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Abstract.5

Purpose: To introduce a novel filter design element called rolling convolution filters for developing lightweight convo-6

lutional neural networks (CNNs) in medical image analysis, aiming to reduce model complexity and memory footprint7

without compromising performance.8

Approach: Rolling convolution filters were generated by performing a channel-wise rolling operation on a single9

base filter, creating unique filters while restricting the learnable parameters. The method was applied to various two-10

and three -dimensional medical image analysis tasks, including reconstruction, segmentation, and classification across11

MRI, CT, and OCT modalities. The performance was compared with that of standard CNNs and other lightweight12

architectures.13

Results: The proposed rolling convolution filters substantially reduced the number of parameters and model size com-14

pared to standard CNNs, with a negligible increase in performance error. For quantitative susceptibility mapping, the15

rolling filter approach achieved results comparable to those of state-of-the-art methods with 6× fewer parameters.16

In COVID-19 anomaly segmentation, rolling filters performed on par with existing lightweight models while having17

approximately 68× fewer parameters. For OCT classification, rolling filters maintained accuracy while significantly18

reducing the model size ( 49×).19

Conclusions: Rolling convolution filters offer an effective approach for designing lightweight CNNs for medical im-20

age analysis tasks, providing substantial reductions in model complexity and memory requirements while maintaining21

a performance comparable to that of larger models. This method can be easily incorporated into existing architectures22

and shows promise for deploying efficient deep learning models in resource-constrained medical imaging settings.23
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1 Introduction26

Deep learning based medical image analysis has shown promising results in tasks such as segmen-27

tation, classification, reconstruction, super-resolution, etc. The standalone design aspects of archi-28

tectures such as UNet,1 ResNet2 and their 3D variants3 have produced state-of-the-art frameworks29

for automated medical image analysis. Deep learning based models have surpassed conventional30

techniques for different tasks across various modalities. However, most existing deep learning31

models are heavy in terms of the number of parameters and model size, making them difficult to32

deploy on edge devices, particularly in point-of-care settings. Fast and efficient computer-based di-33
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agnosis is crucial in medical imaging to improve instant diagnosis, real-time healthcare solutions,34

rapid treatment, and substantial cost reduction. Deep learning based computer-aided or point-35

of-care analysis using efficient and lightweight convolutional neural networks is the need of the36

hour. Techniques such as network pruning,4 network quantization,5 and knowledge distillation6
37

for developing lightweight CNNs have been extensively studied.38

Pruning, quantization, and distillation methods often require a pretrained heavy model to de-39

velop an efficient lightweight model. On the other hand, architectural design based lightweight40

models have performed on par with existing state-of-the-art heavy models. MobileNets7–9 uti-41

lized depth-wise separable convolutions3, 10, 11 along with residual blocks for building lightweight42

models. As highlighted in Zhang et al.12, interleaved group convolutions proposed a novel build-43

ing block consisting of primary and secondary group convolutions, thereby promoting limited44

model complexity and fewer parameters than the previous models. Furthermore, Zhang et al.12
45

also showed that regular and depth-wise separable convolutions form a special case of interleaved46

group convolutions. MixConv13 introduced depth-wise separable convolutions using multiple ker-47

nels with different spatial sizes to improve the model performance. Gao et al.14 introduced48

channel-wise group convolutions (ChannelNets) to promote sparse connectivity among feature49

maps. Zhang et al.15 and Ma et al.16 introduced channel shuffle operations and point-wise group50

convolutions to facilitate efficient feature propagation, and proposed several practical guidelines51

for designing extremely lightweight models, collectively known as ShuffleNets. Tan et al.1718 have52

systematically studied the family of EfficientNets for scaling of deep models across the depth,53

width, and spatial extent of feature maps. Slimmable neural networks19 train a single network54

that is switchable to different widths (channels), promoting adaptability to different on-device55

benchmarks and resource-constrained settings. Structured convolutions with composite kernel56
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structures20 decompose the convolution operation into sum-pooling components, followed by con-57

volution with fewer weights and less computational requirements. These methods map various58

convolution operations to reduce the number of trainable parameters and model complexity. How-59

ever, all these convolution operations need to be carried out independently, still having redundant60

trainable parameters.61

Learning filter bases for reducing model parameters has also shown great promise for building62

lightweight models. Qiu et al.21 have shown that decomposing the convolution filters using a set63

of pre-fixed basis and learning the coefficients of the expansion from the data has the potential64

to reduce the trainable parameters and computation overhead. Yawei et al.22 propose to learn65

the set of basis filters for reducing the parameters of deep models. Kang et al.23 introduced a66

deeply shared filter basis for reducing the number of parameters and model complexity. Yang et67

al.24 proposed lego filters for building a sophisticated module representation using a split-merge-68

transform strategy leading to efficient convolutional neural networks. The primary bottleneck for69

building such a filter basis in these methods lies in the choice of the number of basis filters at a70

given layer, which is an additional hyperparameter.71

Parameter re-usability and parameter-sharing methods for developing lightweight models have72

shown promising results across several tasks. Savarese et al.25 introduced a parameter-sharing73

scheme for learning feature representations across convolutional layers as a learned linear combi-74

nation of parameter tensors from a global dictionary. Yang et al.26 introduced filter summary for75

parameter re-usability/sharing across successive convolutional filters, thus leading to lightweight76

models. Wang et al.27 and Han et al.28 proposed versatile convolution filters wherein secondary77

filters have been derived from a primary filter using binary masks, leading to less memory and com-78

putation cost. Han et al.29 introduced a series of linear transformations on feature maps to generate79
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more representational features at a minimum cost to reduce the parameters/model complexity in80

deep models. Cheng et al.30 explored the redundancy of the parameters with the introduction of cir-81

cular projections instead of linear projections in the fully connected layers. In addition, Refs.31–34
82

have also explored circular symmetry for designing neural nets for various applications. However,83

these methods do not achieve the desired level of reduction in trainable parameters, particularly for84

tasks in medical image analysis.85

This study proposes novel rolling convolution filters that promote parameter reusability/sharing86

for designing lightweight CNNs. A novel filter design element, called rolling convolution filters,87

has been introduced, which reduces the number of parameters in convolutional neural networks88

