions, exper-
imental/numerical data are calibrated to remove the biases
caused by variation in detector sensitivities as well as source
strength.18 This procedure also results in bulk optical proper-
ties estimated through the analytical solution (similar to least-
squares data fit), which tend to be close to background opti-
cal properties of the tissue under investigation.18 These bulk
optical properties are used as initial guess to the iterative im-
age reconstruction procedure and the same properties are also
used in computing the J for determining the independent mea-
surements.

A threshold value indicates the dependency level of the off-
diagonal elements of a particular row to its diagonal entry,
typical value chosen is between 0.8 and 0.99. Choice of 1 for
threshold (th) assumes that all measurements are truly inde-
pendent. After which, the computation of N is performed and
a vector containing ones is initialized for keeping track of in-
dependent measurements. Row by row analysis to determine
the dependent measurements is performed. The dependent “i”
is made zero in the initialized vector (in here a). If a mea-
surement is determined as dependent on earlier one, the anal-
ysis is not repeated (ensured by the if condition in step 4 of
Algorithm 1). After running through the loop, the independent
measurement indices (represented by “ind”) are determined
by finding the ones in the vector a.

After finding independent indices in the Jacobian, the de-
pendent rows are removed and the reduced Jacobian becomes

Jn = J(ind, :). (12)

If NK represents the number of independent measurements
obtained, the reduced Jacobian Jn has the dimensions of NK
× NN. Accordingly the new update equation will be

�μi = Jn
T

[
JnJn

T + λI
]−1

δi−1. (13)

In our experience, we need to perform this operation only at
the first iteration, the set of independent measurements does
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ALGORITHM I. Algorithm for determining independent measurements.

1. Calculate Jacobian (J) using uniform initial guess and set threshold (th)
to be between 0.8 and 1.

2. Determine the data-resolution matrix for a chosen value of λ

N = JJT
[
JJT + λI

]−1

3. Initialize a = ones(NM,1).
4. for i = 1,2,.......NM

if a(i) = 1 then
a. x = N(:, i)
b. Dependent measurements (dep) =

those columns in x (excluding the ith column) for which
xj > th ∗ x(i)

c. a(dep) = 0
else
go back to step: 4
end.

5. Indices of independent measurements (ind) =
indices for which a(:) = 1

not vary significantly with iterations. Also this determination
requires one explicit inversion of a matrix having dimension
of NM × NM and the computational cost does not exceed
more than 8% of the total computational cost of one iteration.

IV. THREE-DIMENSIONAL TEST PROBLEMS

In order to effectively evaluate the measurement selection
based on the data-resolution matrix, a series of simulation
studies were performed. Initially, a cylindrical imaging do-
main was chosen for numerical experiments. The cylinder had
a diameter of 86 mm and a height of 100 mm. The mesh used
for the forward model as well as the reconstruction had 24 161
nodes corresponding to 116 757 linear tetrahedral elements.
The data collection strategy consisted of 48 fibers that were
arranged in a circular, equally spaced fashion in three layers
spaced 10 mm apart with 16 fibers per plane. One fiber was
used at a time as the source while all the other fibers were used
as detectors to generate 2256 (48 × 47) measurements. This
data-collection strategy is discussed in Ref. 8 as three layers
out of plane.

A uniform breast mesh was also used which consisted of
18 723 nodes corresponding to 94 936 linear tetrahedral el-
ements. Sixteen optical source detector fibers were placed
equidistant in a circular manner (single plane) for data collec-
tion. The absorption coefficient distribution was reconstructed
using the reduced Jacobian with the threshold values of 0.9,
0.8, and 0.7. It should be noted that a threshold of 1 corre-
sponds to using the full Jacobian (in turn implying all mea-
surements are independent) and will serve as a reference for
comparison.

