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Rolling Convolution Filters for Lightweight Neural Networks in
Medical Image Analysis

Naveen Paluru®, Mehak Arora?, and Phaneendra K. Yalavarthy?*
4Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India

Abstract.

Purpose: To introduce a novel filter design element called rolling convolution filters for developing lightweight convo-
lutional neural networks (CNNs) in medical image analysis, aiming to reduce model complexity and memory footprint
without compromising performance.

Approach: Rolling convolution filters were generated by performing a channel-wise rolling operation on a single
base filter, creating unique filters while restricting the learnable parameters. The method was applied to various two-
and three -dimensional medical image analysis tasks, including reconstruction, segmentation, and classification across
MRI, CT, and OCT modalities. The performance was compared with that of standard CNNs and other lightweight
architectures.

Results: The proposed rolling convolution filters substantially reduced the number of parameters and model size com-
pared to standard CNNs, with a negligible increase in performance error. For quantitative susceptibility mapping, the
rolling filter approach achieved results comparable to those of state-of-the-art methods with 6x fewer parameters.
In COVID-19 anomaly segmentation, rolling filters performed on par with existing lightweight models while having
approximately 68 x fewer parameters. For OCT classification, rolling filters maintained accuracy while significantly
reducing the model size (49 x).

Conclusions: Rolling convolution filters offer an effective approach for designing lightweight CNNs for medical im-
age analysis tasks, providing substantial reductions in model complexity and memory requirements while maintaining
a performance comparable to that of larger models. This method can be easily incorporated into existing architectures
and shows promise for deploying efficient deep learning models in resource-constrained medical imaging settings.

Keywords: Lightweight Networks, Parameter Redundancy, and Medical Image Analysis.

*Phaneendra K. Yalavarthy yalavarthy @iisc.ac.in

1 Introduction

Deep learning based medical image analysis has shown promising results in tasks such as segmen-
tation, classification, reconstruction, super-resolution, etc. The standalone design aspects of archi-
tectures such as UNet,' ResNet? and their 3D variants® have produced state-of-the-art frameworks
for automated medical image analysis. Deep learning based models have surpassed conventional
techniques for different tasks across various modalities. However, most existing deep learning
models are heavy in terms of the number of parameters and model size, making them difficult to

deploy on edge devices, particularly in point-of-care settings. Fast and efficient computer-based di-
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agnosis is crucial in medical imaging to improve instant diagnosis, real-time healthcare solutions,
rapid treatment, and substantial cost reduction. Deep learning based computer-aided or point-
of-care analysis using efficient and lightweight convolutional neural networks is the need of the
hour. Techniques such as network pruning,* network quantization,’ and knowledge distillation®
for developing lightweight CNNs have been extensively studied.

Pruning, quantization, and distillation methods often require a pretrained heavy model to de-
velop an efficient lightweight model. On the other hand, architectural design based lightweight
models have performed on par with existing state-of-the-art heavy models. MobileNets’™ uti-

lized depth-wise separable convolutions™ 1*:!!

along with residual blocks for building lightweight
models. As highlighted in Zhang et al.'?, interleaved group convolutions proposed a novel build-
ing block consisting of primary and secondary group convolutions, thereby promoting limited
model complexity and fewer parameters than the previous models. Furthermore, Zhang et al.'”
also showed that regular and depth-wise separable convolutions form a special case of interleaved
group convolutions. MixConv'? introduced depth-wise separable convolutions using multiple ker-
nels with different spatial sizes to improve the model performance. Gao et al.'* introduced
channel-wise group convolutions (ChannelNets) to promote sparse connectivity among feature
maps. Zhang et al.’’> and Ma et al.'® introduced channel shuffle operations and point-wise group
convolutions to facilitate efficient feature propagation, and proposed several practical guidelines
for designing extremely lightweight models, collectively known as ShuffleNets. Tan et al.'’'® have
systematically studied the family of EfficientNets for scaling of deep models across the depth,
width, and spatial extent of feature maps. Slimmable neural networks'® train a single network
that is switchable to different widths (channels), promoting adaptability to different on-device

benchmarks and resource-constrained settings. Structured convolutions with composite kernel
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structures?’ decompose the convolution operation into sum-pooling components, followed by con-
volution with fewer weights and less computational requirements. These methods map various
convolution operations to reduce the number of trainable parameters and model complexity. How-
ever, all these convolution operations need to be carried out independently, still having redundant
trainable parameters.