(CNN), thereby reducing the model complexity and memory footprint. These sets of new filters89

have been generated by performing a non-parameterized channel-wise rolling (or circular shifting)90

operation on a single base filter. Each newly developed filter is unique, but the number of learnable91

parameters is restricted to that of the base filter, which addresses the problem of redundant parame-92

ters often observed in deep neural networks. The use case of these rolling convolution filters (both93

3D and 2D) in medical image analysis across three different problems, including reconstruction94

(3D), segmentation (2D), and classification (2D) have been investigated. The proposed filters ade-95

quately reduce the number of parameters, accounting for the low model complexity.96

97

The main contributions of this study can be summarized as follows:98

1. Development of novel rolling convolutional filters based lightweight CNNs for efficient med-99

ical image analysis. The proposed rolling convolution filters promote parameter reusability100

to reduce model complexity and memory footprint, making them preferable for developing101
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lightweight CNNs.102

2. This is also the first ever channel rolling operation (both in 3D and 2D) utilized to generate a103

set of new convolution filters from a single base filter. The higher-dimensional equivalence104

of the feature maps using the proposed filters with the standard convolutional filters is shown105

in a use case.106

3. It was also shown that the proposed rolling convolution filters based lightweight convolu-107

tional neural networks (CNNs) perform on par with their heavyweight counterparts across108

medical image analysis tasks like reconstruction, segmentation, and classification. Specif-109

ically, quantitative susceptibility mapping (QSM) reconstruction, COVID-19 anomaly seg-110

mentation, and OCT-based retinal disease classification were used to demonstrate the effi-111

cacy of the proposed rolling convolution filters.112

2 Methods113

This section describes various lightweight convolution strategies used in the literature, along with114

the proposed approach of rolling convolution filters to reduce the model size of CNNs. An115

overview of the different convolution strategies is presented in Fig. 1. The discussion below116

details two-dimensional convolutions and can be extended to three-dimensional convolutions.117

2.1 Existing Convolution Filters118

2.1.1 Standard Convolution Filters119

Given a set of feature maps x of dimensions (batch size = 1, in channels = K, spatial extent =120

M x M), a set of convolution filters F of dimensions (out channels (or no. of filters) = K, in121
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Fig 1 A comparison between existing convolution filters and proposed rolling convolution filters. (a) standard con-
volution filters, (b) depth-wise separable filters, (c) flattened convolution filters , and (d) rolling convolution filters.
Depth-wise separable convolution filters perform independent channel-wise convolutions, and an assimilated repre-
sentation is formed using 1 × 1 point-wise convolution. Flattened convolution filters perform the lateral convolution
operation across the channels ( 1 × 1 point-wise), followed by convolution across the horizontal and vertical dimen-
sions of the feature maps. In contrast, the proposed rolling convolution filters generate sets of new convolution filters
by performing a non-parameterized channel-wise rolling (or circular shifting) operation on a single base filter.
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channels = K, spatial extent = N x N), the output feature maps y obtained from the standard 2D122

convolution filters can be represented as follows:123

yi = x ∗ Fi (1)

where * is the convolution operator, yi is the ith feature map in y and Fi is the ith convolution filter.124

The number of parameters required for generating a K channel output feature map from a K channel125

input feature map using a filter with spatial extent N × N is K2 × N2. During backpropagation,126

the gradients are computed as127

∂L
∂Fij

=
∂L
∂yi

∗ xj (2)

128

∂L
∂xj

=
K∑
i=1

∂L
∂yi

∗ ψ(Fij) (3)

where L is the computed loss, Fij is the jth kernel of the ith convolution filter, yi is the ith feature129

map in y, xj is the jth feature map in x and ψ is the flipping operator that flips the elements of130

the kernel both horizontally and vertically with respect to the center. The filters F1, F2, ... , FK are131

independent of each other, and only the ith feature map in y contributes for updating the parameters132

of the convolution filter Fi.133

2.1.2 Depth-Wise Convolution Filters134

Depth-wise separable convolution filters10 perform convolution independently on each channel of135

the input feature map. Finally, point-wise 1×1 convolutions are used to increase or decrease the136
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number of feature maps. The same can be represented as137

yi = xi ∗ fi (4)

where yi is the ith feature map in y and fi is the ith channel of the convolution filter F and, xi is the138

ith feature map in x. This separable convolution is followed by a point-wise convolution using 1×1139

convolutions to generate a collective representation. Total parameters required for generating a K140

channel output feature map from a K channel input feature map using a depth-wise separable filter141

with spatial extent N×N is K2 + K × N2. The former term originates from point-wise convolutions,142

whereas the latter accounts for channel-wise convolutions.143

2.1.3 Flattened Convolution Filters144

Flattened convolutions35 (also known as spatially separable or factorized convolutions) split the145

standard convolution into three stages: lateral (across channels), followed by convolutions across146

the horizontal and vertical dimensions. Lateral convolutions are performed using point-wise con-147