In all cases, the background optical properties were μa

= 0.01 mm−1 and μ′
s = 1.0 mm−1. A spherical object was

used as a target in these simulation studies. The optical prop-
erties of the target were μa = 0.03 mm−1 and μ′

s = 1.0 mm−1.
The spherical target had a diameter of 20 mm and was placed
in the x-plane at a depth of 10 mm from the surface. The tar-
get distributions are shown in the first columns of Figs. 2 and
3 for cylindrical and breast geometries, respectively.

Measurements with a noise level of 1% (normally dis-
tributed gaussian noise) was added to the computed/modeled
data to mimic the experimental data in all cases discussed
here. The choice of 1% noise level is on par with the expected
noise level in a typical diffuse optical imaging system.16 The
background optical properties were selected as initial guess
for the image reconstruction. All computations were carried
out on a Linux workstation with an Intel Xeon Dual Quad
Core 2.33 GHz processor with 64 GB of RAM.

IV.A. Experimental gelatin phantom

In order to validate the proposed algorithm using exper-
imental data, a cylindrical gelatin based phantom was used.
The phantom was fabricated19 by hardening heated gelatin
solution consisting of 80% deionized water and 20% gelatin
(G2625, Sigma Inc.). It consisted of different amounts of In-
dia ink and titanium oxide (TiO2) to mimic the absorption and
scattering properties of a real tissue. The cylindrical phan-
tom had a height of 60 mm and its diameter was 86 mm.
A cylindrical hole (diameter = 16 mm) representing the tu-
mor was placed close to the boundary stretching in the en-
tire Z-direction. The background optical properties were μa

= 0.008 mm−1 and μ′
s = 0.9 mm−1 at 785 nm wavelength.

The cylindrical hole was filled with intralipid mixed with In-
dia ink to result in optical properties of μa = 0.02 mm−1

and μ′
s = 1.0 mm−1. Near infrared data were collected at the

phantom boundary using fibers located in a single plane along
the midheight of the phantom.

A cylindrical mesh consisting of 12 695 nodes correspond-
ing to 63 810 linear tetrahedral elements was used in com-
puting the distributions of μa and the collected experimental
data were calibrated using homogeneous phantom data as de-
scribed in Ref. 18. The target absorption coefficient distribu-
tion is shown in the first column of Fig. 4.

V. RESULTS

The data-resolution matrix can be used to determine how
closely the inverse solution matches to a given model. The
closer the data-resolution matrix is to an identity matrix, bet-
ter is the resolution. Accordingly the data-resolution matrix
was investigated and the results obtained are presented. The
normalized diagonal values of the data-resolution matrix for
different values of regularization are shown in Fig. 1(a) for
the case of cylindrical imaging domain. Note that the diago-
nal values are inversely proportional to regularization param-
eter value. To understand the dependence on other measure-
ments, normalized values of row 136 (where the diagonal of
the data-resolution matrix is maximum for λ = 0.1) of the
data-resolution matrix for different values of λ are shown in
Fig. 1(b). Even though the maximum is at 136, the depen-
dence of it on other measurements is clearly visible.

The number of independent measurements obtained using
the proposed method (refer to Algorithm 1) is compared with
the number of useful measurements obtained using the singu-
lar value analysis8 in Table I. It can be inferred from the table
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FIG. 1. Characteristics of data resolution matrix using cylindrical imaging
domain with one plane of data-collection. (a) Normalized diagonal values
for varying regularization parameter (λ). (b) Plot of magnitude of normalized
(to 1) values in row 136 of the data resolution matrix for λ = 0.1, 1, and 10.

that as the threshold is decreased, the number of independent
measurements will decrease.

In order to assess the algorithm’s performance, a series of
reconstructions were performed using the imaging domains
discussed in Sec. IV. The reconstructed images using cylin-
drical mesh and 3D breast mesh, along with the target dis-
tribution (first column) are shown in Figs. 2 and 3, respec-
tively, using thresholds of 1 (corresponding to considering all
measurements), 0.9, 0.8, and 0.7. The corresponding thresh-
old levels used to obtain the same are given on top of each
column of figures. The number of independent measurements
are also listed in Table I. To effectively assess the results,

a one-dimensional cross section in the source-detector fiber
plane is plotted for varying thresholds and the same is given
as Figs. 2(b) and 3(b) along with the independent measure-
ments given in the parenthesis of the legend of these figures.