Learning filter bases for reducing model parameters has also shown great promise for building
lightweight models. Qiu et al.>! have shown that decomposing the convolution filters using a set
of pre-fixed basis and learning the coefficients of the expansion from the data has the potential

to reduce the trainable parameters and computation overhead. Yawei et al.??

propose to learn
the set of basis filters for reducing the parameters of deep models. Kang et al.?* introduced a
deeply shared filter basis for reducing the number of parameters and model complexity. Yang et
al.** proposed lego filters for building a sophisticated module representation using a split-merge-
transform strategy leading to efficient convolutional neural networks. The primary bottleneck for
building such a filter basis in these methods lies in the choice of the number of basis filters at a
given layer, which is an additional hyperparameter.

Parameter re-usability and parameter-sharing methods for developing lightweight models have

L 25

shown promising results across several tasks. Savarese et a introduced a parameter-sharing

scheme for learning feature representations across convolutional layers as a learned linear combi-
nation of parameter tensors from a global dictionary. Yang et al.? introduced filter summary for

parameter re-usability/sharing across successive convolutional filters, thus leading to lightweight

L 27 L 28

models. Wang et al.”’ and Han et al.”° proposed versatile convolution filters wherein secondary
filters have been derived from a primary filter using binary masks, leading to less memory and com-

putation cost. Han et al.*° introduced a series of linear transformations on feature maps to generate
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more representational features at a minimum cost to reduce the parameters/model complexity in
deep models. Cheng et al.>* explored the redundancy of the parameters with the introduction of cir-
cular projections instead of linear projections in the fully connected layers. In addition, Refs.?'=
have also explored circular symmetry for designing neural nets for various applications. However,
these methods do not achieve the desired level of reduction in trainable parameters, particularly for
tasks in medical image analysis.

This study proposes novel rolling convolution filters that promote parameter reusability/sharing
for designing lightweight CNNs. A novel filter design element, called rolling convolution filters,
has been introduced, which reduces the number of parameters in convolutional neural networks
(CNN), thereby reducing the model complexity and memory footprint. These sets of new filters
have been generated by performing a non-parameterized channel-wise rolling (or circular shifting)
operation on a single base filter. Each newly developed filter is unique, but the number of learnable
parameters is restricted to that of the base filter, which addresses the problem of redundant parame-
ters often observed in deep neural networks. The use case of these rolling convolution filters (both
3D and 2D) in medical image analysis across three different problems, including reconstruction
(3D), segmentation (2D), and classification (2D) have been investigated. The proposed filters ade-

quately reduce the number of parameters, accounting for the low model complexity.

The main contributions of this study can be summarized as follows:

1. Development of novel rolling convolutional filters based lightweight CNNs for efficient med-
ical image analysis. The proposed rolling convolution filters promote parameter reusability

to reduce model complexity and memory footprint, making them preferable for developing



102 lightweight CNNss.

103 2. This is also the first ever channel rolling operation (both in 3D and 2D) utilized to generate a
104 set of new convolution filters from a single base filter. The higher-dimensional equivalence
105 of the feature maps using the proposed filters with the standard convolutional filters is shown
106 in a use case.

107 3. It was also shown that the proposed rolling convolution filters based lightweight convolu-
108 tional neural networks (CNNs) perform on par with their heavyweight counterparts across
109 medical image analysis tasks like reconstruction, segmentation, and classification. Specif-
110 ically, quantitative susceptibility mapping (QSM) reconstruction, COVID-19 anomaly seg-

111 mentation, and OCT-based retinal disease classification were used to demonstrate the effi-

112 cacy of the proposed rolling convolution filters.