volutions. The horizontal and vertical convolutions are followed by lateral convolutions and are148

factorized across the respective dimensions, which are eventually performed independently (sim-149

ilar to depth-wise separable filters) on each input-feature map. Note that in depth-wise separable150

filters, point-wise convolutions are performed after separable convolutions, whereas in flattened151

convolutions, separable convolutions are performed after point-wise (lateral) convolutions. The152

total number of parameters required to generate a K channel output feature map from a K chan-153

nel input feature map using a flattened convolution filter are K2 + K × N× 2. The former term154

originates from point-wise convolutions, whereas the latter accounts for flattened convolutions.155
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Fig 2 Forward propagation and backpropagation through 2D rolling convolution filters. x is a 3-channel feature map,
* is the convolution operator, ϕ is the channel-rolling operator, y is the output feature map, and ϕ̂ is the channel-rolling
operator that operates in the opposite direction of ϕ.

2.2 Proposed Rolling Convolution Filters156

This study proposes generating a set of convolution filters from a single base filter using the channel157

rolling operation, as shown in Fig. 2. Let F1 be a convolution filter of dimension (out channels =158

1, in channels = K, and spatial extent = N x N). Subsequently, the set of filters generated from F1159
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are as follows160

F2 = ϕ(F1)

F3 = ϕ(F2) = ϕ2(F1)

...

FK = ϕ(FK−1) = ϕK−1(F1)

(5)

where, ϕ is the channel rolling operator shown in Fig. 2. The channel rolling operator ϕ cycli-161

cally shifts the filter channels by a single position. ϕk performs k cyclic shifts, and ϕ0 performs162

identity mapping. The output feature maps y obtained from the rolling 2D convolutional filters are163

represented as follows:164

yi = x ∗ ϕi−1(F1) (6)

In standard convolution, the convolutions are performed among the corresponding channels of the165

input and the filter. In rolling convolution, the channel-rolling operation on the filter convolves166

each channel of the filter with every other channel of the input to generate a salient representation167

of the feature space. The number of parameters required for generating a K channel output feature168

map from a K channel input feature map using a rolling convolution filter with a spatial extent169

N× N is limited to K × N2. During backpropagation, the gradients of the rolling convolution are170

computed as follows:171

∂L
∂F1j

=
K∑
i=1

∂L
∂yi

∗
(
ϕ̂i−1(x)

)
j

(7)

172

∂L
∂xj

=
K∑
i=1

∂L
∂yi

∗ ψ
(
ϕi−1(F1)

)
j

(8)

where ϕ̂ is the channel rolling operator that operates in the opposite direction of ϕ and ψ is the173

flipping operator that flips the kernel elements both horizontally and vertically with respect to the174
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Algorithm 1 Rolling Convolution Operation (2D)
1: Input: x← Input Feature Map (B, C, H1, W1)

w← Convolution Filter (1, C, K, K)
s← Stride
p← Padding

2: Output:y← Output Feature Map (B, C, H2, W2)
3: for i = 1 to C do
4: if i == 1 then
5: f ← w
6: else
7: w← CircularShift(w, dim = 1, shift = 1)
8: f ← Concatenate(f , w, dim = 0)
9: end if

10: end for
11: {f is the Rolled Filter with Dimensions (C, C, K, K)}
12: y← Convolution(x, f , stride = s, padding = p)
13: y← ReLU(y)
14: return y

center. As the rolling convolution generates all output feature maps from a single base filter, the175

gradients accumulate during backpropagation. The channel rolling operator ϕ̂ cyclically shifts176

the filter channels by a single position. ϕ̂K performs K cyclic shifts, and ϕ̂0 performs identity177

mapping. The forward and backward propagations through the 2D rolling convolution filters are178

shown in Fig. 2. Further, a detailed pseudocode explaining the rolling convolution operation (2D)179

is shown in Algorithm 1. Similarly, the rolling convolution operation can be extended to the 3D180

case as well. Given a K-channeled filter, at most a K-channeled feature map can be generated using181

rolling convolutions. To increase the number of feature maps, say to 2K, two independent filters,182

each with K channels, must be used.183

2.3 Rolling Filters: Effective for Medical Image Analysis184

The proposed rolling convolution filters can be deployed in any deep learning model. However,185

the proposed methodology is more effective for medical image analysis in the following ways:186

First, the complexity/variability in modeling input-to-output mapping is limited in medical image187
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Fig 3 A typical design aspect of a UNet architecture. The encoder-decoder structure embedded with feature con-
catenations forms a method for salience representation. Feature maps (convolution layer 1) obtained from UNet and
Rolling UNet on a sample chest CT slice for the task of COVID-19 anomaly segmentation are shown in Fig. 7.

analysis compared with computer vision tasks. Hence, the extreme compression offered by the188

rolling convolution filter has little effect on the performance of deep learning models in automat-189

ing medical image analysis. Second, the design aspect of UNet has laid a strong foundation for190

the development of various image-to-image (and volume-to-volume)-based deep learning models191

for automated medical image analysis. A typical UNet architecture is shown in Fig. 3. The model192

consists of an encoder-decoder structure embedded with feature concatenation. Feature concatena-193

tion provides a salient representation and enables a hierarchical gradient flow for efficient training.194

As shown in Fig. 3, it is worth noting that the UNet model’s final output is strongly dependent on195

the features extracted from the initial layers. The proposed rolling convolution filters with fewer196

parameters can capture similar semantics from the initial layers compared to standard convolution197

filters (refer to Fig. 7).198
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3 Experiments199