The absorption coefficient (μa) distribution for the case of
experimental gelatin phantom data was reconstructed using a
cylindrical mesh as outlined in Sec. IV.A. The target and the
reconstructed distributions are shown in Fig. 4(a). The corre-
sponding cross-sectional plots are given in Fig. 4(b). In or-
der to effectively evaluate the usage of data resolution matrix
for the choice of independent measurements, a random set of
measurements (same number as that obtained by the analy-
sis) were selected. The reconstructed μa distribution is shown
in the last column of Fig. 4(a). The reconstruction based on
random selection of 162 measurements has led to boundary
artifacts and the contrast recovery was also poor [Fig. 4(b)].
Note that in this case, threshold of 0.9 alone is used, as lesser
thresholds have resulted in unmeaningful results.

For the results presented in this work, the computation time
per iteration for the reconstructed distributions of μa given
in Figs. 2, 3, and 4(a) is reported in Table II as a function
of threshold. The corresponding number of independent mea-
surements for the chosen thresholds are given in Table I. The
overhead time for the computation of data-resolution matrix
and the associated analysis is also reported in the last column
of Table II. The number of iterations taken to reach the stop-
ping criterion is given in parenthesis below the computation
time.

To assess the behavior of the iterative image reconstruc-
tion procedure by choosing only the independent measure-
ments in contrast to all measurements for the case of Fig. 3,
the L2-norm of the data-model misfit with the iteration num-
ber is plotted for different values of threshold in Fig. 5(a) as a
function of iteration number. The difference in the mean be-
tween the target and reconstructed μa distribution is given in
Fig. 5(c). The difference plot (in %) between considering only
the independent measurements for a given threshold and all
measurements (th = 1) for the plots in Figs. 5(a) and 5(c) are
shown in Figs. 5(b) and 5(d), respectively. As the threshold is
reduced, the total number of iterations required to converge
were smaller but the data-model misfit and error in recon-
structed μa is higher for lesser threshold compared to using
all measurements (th = 1). Note that similar trends were ob-
served in other cases considered here.

TABLE I. Comparison of the number of independent measurements obtained using the data resolution matrix [for different values of threshold (th)] and the
number of useful measurements obtained using singular value analysis. The regularization parameter λ was 1 in all cases except for the experimental phantom
case where it was 100. The imaging domain and the data-collection strategies are discussed in Ref. 8.

No. of independent measurements

Imaging domain No. of measurements No. of useful singular values th = 0.9 th = 0.8 th = 0.7

Cylinder: 1 layer 240 89 111 106 57
Cylinder: 3 layers, in plane 720 231 331 320 198
Cylinder: 3 layers, out of plane 2256 282 1093 1059 714
Patient mesh 240 101 121 106 97
Experimental phantom 240 94 162 120 93
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FIG. 2. (a) Reconstructed distributions of μa (in mm−1) using cylindrical mesh (with three layers of data collection) along with the target distribution (given in
the first column). The different values of threshold (th) used are specified on top of each reconstructed image. (b) The one-dimensional cross-sectional plots of
the target and reconstructed μa distributions at the source plane for x = 30.

As the choice of threshold plays an important role in terms
of number of independent measurements as well as the re-
constructed image quality, the same is assessed for the patient
mesh case (Fig. 3). In here, the λ was chosen to be 1 and
threshold of 1 acted as the reference for computing the rela-
tive error percentage. The threshold values of 0.95, 0.9, 0.8,
0.7, and 0.6 were used in this study and the corresponding
independent measurements were 128, 121, 106, 97, and 65,
respectively. The relative error percentage in terms of recon-
structed μa in the region of interest is plotted in Fig. 6 for
the chosen threshold values. As threshold value is increased,
the number of independent measurements increased in turn
resulting in decreased error values (Fig. 6). The parameteri-
zation of this curve (also shown in Fig. 6) lead to the best fit
as fourth order polynomial, indicating that increase in the er-
ror in the reconstructed absorption coefficient with respect to
decrease in the threshold will follow fourth order polynomial
decay.