2 Methods

1

w

112 This section describes various lightweight convolution strategies used in the literature, along with
ns the proposed approach of rolling convolution filters to reduce the model size of CNNs. An
1 overview of the different convolution strategies is presented in Fig. 1. The discussion below

117 details two-dimensional convolutions and can be extended to three-dimensional convolutions.

ns 2.1 Existing Convolution Filters

119 2.1.1 Standard Convolution Filters

120 Given a set of feature maps x of dimensions (batch size = 1, in channels = K, spatial extent =

122 M x M), a set of convolution filters F' of dimensions (out channels (or no. of filters) = K, in
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(d) Rolling Convolution Filters : Parameters - (N x N x K) x 1

Fig 1 A comparison between existing convolution filters and proposed rolling convolution filters. (a) standard con-
volution filters, (b) depth-wise separable filters, (c) flattened convolution filters , and (d) rolling convolution filters.
Depth-wise separable convolution filters perform independent channel-wise convolutions, and an assimilated repre-
sentation is formed using 1 X 1 point-wise convolution. Flattened convolution filters perform the lateral convolution
operation across the channels ( 1 x 1 point-wise), followed by convolution across the horizontal and vertical dimen-
sions of the feature maps. In contrast, the proposed rolling convolution filters generate sets of new convolution filters
by performing a non-parameterized channel-wise rolling (or circular shifting) operation on a single base filter.
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channels = K, spatial extent = N x N), the output feature maps y obtained from the standard 2D

convolution filters can be represented as follows:

y; =xxF (1)

where * is the convolution operator, y; is the i** feature map in y and Fj is the i*" convolution filter.
The number of parameters required for generating a K channel output feature map from a K channel
input feature map using a filter with spatial extent N x N is K> x N?. During backpropagation,

the gradients are computed as

oL oL
9L _5OL iy ®
an N Byz “

where L is the computed loss, Fj; is the j th kernel of the i*" convolution filter, y; 1s the it" feature
map in y, x; is the j%* feature map in x and ¢ is the flipping operator that flips the elements of
the kernel both horizontally and vertically with respect to the center. The filters F}, F5, ... , Fx are
independent of each other, and only the ' feature map in y contributes for updating the parameters

of the convolution filter F;.

2.1.2 Depth-Wise Convolution Filters

Depth-wise separable convolution filters' perform convolution independently on each channel of

the input feature map. Finally, point-wise 1x1 convolutions are used to increase or decrease the
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number of feature maps. The same can be represented as

Yi =X * fi “)

where y; is the 7' feature map in y and f; is the i** channel of the convolution filter F and, x; is the
i" feature map in x. This separable convolution is followed by a point-wise convolution using 1x 1
convolutions to generate a collective representation. Total parameters required for generating a K
channel output feature map from a K channel input feature map using a depth-wise separable filter
with spatial extent N x N is K? + K x N?. The former term originates from point-wise convolutions,

whereas the latter accounts for channel-wise convolutions.

2.1.3 Flattened Convolution Filters

Flattened convolutions® (also known as spatially separable or factorized convolutions) split the
standard convolution into three stages: lateral (across channels), followed by convolutions across
the horizontal and vertical dimensions. Lateral convolutions are performed using point-wise con-
volutions. The horizontal and vertical convolutions are followed by lateral convolutions and are
factorized across the respective dimensions, which are eventually performed independently (sim-
ilar to depth-wise separable filters) on each input-feature map. Note that in depth-wise separable
filters, point-wise convolutions are performed after separable convolutions, whereas in flattened
convolutions, separable convolutions are performed after point-wise (lateral) convolutions. The
total number of parameters required to generate a K channel output feature map from a K chan-
nel input feature map using a flattened convolution filter are K? + K x N x 2. The former term

originates from point-wise convolutions, whereas the latter accounts for flattened convolutions.
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Fig 2 Forward propagation and backpropagation through 2D rolling convolution filters. x is a 3-channel feature map,
* is the convolution operator, ¢ is the channel-rolling operator, y is the output feature map, and q’; is the channel-rolling
operator that operates in the opposite direction of ¢.