The related works, datasets, and implementation details of various tasks considered in this study200

are detailed in each subsection.201

3.1 Quantitative Susceptibility Mapping202

Quantitative susceptibility mapping (QSM) is a magnetic resonance (MR) imaging-based paramet-203

ric imaging method that measures magnetic susceptibility and has applications in the assessment204

of several brain disorders, such as brain hemorrhage, multiple sclerosis, and Parkinson’s disease.36
205

A vital step in QSM is reconstruction (dipole inversion), which is a classical ill-posed inverse206

problem in medical imaging. This involves deconvolving the susceptibility distribution from the207

relative difference field (also known as the local field or tissue phase) obtained from the phase208

information in the MR image. The relationship between the local field (also known as the relative209

difference field or tissue phase) δB(r) and susceptibility χ(r) is as follows:37
210

δB(r) =
1

4π

∫ R3

r′ ̸=r
χ(r′)

3cos2Θ− 1

|r − r′|3
dr′ (9)

where, r is a spatial location [x,y,z] in the three-dimensional (3D) MR volume and Θ is the angle211

between the unit vector along r − r′ and the unit vector along the direction of the main magnetic212

field during MR acquisition. The same relation can be written as a convolution operation (∗)213

between χ(r) and d(r) (known as the dipole kernel38), as follows:214

δB(r) = χ(r) ∗ d(r) (10)
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where,215

d(r) =
3cos2Θ− 1

4π|r|3
(11)

Given d(r) and δB(r), Eq. (10) must be deconvolved to reconstruct χ(r). Conventionally, decon-216

volution is performed in the Fourier domain. The deconvolution problem becomes ill-posed when217

Θ ∼ 54.7356°, leading to a division by zero in the Fourier domain. As a result, several streaking218

artifacts get induced in the reconstructed susceptibility maps. Liu et al.39 have introduced the219

COSMOS algorithm (that serves as the gold standard for QSM), which utilizes multiple head ori-220

entations data for effective susceptibility mapping. This requires data from multiple orientations,221

which makes the data acquisition time prohibitively long. Recently, deep-learning methods such222

as DeepQSM,40 QSMnet,41 QSMnet+,42 and xQSM43 were more effective than traditional meth-223

ods for solving ill-posed dipole deconvolution. In the existing literature,44 deep learning methods224

for QSM are heavy models based on 3D-UNet (for example, QSMnet has ∼ 99 million param-225

eters). As highlighted in Jung et al.45, efficient designs (or frameworks) for deep learning based226

susceptibility mapping is the need of the hour.227

A total of 12 healthy volunteers’ MRI data from five different head orientations were used in228

this study.41 In total, there were 60 (= 12 × 5) scans (three-dimensional (3D) data), of which229

25 scans were utilized for training, 5 scans for validation, and 30 scans for testing. The data230

acquisition details are provided in.41 All the deep models in this study were trained using 3D231

patches of dimensions 64 × 64 × 64. There were 16800 3D patches in the training set and 1680232

3D patches in the validation set. Following Yoon et al.,41 the data pairs, that is, the input local233

field and label COSMOS maps matching the input local-field orientation, were utilized to train the234
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proposed framework. Experiments using the proposed method of rolling kernels were conducted235

using QSMnet41 as the baseline. The peak signal-to-noise ratio (PSNR), structural similarity index236

(SSIM), high-frequency error component (HFEN), and normalized mean square error (NMSE)237

were used to quantify the performance of the quantitative susceptibility mapping methods.46
238

As shown in Eq. (13), a linear combination of ℓ1 error and the regularization loss Lreg Eq. (12)239

was backpropagated to train the Rolling QSMnet, where χ is the predicted susceptibility, χC is the240

COSMOS-generated susceptibility, and∇ is the gradient extraction kernel that returns the x, y, and241

z gradients. Following Yoon et al.,41 the values of w1 and w2 were set to 0.5 and 0.1, respectively.242

The model was trained for 25 epochs with a mini-batch size of 16. The initial learning rate was243

5e−3 and was gradually decayed by 0.1 once for every 15 epochs. The model parameters were244

optimized using the Adam47 optimizer.245

Lreg = w1

∣∣∣∣ d ∗ χ − d ∗ χC
∣∣∣∣
1
+ w2

∣∣∣∣∇ ∗ χ −∇ ∗ χC
∣∣∣∣
1

(12)

Ltotal =
∣∣∣∣ χ − χC

∣∣∣∣
1
+ Lreg (13)

3.2 COVID-19 Anomalies Segmentation246

Findings from chest computed tomography (CT) images are beneficial for screening COVID-19.48
247

Deep-learning-based data-driven approaches have been proposed for instant COVID-19 diagno-248

sis.49–52 The imaging features of interest from the CT images of COVID-19 patients were ground-249

glass opacities (GGOs), Consolidations, and Pleural effusions52–54. Among these, the GGO was the250

predominant feature. The segmentation of GGOs from chest CT images has been extensively stud-251
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ied well in the literature. Anamorphic depth embedding-based lightweight CNN,55 called Anam-252