As the data-resolution matrix is computed using the regu-
larization parameter (λ), the effect of the same on determining
the number of independent measurements for threshold of 0.9

is studied for the same case as above (Fig. 3). The correspond-
ing independent measurements for varying values of λ (0.01,
0.1, 1, 10, and 100) are plotted in Fig. 7. This plot shows
that the number of independent measurements increase with
decrease in λ value asserting the same trend as observed in
Fig. 1(b).

VI. DISCUSSION

The optimization of data-collection strategies has been a
topic of interest in diffuse optical imaging, where the empha-
sis was in knowing how many useful measurements can be
obtained4, 7–9 among the total number of measurements for
a given imaging problem. This analysis/optimization played
an important role in instrumentation and lead to the exist-
ing imaging systems in this area.20 This analysis has pri-
marily relied on singular value analysis in providing the
number of useful measurement information, but lacked the
ability to provide specific information about whether a par-
ticular measurement is independent or not. This kind of

(a)
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FIG. 3. (a) Reconstructed distributions of μa (in mm−1) using patient mesh along with the target distribution (given in the first column). The different values of
threshold (th) used are specified on top of each reconstructed image. (b) The one-dimensional cross-sectional plots of the target and reconstructed μa distributions
at the source plane for y = −100.
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FIG. 4. (a) Reconstructed distributions of μa (in mm−1) using cylindrical mesh along with the target distribution (given in the first column) using experimental
gelatin phantom data. The different values of threshold (th) used are specified on top of each reconstructed image. (b) The one-dimensional cross-sectional plots
of the target and reconstructed μa distributions at the source plane for x = −30.

specific information is extremely useful in not only opti-
mizing or choosing a data-collection strategy, but even in
measurement selection for a given data-collection strategy.
Also, the specific information about the independent measure-
ments avoids collecting redundant data in turn improving the
throughput of the data-collection system. In this work, a data-
resolution matrix based analysis to obtain the specific inde-
pendent measurements is presented and has been shown that
such selection does not compromise the reconstructed image
quality.

The data-resolution matrix relies on the model being used,
where the model includes both Jacobian and the regularization
associated with the reconstruction scheme.15, 17 Even though
the discussion here was limited to Levenberg–Marquardt
regularization scheme, the trends and conclusions made in
this work should hold for other regularization schemes as
well. Also, the data-resolution matrix does not take into ac-
count the noise characteristics of the data and is only depen-
dent on the model being used, making this scheme univer-
sal irrespective of the signal-to-noise ratio (SNR) in the data,
where the SNR is highly dependent on the source strength and
sensitivity of detectors.

The dependence of the data-resolution characteristics on
the regularization is clearly evident in Fig. 1, where the
importance of each data point is decreased as regulariza-

tion parameter value is increased. Note that the regulariza-
tion also known as fidelity parameter for the importance
of data,5, 21 the higher regularization only meant higher the
error associated with that data, in turn decreasing the im-
portance of the data. Also, as the selection of indepen-
dent measurements was based on how close (in magnitude)
are the off-diagonal values in comparison to the diagonal
value (refer to Algorithm 1), the parameter λ plays an im-
portant role in such selection. The same is clearly shown
in Fig. 1(b), where the normalized (to the diagonal value)
value of row number 136 is plotted as a function of reg-
ularization parameter (λ). The off-diagonal entries in com-
parison to diagonal entry (located at 136 with magnitude
of 1) take higher value for a higher regularization parame-
ter, showing that choice of higher regularization parameter
will only yield lesser independent measurements. It should
be noted that choosing a low value for regularization pa-
rameter in some cases may not improve the condition num-
ber of the problem, in turn, leading to nonunique solution
[Eqs. (5) and (6)].