2.2 Proposed Rolling Convolution Filters

This study proposes generating a set of convolution filters from a single base filter using the channel
rolling operation, as shown in Fig. 2. Let F} be a convolution filter of dimension (out channels =

1, in channels = K, and spatial extent = N x N). Subsequently, the set of filters generated from F}
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are as follows

Fy, = ¢(F1)

F3 = ¢(F2) = ¢2(F1) 5)

Fx = ¢(Fx1) = 671 (F)
where, ¢ is the channel rolling operator shown in Fig. 2. The channel rolling operator ¢ cycli-
cally shifts the filter channels by a single position. ¢* performs k cyclic shifts, and ¢° performs
identity mapping. The output feature maps y obtained from the rolling 2D convolutional filters are

represented as follows:

yi =x* ¢ (F) (6)

In standard convolution, the convolutions are performed among the corresponding channels of the
input and the filter. In rolling convolution, the channel-rolling operation on the filter convolves
each channel of the filter with every other channel of the input to generate a salient representation
of the feature space. The number of parameters required for generating a K channel output feature
map from a K channel input feature map using a rolling convolution filter with a spatial extent
N x N is limited to K x NZ. During backpropagation, the gradients of the rolling convolution are

computed as follows:
K

0L ~~O0L -,

oF, ~ 2 i G (7)
i— 1

axj Z ayz w(e (F), (8)

where qAb is the channel rolling operator that operates in the opposite direction of ¢ and v is the

flipping operator that flips the kernel elements both horizontally and vertically with respect to the

10



Algorithm 1 Rolling Convolution Operation (2D)
1: Input: x < Input Feature Map (B, C, H;, Wp)
w < Convolution Filter (1, C, K, K)

s < Stride
p < Padding

2: Output:y < Output Feature Map (B, C, Ho, W)

3: fori =1to Cdo

4: if i == 1 then

5: f+—w

6: else

7: w < CircularShift(w, dim = 1, shift = 1)

8: f < Concatenate(f, w, dim = 0)

9: endif

10: end for

—
—_—

: {f is the Rolled Filter with Dimensions (C, C, K, K)}
.y < Convolution(x, f, stride = s, padding = p)

.y < ReLU(y)

: return y

—_ = =
F NS ]

175 center. As the rolling convolution generates all output feature maps from a single base filter, the
176 gradients accumulate during backpropagation. The channel rolling operator d; cyclically shifts
177 the filter channels by a single position. g%K performs K cyclic shifts, and ggo performs identity
178 mapping. The forward and backward propagations through the 2D rolling convolution filters are
179 shown in Fig. 2. Further, a detailed pseudocode explaining the rolling convolution operation (2D)
1e0 1S shown in Algorithm 1. Similarly, the rolling convolution operation can be extended to the 3D
1s1 case as well. Given a K-channeled filter, at most a K-channeled feature map can be generated using
182 rolling convolutions. To increase the number of feature maps, say to 2K, two independent filters,

183 each with K channels, must be used.

184 2.3 Rolling Filters: Effective for Medical Image Analysis

185 The proposed rolling convolution filters can be deployed in any deep learning model. However,
186 the proposed methodology is more effective for medical image analysis in the following ways:
157 First, the complexity/variability in modeling input-to-output mapping is limited in medical image

11
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A Typical UNet Architecture

—» | EEEEE—————

Input Output
ri
) ||
b i
LJ
Convolution Upsample + Convolution
*
MaxPool + Convolution Feature Concatenation

Fig 3 A typical design aspect of a UNet architecture. The encoder-decoder structure embedded with feature con-
catenations forms a method for salience representation. Feature maps (convolution layer 1) obtained from UNet and
Rolling UNet on a sample chest CT slice for the task of COVID-19 anomaly segmentation are shown in Fig. 7.

analysis compared with computer vision tasks. Hence, the extreme compression offered by the
rolling convolution filter has little effect on the performance of deep learning models in automat-
ing medical image analysis. Second, the design aspect of UNet has laid a strong foundation for
the development of various image-to-image (and volume-to-volume)-based deep learning models
for automated medical image analysis. A typical UNet architecture is shown in Fig. 3. The model
consists of an encoder-decoder structure embedded with feature concatenation. Feature concatena-
tion provides a salient representation and enables a hierarchical gradient flow for efficient training.
As shown in Fig. 3, it is worth noting that the UNet model’s final output is strongly dependent on
the features extracted from the initial layers. The proposed rolling convolution filters with fewer

parameters can capture similar semantics from the initial layers compared to standard convolution

filters (refer to Fig. 7).
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3 Experiments

The related works, datasets, and implementation details of various tasks considered in this study

are detailed in each subsection.