Net, has been proposed for efficient segmentation of COVID-19 anomalies in a point-of-care set-253

ting. Fan et al.56 proposed a multi-attention semi-supervised approach for segmenting COVID-19254

anomalies from chest CT images. Wang et al.57 addressed the problem of high-level annotations255

by proposing a robust COVID-19 segmentation framework trained from low-level (noisy) annota-256

tions.257

The dataset58 consists of 3410 axial CT slices obtained from 20 patients. These slices were258

divided into four folds at the patient level. Three-fold cross-validation on folds F1, F2, and F3259

was performed. The fold F4 (with 545 slices) was explicitly used for testing. The datasets were260

split, and the preprocessing of the CT slices was performed as described in Ref.55 The annotations261

consisted of three labels: abnormal region (class-0, having GGOs, consolidations, or pleural effu-262

sions), the normal region (class-1), and the background (class-2, non-lung region). Experiments263

with the proposed method of rolling kernels were conducted to segment COVID-19 anomalies us-264

ing UNet1 as a baseline. Standard figures of merit, Specificity, Sensitivity, Accuracy, and Dice265

score were utilized to quantify the performance of the segmentation models considered in this266

study.267

The CT COVID dataset exhibited class imbalance among the background, normal, and abnor-268

mal regions. To address this, we employed a weighted cross-entropy loss across all models in our269

experiments.55 The weighted cross-entropy loss is shown in Eq. (14), where y′ has the predicted270

softmax probabilities, y is the one-hot encoded annotation, and wij is the weight given to the corre-271

sponding label at ijth location. These weights were computed as w(t) = 1/p(t), where p(t) is the272

fraction of voxels having label t ∈ {0,1,2} in the training set. The model was trained for 50 epochs273

with a mini-batch size of 5. The initial learning rate was 5e−4 and gradually decayed by a factor of274
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0.1 once every 33 epochs. The model parameters were optimized using Adam47 optimizer.275

L = −
rows∑
i=1

cols∑
j=1

(wij)
2∑

t=0

yijt log (y
′
ijt) (14)

3.3 OCT B-scans Classification276

The most common retinal diseases that can be diagnosed using OCT B-scan images include277

Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), and Drusen (DRU). A278

small amount of retinal fluid formed near the retinal layer characterizes CNV; DME accounts for279

the formation of fluid-filled cysts, and Drusen results in irregular retinal boundaries. Given these280

distinctions, computer-aided automated detection and classification of these abnormalities is of vi-281

tal interest, which one wishes to perform in real time. Several deep-learning-based attempts59–62
282

have been made to fully automate this detection/classification without the need for expert or clin-283

ician intervention. The current state-of-the-art method is an ensemble of deep residual networks284

proposed by Feng et al.63 This framework instantiates the responses from four ResNet-502 archi-285

tectures and makes an ensemble decision for its prediction. Given the task of automated classifi-286

cation of retinal diseases using OCT images (a small problem compared with vision-based general287

object classification), mini convolutional neural networks with proper hyperparameters perform288

on par with current deep (heavy) models. Experiments with the proposed method of rolling fil-289

ters were conducted to classify OCT B-scans using ResNet-182 as the baseline. The University of290

California San Diego (UCSD) OCT dataset59 was used for modeling retinal disease classification.291

The UCSD dataset had 37455 B-scans for CNV, 11598 for DME, 8866 for Drusen, and 51390292

for Normal. There were approximately 109308 images that were split into the training set (70%),293

validation set (15%), and testing set (15%). The models were trained using the cross-entropy294
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shown in Eq. (15), where y′ has the predicted softmax probabilities and y is the one-hot encoded295

annotation. The models were trained for 30 epochs with a mini-batch size of 32. The initial296

learning rate was 5e−4 and gradually decayed by 0.1 once every 7 epochs. The parameters were297

optimized using the Adam47 optimizer.298

L = −
3∑

t=0

yt log (y
′
t) (15)

Across all experiments, the data were carefully partitioned into training, validation, and testing299

sets, as well as across different folds, with all splits performed at the patient level, promoting fair300

evaluation practices and preventing data leakage. All experiments were performed using PyTorch64
301

on a Linux workstation with i9 9900X (CPU) with 128 GB RAM and an NVIDIA Quadro RTX302

8000 GPU card with a capacity of 96 GB.303

4 Results304

4.1 Quantitative Susceptibility Mapping305

The representative reconstruction results of the dipole deconvolution methods DeepQSM,40 xQSM,43
306

QSMnet,41 FINE,65 LPCNN66 and the proposed Rolling QSMnet on a sample test volume (sagittal307

view) are shown in Fig. 4. The averaged figures of merit over the test volumes across all ori-308

entations, utilizing all dipole deconvolution methods considered in this study, are listed in Table309

1. Furthermore, comparisons with depth-wise separable filters and flattened convolution filters310

(with QSMnet as the baseline) are detailed in Table 1. Despite having ∼ 6× fewer parameters311

and ∼ 7× lighter in terms of model size than existing lightweight designs (Table 1), the proposed312

Rolling QSMnet performed on par with depth-wise QSMnet, flattened QSMnet, and QSMnet (Ta-313
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Fig 4 Representative susceptibility reconstruction results (sagittal view) across orientation 1 of considered methods
(column-wise) on a sample test volume. The high-frequency error component (HFEN(%) ↓) with reference to the gold
standard COSMOS was provided for each slice. Overall quantitative metrics of considered methods across the test
volumes are shown in Table 1.

ble 1). As shown in Fig. 4, a promising perceptual similarity of the proposed Rolling QSMnet to314

QSMnet and to COSMOS was observed, and the same is evident from the metrics quantified in315

Table 1. Voxel-wise difference (error) images between Rolling QSMnet and COSMOS, as well as316

corresponding error maps for the other QSM methods were shown in Fig. 5. These maps show317

that discrepancies are mainly localized to regions with strong susceptibility gradients. Overall, the318

Rolling QSMnet exhibited a strong spatial agreement with COSMOS. The “promising perceptual319

similarity” refers to the close visual correspondence in anatomical contrast, preservation of venous320

structures, and accurate depiction of susceptibility variations in deep gray matter, with only minor321

edge related differences and no obvious systematic bias.322
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Table 1 Averaged figures of merit over 30 patient volumes (test cases) from all dipole deconvolution methods consid-
ered in this work. Note that the inference (s) reported were for the (GPU and CPU) implementation. Susceptibility
reconstruction results (sagittal view) across orientation 1 of considered methods are shown in Fig. 4.