It is important to note that the regularization parameter
(λ) for the LM scheme used in here stabilizes and improves
the convergence of the solution obtained by either Eq. (5)
or (6) and does not regularize the nonlinear least-squares as
it is not part of the minimization scheme. Even though the

TABLE II. Computation time for the results presented in this work (Figs. 2–4) with varying values of threshold (th). The number of iterations to reach the
stopping criterion is given in parenthesis below the computation time. The last column gives the overhead time for choosing the independent measurements
based on the data-resolution matrix characteristics.

Computation time per iteration (in s)

Imaging domain th = 1 th = 0.9 th = 0.8 th = 0.7 Overhead time (in s)

Cylinder: 3 layers, out of plane 476.04 462.12 461.90 459.45 37.98
(5) (5) (5) (5)

Patient mesh 40.93 40.63 40.55 40.59 0.53
(19) (15) (11) (10)

Experimental phantom 29.68 29.28 29.25 29.34 0.35
(13) (12) (8) (8)
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FIG. 5. Quantitative assessment of the data-model misfit and reconstruction
parameter error versus the iteration number for the results corresponding to
Fig. 3. (a) L2-norm of the data-model misfit for threshold values of 1, 0.9,
0.8, and 0.7. (b) Difference (in %) between the results given in (a) and
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sorption coefficient for threshold values of 1, 0.9, 0.8, 0.7 in the region of
interest. (d) Difference (in %) between the results given in (c) and th = 1.
The legends of (a) and (c) and (b) and (d) are the same.

update equation [Eq. (5) or (6)] looks more close to the one
obtained by Tikhonov minimization scheme,13, 15 it is equiva-
lent to Gauss–Newton minimization scheme for small values
of λ. The detailed discussion about LM minimization along
with comparison to other schemes (including Tikhonov) is
presented in Ref. 13. The initial choice of λ is dependent on
the data-model misfit, with a typical choice being greater than
or equal to L2 norm of the data-model misfit (≥||δ||2),13 the
same has been utilized here. Also note that the optimization of
data-collection strategies in the literature has been dealt using
the sensitivity matrix obtained at the initial iteration (equiva-
lently assuming the reconstruction procedure is linear),4, 7–9

the same has been adopted here. In our experience, the
change in the number of independent measurements with the

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

5

10

15

20

25

30

35

Threshold (th)

R
el

at
iv

e 
E

rr
o

r 
(i

n
 %

)

relative error
fourth order

FIG. 6. Quantitative assessment in terms of relative error (RE) observed for
the reconstructed absorption coefficient in patient mesh case (Fig. 3) using
different threshold (th) values 0.95, 0.9, 0.8, 0.7, and 0.6 (corresponding inde-
pendent measurements are given in Table I) with respect to the result obtained
using threshold of 1 (all measurements). Parameterization of the observed
trend follows fourth order polynomial decay, i.e., RE (in %) = −2681.9 th4
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iterations is very minimal (less than 1%) as the inherent model
does not change with λ.

The inherent theme of this work is to show that choos-
ing only these independent measurements based on data-
resolution matrix does not compromise the reconstructed
image quality and the same is shown in Figs. 2–4. As the
choice of independent measurements is based on the thresh-
old, the results indicate that a threshold of 0.9 has always
lead to reconstructed image quality being on par with using
all measurements (threshold of 1). The iterative behavior of
reconstruction procedure for the choice of different thresh-
olds for results presented in Fig. 3 are reported in Fig. 5.
The threshold of 0.9 always resulted in error both in data-
model misfit and reconstructed image to be less than 3%
among all iterations, indicating that the selection of indepen-
dent measurements for threshold of 0.9 did not compromise
the reconstructed image quality in comparison to using all the
measurements (threshold of 1). The same choice was imple-
mented in the experimental phantom case, which lead to 162
independent measurements among a total of 240 measure-
ments. On using 162 randomly selected measurements, the
reconstructed image quality was much poorer compared to
their counterparts including lot of artifacts that were formed
at the boundary and also resulted in poor contrast recovery
as evident in Fig. 4. There is a minimal difference (less than
5%) in the reconstructed μa values between using all mea-
surements and threshold of 0.9, where the minimal observed
difference could be because of improved SNR provided by us-
ing all measurements (where each independent measurement
is a weighted average of all its dependent measurements).