3.1 Quantitative Susceptibility Mapping

Quantitative susceptibility mapping (QSM) is a magnetic resonance (MR) imaging-based paramet-
ric imaging method that measures magnetic susceptibility and has applications in the assessment
of several brain disorders, such as brain hemorrhage, multiple sclerosis, and Parkinson’s disease.>®
A vital step in QSM is reconstruction (dipole inversion), which is a classical ill-posed inverse
problem in medical imaging. This involves deconvolving the susceptibility distribution from the
relative difference field (also known as the local field or tissue phase) obtained from the phase
information in the MR image. The relationship between the local field (also known as the relative
difference field or tissue phase) dg(r) and susceptibility x(7) is as follows:*’

1 / R 3cos?O — 1

= | x0T ©)

/#rX ’7" — 7”|3

(SB (T’)

where, 7 is a spatial location [X,y,z] in the three-dimensional (3D) MR volume and © is the angle
between the unit vector along r — " and the unit vector along the direction of the main magnetic
field during MR acquisition. The same relation can be written as a convolution operation (x)

between x(r) and d(r) (known as the dipole kernel®®), as follows:

dp(r) = x(r) * d(r) (10)
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where,

B 3co0s?0 — 1
AP

d(r) (11)

Given d(r) and dg(r), Eq. (10) must be deconvolved to reconstruct x (7). Conventionally, decon-
volution is performed in the Fourier domain. The deconvolution problem becomes ill-posed when
© ~ 54.7356°, leading to a division by zero in the Fourier domain. As a result, several streaking
artifacts get induced in the reconstructed susceptibility maps. Liu et al.®** have introduced the
COSMOS algorithm (that serves as the gold standard for QSM), which utilizes multiple head ori-
entations data for effective susceptibility mapping. This requires data from multiple orientations,
which makes the data acquisition time prohibitively long. Recently, deep-learning methods such
as DeepQSM,* QSMnet,*' QSMnet+,* and xQSM* were more effective than traditional meth-
ods for solving ill-posed dipole deconvolution. In the existing literature,** deep learning methods
for QSM are heavy models based on 3D-UNet (for example, QSMnet has ~ 99 million param-
eters). As highlighted in Jung et al.*, efficient designs (or frameworks) for deep learning based
susceptibility mapping is the need of the hour.

A total of 12 healthy volunteers” MRI data from five different head orientations were used in
this study.*! In total, there were 60 (= 12 x 5) scans (three-dimensional (3D) data), of which
25 scans were utilized for training, 5 scans for validation, and 30 scans for testing. The data
acquisition details are provided in.*' All the deep models in this study were trained using 3D
patches of dimensions 64 x 64 x 64. There were 16800 3D patches in the training set and 1680
3D patches in the validation set. Following Yoon et al.,*' the data pairs, that is, the input local

field and label COSMOS maps matching the input local-field orientation, were utilized to train the

14
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proposed framework. Experiments using the proposed method of rolling kernels were conducted
using QSMnet*! as the baseline. The peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), high-frequency error component (HFEN), and normalized mean square error (NMSE)
were used to quantify the performance of the quantitative susceptibility mapping methods.*°

As shown in Eq. (13), a linear combination of ¢; error and the regularization loss £,., Eq. (12)
was backpropagated to train the Rolling QSMnet, where  is the predicted susceptibility, xc is the
COSMOS-generated susceptibility, and V is the gradient extraction kernel that returns the x, y, and
z gradients. Following Yoon et al.,*! the values of w; and w, were set to 0.5 and 0.1, respectively.
The model was trained for 25 epochs with a mini-batch size of 16. The initial learning rate was
5e~3 and was gradually decayed by 0.1 once for every 15 epochs. The model parameters were

optimized using the Adam*’ optimizer.