DeepQSM xQSM QSMnet FINE LPCNN Depth Wise Flattened Rolling
40 43 41 65 66 QSMnet QSMnet QSMnet

(proposed)

Parameters ∼ 5.64 M ∼ 5.21 M ∼ 99 M ∼ 5.64 M ∼ 470 K ∼ 2.5 M ∼ 2.2 M ∼ 445 K

Size (MB) 21.54 19.89 379.38 21.54 1.71 9.75 8.59 1.70

Inference (s) 0.85, 8.25 1.25, 13.6 1.32, 14.1 90.25, 285.35 3.72, 24.35 0.62, 16.5 1.25, 17.6 1.41, 15.2

SSIM 0.910 ± 0.01 0.908 ± 0.01 0.910 ± 0.01 0.909 ± 0.01 0.905 ± 0.01 0.900 ± 0.01 0.900 ± 0.01 0.900 ± 0.01

PSNR 41.10 ± 0.93 40.98 ± 1.03 41.04 ± 1.01 41.07 ± 0.91 40.88 ± 1.06 40.72 ± 0.98 40.79 ± 0.98 40.71 ± 1.03

NMSE (%) 51.19 ± 3.39 52.23 ± 3.78 51.39 ± 3.81 51.40 ± 3.37 52.93 ± 4.01 53.31 ± 4.20 52.89 ± 3.61 53.34 ± 3.72

HFEN (%) 49.21 ± 3.82 50.43 ± 4.66 48.41 ± 4.42 49.43 ± 3.81 49.71 ± 4.78 51.22 ± 5.16 50.64 ± 4.53 51.31 ± 4.54

Fig 5 Error maps of the QSM reconstructions shown in Fig. 4, computed with respect to the COSMOS reconstructions
as reference. Error maps are shown for all the compared QSM methods. The comparison between the baseline
QSMnet and the proposed Rolling QSMnet is highlighted, illustrating differences in spatial error distribution and
overall agreement with COSMOS.
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Fig 6 Representative segmentation results on a patient volume (test cases). The input slices (test cases) are shown in
the first column. The respective annotations (ground truth) are presented in the second column. The predictions of the
UNet and Rolling UNet are presented in the fourth and fifth columns, respectively. Abnormalities in the lung region
are indicated in red, and the normal lung region is indicated in green. The average Dice Similarity scores are given
below the corresponding slices. Overall quantitative metrics of considered methods across the test cases are shown in
Table 2.

4.2 COVID-19 Anomalies Segmentation323

Representative COVID-19 anomaly segmentation results were shown in Fig. 6, and the corre-324

sponding figures of merit were provided in Table 2. The UNet and the proposed rolling counterpart325

performed equally well, with comparable Dice similarity scores for COVID-19 anomaly segmen-326

tation. The proposed Rolling UNet (for COVID-19 segmentation) performed on par (refer to Table327

2 and Fig. 6) with the existing state-of-the-art lightweight model AnamNet55 (∼ 4.4M parameters).328

Rolling UNet had∼ 68× fewer parameters and∼ 64× lighter model size than existing lightweight329

designs (Depth-Wise UNet and Flattened UNet).330

Intuitively, these results indicate that the rolling convolution operation effectively preserves the331
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Fig 7 Feature representations of CT images from the initial layers of UNet driven architectures while segmenting
COVID-19 anomalies. The input CT images are presented in the first column. The final predictions are presented in the
fifth column. The features obtained with standard convolutions (UNet) and from rolling convolutions (Rolling UNet)
are shown in the first and second rows, respectively. (a) clearly distinguishes the lung region from the background
(through edge extraction), (b) most of the neurons fired for the abnormal region (shown in red color), and (c) activated
neurons focused on the normal/healthy tissue (shown in green color) of the lung.

Table 2 Average figures of merit across three cross folds for the COVID-19 anomalies segmentation. Note that the
reported inference (s) were for GPU and CPU. Representative segmentation results on sample chest CT slices (test
cases) are shown in Fig. 6.

AnamNet UNet Depth Wise Flattened Rolling
UNet UNet UNet

55 67 (proposed)

Parameters ∼4.4 M ∼31 M ∼6.01 M ∼6.01 M ∼88 K

Size (MB) 17.21 118.5 22.90 22.90 0.34

Inference (s) 0.36, 1.5 0.52, 1.2 0.21, 0.99 0.21, 1.15 0.45, 2.3

Sensitivity 0.914 0.910 0.906 0.884 0.909

Specificity 0.993 0.992 0.990 0.991 0.989

Accuracy 0.988 0.987 0.984 0.984 0.983

Dice Score 0.869 0.864 0.829 0.829 0.831

critical spatial and contextual information required for accurate anomaly segmentation, even with332

a substantially reduced number of parameters. By efficiently reusing and shifting filter responses,333

the rolling design minimizes redundancy inherent in conventional convolutions, enabling compact334

models to maintain strong representational capacity without compromising segmentation perfor-335

mance. Despite using significantly fewer parameters, the proposed rolling convolution filters are336

able to capture semantic representations in the early layers that are comparable to those learned337
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Table 3 Average figures of merit (over ∼ 14500 OCT B-scans, Test Cases) for OCT classification task. Note that
inference (s) reported were for GPU, CPU.