A comparison with the traditional singular value analy-
sis in assessing the usefulness of measurements has only
revealed that the number of independent measurements are
at least 20% higher. Also, it should be noted that the sin-
gular value analysis relies on the noise characteristics of
data, where the normalized singular values above the noise
floor (typically 1%) are chosen as useful measurements by
analyzing the singular value spectrum of sensitivity matrix
(J). Even though the singular value analysis was able to
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qualitatively assess a particular data-collection strategy, the
assessment is highly dependent on the noise characteristics of
the imaging system and does not take into account the effect
of regularization that is used in the reconstruction of optical
images.

The reduction in total number of measurements that were
used in the reconstruction procedure based on the threshold
reduced the Jacobian dimensions, in turn reducing the mem-
ory used for storing the same. As only underdetermined prob-
lems were considered in this work, leading to usage of Eq.
(6) for finding an update of μa, the associated computation
time per iteration is dominated by the matrix multiplication
[JJT, O(NK ∗ NN2)].14 This lead to very little to no change
in the experimentally observed computation time per itera-
tion as given in Table II for the reconstruction cases discussed
in this work. Moreover, after the choice of independent mea-
surements using the uniform initial guess and initial value of
regularization parameter, in the subsequent iterations, the di-
rect computation of reduced Jacobian (Jn) is performed.

The effect of threshold on the relative error in recon-
structed μa (at final iteration) revealed that error percentage
could be as high as 34% (Fig. 6) by choosing a low threshold
value (also resulting in lowest number of independent mea-
surements). The tradeoff between threshold value and error
in reconstructed μa could be observed from Fig. 6, the lesser
the threshold more is the error. The same trend is also ob-
served in other cases. One of the desirable aim of this work
is estimate the μa with lowest error possible, as the error per-
centage in the data is 1%, the desirable error should be in
the same range. This lead to the natural choice of thresh-
old being 0.9, for which case the relative error was 0.41%.
Note that the choice of threshold 0.95 resulted in error per-
centage of 0.23%, but the number of independent measure-
ments were higher in this case among all thresholds. The er-
ror percentage for threshold of 0.8 is 3.89%. As the decrease
in error percentage was negligible (comparing 0.95 with 0.9
for threshold) and well below 1%, the choice of threshold
0.9 was used in the experimental phantom case. It should be
noted that decrease in the threshold value (in turn decrease
in the number of independent measurements) will always re-
duce the sensitivity of the imaging domain and is well studied
in Ref. 8. The reduction in the total sensitivity of the imag-
ing domain with having less number of independent mea-
surements leads to amplification of error present in the data-
space8 and the same trend is observed here. The trend ob-
served here may not be generalized to other system designs,
as it is highly dependent on the system/sensitivity matrix (J)
characteristics defined by the imaging domain, data-collection
strategy, and detector sensitivity. But optimization of the data-
collection strategy could be easily achieved by the proposed
method.

As the regularization parameter λ dictates the data-
resolution characteristics (evident from Fig. 1), the lesser the
value of λ, more were the resulting number of independent
measurements (Fig. 7). There is a monotonical decrease in
the number of independent measurements with increase in λ,
for example, threshold of 0.9 the decrease was from 143 (λ
= 0.01) to 116 (λ = 100), where as for threshold of 0.7, it

was from 116 to 55. Note that threshold values of 0.8 and
0.7 resulted in error percentages higher than 1%, where as
for threshold of 0.9 it was 0.41% (Fig. 6). Choice of λ lesser
than 1 leads to higher number of independent measurements,
but results in poor stability in getting the update [Eq. (6)] in
subsequent iterations. Values higher than 1 for λ results in
highly smoothened images. As LM optimization is known to
be converging to local minima in case of nonconvex prob-
lems (like diffuse optical image reconstruction) depending on
the initial guess and in turn λ value, the choice of λ always
plays a pivotal role in determining the final solution to the re-
construction problem.15 Given a choice of λ, the solution ob-
tained by usage of all measurements compared to using only
the independent measurements with threshold of 0.9 in the
reconstruction procedure yielded error percentage below 1%
(also evident from Fig. 6). Such determination of indepen-
dent measurements could be obtained using Algorithm 1 and
is computationally inexpensive. As the aim of this work is to
provide those independent measurements for a given choice
of λ, the effect of λ on the reconstructed image quality is be-
yond the scope of this work.