MobileNetV2 ShuffleNetV2 SqueezeNet ResNet18 Rolling
8 16 68 2 ResNet18

(proposed))

Parameters ∼2.2 M ∼1.2 M ∼724 K ∼11 M ∼ 226 K

Size (MB) 8.50 4.79 2.76 42.25 0.86

Inference (s) 0.18, 0.2 0.19, 0.2 0.18, 0.1 0.15, 0.2 0.18, 0.5

Precision 0.96 ± 0.01 0.95 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.95 ± 0.01

F1 Score 0.94 ± 0.01 0.93 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.92 ± 0.01

Accuracy 0.97 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.01

by standard convolution filters (see Fig. 7). This indicates that the rolling mechanism effectively338

reuses filter weights to extract similar low level features without sacrificing representational capac-339

ity.340

4.3 OCT B-scans Classification341

The performance of the rolling convolution filters was consistent with that of retinal disease clas-342

sification. The average results in terms of precision, F1 score, and accuracy on the UCSD dataset343

are listed in Table 3. Comparisons with existing lightweight models, such as MobileNetV2,8 Shuf-344

fleNetV2,16 and SqueezeNet,68 were also detailed in Table 3. The abnormal regions and Grad-345

Cam69 visualizations are shown in Fig. 8. The differences observed in some of the Grad-CAM346

visualizations can be attributed to the reduced parameterization of the Rolling ResNet18. While347

the rolling convolution filters reuse weights to generate multiple effective filters, this constrained348

parameter space can lead the network to rely on slightly different feature combinations and acti-349

vation pathways compared to the standard ResNet18. Consequently, the regions emphasized by350

Grad-CAM may vary in some cases, even though the overall predictive performance remains com-351

parable. Despite this, the Grad-CAM visualizations for Rolling ResNet18 consistently focus on352
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the regions of interest highlighted by the bounding boxes, capturing the relevant visual semantics353

associated with the abnormalities. Further Fig. 9 presents the One-vs-Rest (OVR) ROC curves for354

OCT image classification across CNV, DME, Drusen, and Normal classes using (a) the baseline355

ResNet18 and (b) the proposed Rolling ResNet18. The similar ROC profiles across all classes356

indicate that the proposed method performs on par with the baseline model in terms of class-wise357

discrimination.358

Fig 8 Example OCT images (first row) from UCSD dataset for each class of retinal disease given correspondingly
on top of each image (column-wise), with abnormal region shown by a bounding box. The subsequent rows show
the overlaid gradients on the input images, specifically the Grad-CAM visualizations. Overall quantitative metrics of
considered methods across the test cases are shown in Table 3

5 Discussion359

This study introduced a novel method for designing lightweight convolutional networks using a360

nonparameterized channel-rolling operation. The proposed method of generating a new set of361
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Fig 9 One-vs-Rest (OVR) Receiver Operating Characteristic (ROC) curves for OCT image classification across the
four categories - Class 0 (CNV), Class 1 (DME), Class 2 (Drusen), and Class 3 (Normal) corresponding to (a)
ResNet18 and (b) Rolling ResNet18.

convolutional filters from a single base filter resulted in efficient forward and backward flows for362

training deep learning models. Channel rolling filters facilitate the design of deep models without363

increasing their complexity. The shared weights across the filters reduce the classical overfitting364

problem in CNNs. The proposed rolling filters were easily incorporated into popular state-of-365

the-art architectures to analyze the performance of the proposed rolling convolution filters. As366

shown in Fig. 3, the UNet model’s final output strongly depends on the features extracted from the367

initial layers. The proposed rolling convolution filters with fewer parameters can capture similar368

semantics from the initial layers compared to standard convolution filters (refer to Fig. 7). The369

relationship between the number of input and output channels in the baseline models was either370

1×, 2×, or 0.5×. In the proposed design of the rolling filters, to generate output channels equal to371

the input channels (1×), the rolling operations of the single-base filter must be equal to the number372

of input channels. For generating output channels of 2× input channels, two base filters were used.373

The independent rolling operations performed on the two base filters were equal to the number of374
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corresponding input channels. Similarly, to generate output channels of 0.5× input channels, half375

the number of rolling operations were performed on a single-base filter.376

Achieving a balance between model size, computational efficiency, and accuracy is a significant377

challenge in the design of lightweight CNNs. Although lightweight models aim to reduce resource378

requirements, they often sacrifice accuracy compared to larger and more complex models. The379

filters utilized in these models play an important role in developing tailor-made lightweight models.380

Existing architectural modifications, such as depth-wise separable convolutions, skip connections,381

and efficient building blocks, have focused on decreasing the number of operations rather than382

on an efficient filter design. Thus, this work is a significant step towards efficient filter design for383

medical imaging tasks that are less complex, with the added advantage of seamless incorporation of384

the proposed rolling filters into existing deep learning architectures to convert them into lightweight385

models. Moreover, the proposed rolling-filter-based architectures are as accurate as larger/complex386

models, thus addressing the major limitations in designing these lightweight models.387

The performance of the proposed rolling convolution filters was statistically compared with388

other lightweight design approaches, namely depth-wise separable filters and flattened convolu-389

tion filters, across multiple tasks using two-tailed Welch’s t-tests. For all evaluation metrics and390

tasks, the resulting p-values were greater than 0.05, indicating no statistically significant differ-391

ences between the proposed and existing lightweight designs. Importantly, this lack of statistical392

difference suggests performance equivalence rather than inferiority, demonstrating that the pro-393

posed approach achieves comparable performance while requiring fewer parameters. To further394

improve the accuracy and performance of the proposed rolling filters, the following detailed stud-395

ies will be considered in future work: (1) increasing the number of independent filters at a given396

convolution layer, (2) introducing attention modules within the layer activations that can further397

26



boost performance, and (3) determining the optimal number of independent filters in a given layer.398

6 Conclusion399

This study presented a novel approach for designing lightweight convolutional neural networks us-400

ing rolling convolution filters, demonstrating significant reductions in model size and parameters401

while maintaining comparable performance across various medical image analysis tasks. The pro-402

posed method outperforms other lightweight CNN designs in terms of parameter efficiency and can403

be easily integrated into existing architectures. By addressing the challenge of developing efficient404

deep learning models in medical imaging, the proposed method showed promise for deploying405

CNNs in resource-constrained settings. The successful application of rolling convolution filters406

to quantitative susceptibility mapping reconstruction, COVID-19 anomaly segmentation, and reti-407

nal disease classification from OCT images, highlighted its generalizability and applicability for408

automated medical image analysis.409
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List of Figures623

1 A comparison between existing convolution filters and proposed rolling convolu-624

tion filters. (a) standard convolution filters, (b) depth-wise separable filters, (c)625

flattened convolution filters , and (d) rolling convolution filters. Depth-wise sep-626

arable convolution filters perform independent channel-wise convolutions, and an627

assimilated representation is formed using 1× 1 point-wise convolution. Flattened628

convolution filters perform the lateral convolution operation across the channels629

( 1 × 1 point-wise), followed by convolution across the horizontal and vertical630

dimensions of the feature maps. In contrast, the proposed rolling convolution fil-631

ters generate sets of new convolution filters by performing a non-parameterized632

channel-wise rolling (or circular shifting) operation on a single base filter.633

2 Forward propagation and backpropagation through 2D rolling convolution filters.634

x is a 3-channel feature map, * is the convolution operator, ϕ is the channel-rolling635

operator, y is the output feature map, and ϕ̂ is the channel-rolling operator that636

operates in the opposite direction of ϕ.637

3 A typical design aspect of a UNet architecture. The encoder-decoder structure638

embedded with feature concatenations forms a method for salience representation.639

Feature maps (convolution layer 1) obtained from UNet and Rolling UNet on a640

sample chest CT slice for the task of COVID-19 anomaly segmentation are shown641

in Fig. 7.642
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4 Representative susceptibility reconstruction results (sagittal view) across orienta-643

tion 1 of considered methods (column-wise) on a sample test volume. The high-644

frequency error component (HFEN(%) ↓) with reference to the gold standard COS-645

MOS was provided for each slice. Overall quantitative metrics of considered meth-646

ods across the test volumes are shown in Table 1.647

5 Error maps of the QSM reconstructions shown in Fig. 4, computed with respect648

to the COSMOS reconstructions as reference. Error maps are shown for all the649

compared QSM methods. The comparison between the baseline QSMnet and the650

proposed Rolling QSMnet is highlighted, illustrating differences in spatial error651

distribution and overall agreement with COSMOS.652

6 Representative segmentation results on a patient volume (test cases). The input653

slices (test cases) are shown in the first column. The respective annotations (ground654

truth) are presented in the second column. The predictions of the UNet and Rolling655

UNet are presented in the fourth and fifth columns, respectively. Abnormalities656

in the lung region are indicated in red, and the normal lung region is indicated657

in green. The average Dice Similarity scores are given below the corresponding658

slices. Overall quantitative metrics of considered methods across the test cases are659

shown in Table 2.660
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7 Feature representations of CT images from the initial layers of UNet driven archi-661

tectures while segmenting COVID-19 anomalies. The input CT images are pre-662

sented in the first column. The final predictions are presented in the fifth column.663

The features obtained with standard convolutions (UNet) and from rolling convo-664

lutions (Rolling UNet) are shown in the first and second rows, respectively. (a)665

clearly distinguishes the lung region from the background (through edge extrac-666

tion), (b) most of the neurons fired for the abnormal region (shown in red color),667

and (c) activated neurons focused on the normal/healthy tissue (shown in green668

color) of the lung.669

8 Example OCT images (first row) from UCSD dataset for each class of retinal dis-670

ease given correspondingly on top of each image (column-wise), with abnormal671

region shown by a bounding box. The subsequent rows show the overlaid gradients672

on the input images, specifically the Grad-CAM visualizations. Overall quantita-673

tive metrics of considered methods across the test cases are shown in Table 3674

9 One-vs-Rest (OVR) Receiver Operating Characteristic (ROC) curves for OCT im-675

age classification across the four categories - Class 0 (CNV), Class 1 (DME), Class676

2 (Drusen), and Class 3 (Normal) corresponding to (a) ResNet18 and (b) Rolling677

ResNet18.678
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List of Tables679

1 Averaged figures of merit over 30 patient volumes (test cases) from all dipole de-680

convolution methods considered in this work. Note that the inference (s) reported681

were for the (GPU and CPU) implementation. Susceptibility reconstruction results682

(sagittal view) across orientation 1 of considered methods are shown in Fig. 4.683

2 Average figures of merit across three cross folds for the COVID-19 anomalies seg-684

mentation. Note that the reported inference (s) were for GPU and CPU. Represen-685

tative segmentation results on sample chest CT slices (test cases) are shown in Fig.686

6.687

3 Average figures of merit (over ∼ 14500 OCT B-scans, Test Cases) for OCT classi-688

fication task. Note that inference (s) reported were for GPU, CPU.689
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