It should be also noted that even though in here only the
results pertaining to transmission type data-collection geome-
tries are considered, the same analysis and methodology are
deployable in any data-collection geometry including reflec-
tion geometries10 as it is only dependent on the model that
is used in the image reconstruction procedure. The same
could also be extended to methods that use boundary ele-
ments and other type of advanced techniques that solve dif-
fusion equation.22 The analysis is also universal with respect
to reconstruction techniques that are in spirit similar to diffuse
optical imaging, namely, electrical impedance tomography,23

electrical capacitance tomography,24 fluorescence optical
tomography,25 and bioluminescence tomography.26

VII. CONCLUSIONS

The diffuse optical tomographic reconstruction procedure
uses advanced computational models to estimate the optical
properties for a given set of boundary measurements.20 The
choice and optimization of a data-collection strategy has been
shown to affect the reconstructed image quality and thereby
the quantitation of physiological parameters associated with
it. Even though traditional singular value analysis was able
to provide qualitatively the number of useful measurements
for a given data-collection strategy, its inability to provide the
information about whether specific measurement is useful or
not, makes the traditional data-collection strategy optimiza-
tion schemes incapable of providing the next level of informa-
tion. A model-based data-resolution matrix approach is intro-
duced in this work, where the specific information to choose
only the independent measurements among the measurements
obtained from a data-collection strategy is evaluated using
both numerical and experimental data. It is shown that such
a choice of using only independent measurements among all
measurements has not compromised the image quality, but
in turn can reduce the data-collection time and total proce-
dure time needed for the optical data collection. These type of
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advanced optimization techniques will surely pave a way in
designing highly optimized data collection systems, resulting
in most useful data and avoiding the collection of redundant
data.
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APPENDIX: ALTERNATIVE FORM FOR THE
UPDATE EQUATION

The alternative form for the update equation [Eq. (5)] can
be derived starting from the Sherman–Morrison–Woodbury
identity.27–31 This identity is given by

(A + CTBC)−1 = A−1 − A−1CT(B−1 + CA−1CT)−1CA−1,

(A1)

where A and B are positive definite and square matrices. The
matrix C could be a nonsquare and rank-deficient matrix.

Choosing A = λI, B = I, and C = J leads to

(λI + JTJ)−1 = (λI)−1 − (λI)−1JT(I + J(λI)−1JT)−1J(λI)−1.

(A2)

Simplification on the right-hand side (as λ is a scalar) leads
to

(λI + JTJ)−1 = (1/λ)I − (1/λ)JT(λI + JJT)−1J. (A3)

Multiplying by JT on both sides and regrouping the terms
gives rise to

(JTJ + λI)−1JT = (1/λ)JT (
I − (λI + JJT)−1JJT)

. (A4)

Substitution of I = (JJT + λI)−1(JJT + λI) and simplifying
leads to

(JTJ + λI)−1JT = (1/λ)JT(JJT + λI)−1 (
(JJT + λI) − JJT)

,

(A5)

simplifying further leads to

(JTJ + λI)−1JT = (1/λ)JT(JJT + λI)−1(λ)I (A6)

finally resulting in

(JTJ + λI)−1JT = JT(JJT + λI)−1. (A7)

This proves that Eqs. (5) and (6) are equivalent. Note that the
same relation is derived starting from the generalized least-
squares update equation alternative form in the appendix of
Ref. 14, in here it is derived starting from the Sherman–
Morrison–Woodbury identity.
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