Lig =wi||d*x —dxxc ||, +ws|| V*x = Vxxel, (12)

Liota = H X — Xc Hl + ‘Creg (13)

3.2 COVID-19 Anomalies Segmentation

Findings from chest computed tomography (CT) images are beneficial for screening COVID-19.4
Deep-learning-based data-driven approaches have been proposed for instant COVID-19 diagno-
sis.*=2 The imaging features of interest from the CT images of COVID-19 patients were ground-
glass opacities (GGOs), Consolidations, and Pleural effusions’>*. Among these, the GGO was the

predominant feature. The segmentation of GGOs from chest CT images has been extensively stud-
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ied well in the literature. Anamorphic depth embedding-based lightweight CNN,3 called Anam-
Net, has been proposed for efficient segmentation of COVID-19 anomalies in a point-of-care set-
ting. Fan et al.>® proposed a multi-attention semi-supervised approach for segmenting COVID-19

anomalies from chest CT images. Wang et al.”’

addressed the problem of high-level annotations
by proposing a robust COVID-19 segmentation framework trained from low-level (noisy) annota-
tions.

The dataset>® consists of 3410 axial CT slices obtained from 20 patients. These slices were
divided into four folds at the patient level. Three-fold cross-validation on folds F1, F2, and F3
was performed. The fold F4 (with 545 slices) was explicitly used for testing. The datasets were
split, and the preprocessing of the CT slices was performed as described in Ref.>> The annotations
consisted of three labels: abnormal region (class-0, having GGOs, consolidations, or pleural effu-
sions), the normal region (class-1), and the background (class-2, non-lung region). Experiments
with the proposed method of rolling kernels were conducted to segment COVID-19 anomalies us-
ing UNet! as a baseline. Standard figures of merit, Specificity, Sensitivity, Accuracy, and Dice
score were utilized to quantify the performance of the segmentation models considered in this
study.

The CT COVID dataset exhibited class imbalance among the background, normal, and abnor-
mal regions. To address this, we employed a weighted cross-entropy loss across all models in our
experiments.”> The weighted cross-entropy loss is shown in Eq. (14), where y’ has the predicted
softmax probabilities, y is the one-hot encoded annotation, and w;; is the weight given to the corre-
sponding label at ij" location. These weights were computed as w(t) = 1/p(t), where p(t) is the
fraction of voxels having label ¢ € {0,1,2} in the training set. The model was trained for 50 epochs

with a mini-batch size of 5. The initial learning rate was 5e~* and gradually decayed by a factor of
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0.1 once every 33 epochs. The model parameters were optimized using Adam*’ optimizer.

rows cols 2
L==3"> (wy) ) yielog(yiy) (14)
i=1 j=1 t=0

3.3 OCT B-scans Classification

The most common retinal diseases that can be diagnosed using OCT B-scan images include
Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), and Drusen (DRU). A
small amount of retinal fluid formed near the retinal layer characterizes CNV; DME accounts for
the formation of fluid-filled cysts, and Drusen results in irregular retinal boundaries. Given these
distinctions, computer-aided automated detection and classification of these abnormalities is of vi-
tal interest, which one wishes to perform in real time. Several deep-learning-based attempts>®~?
have been made to fully automate this detection/classification without the need for expert or clin-
ician intervention. The current state-of-the-art method is an ensemble of deep residual networks
proposed by Feng et al.® This framework instantiates the responses from four ResNet-50? archi-
tectures and makes an ensemble decision for its prediction. Given the task of automated classifi-
cation of retinal diseases using OCT images (a small problem compared with vision-based general
object classification), mini convolutional neural networks with proper hyperparameters perform
on par with current deep (heavy) models. Experiments with the proposed method of rolling fil-
ters were conducted to classify OCT B-scans using ResNet-18? as the baseline. The University of
California San Diego (UCSD) OCT dataset®® was used for modeling retinal disease classification.

The UCSD dataset had 37455 B-scans for CNV, 11598 for DME, 8866 for Drusen, and 51390

for Normal. There were approximately 109308 images that were split into the training set (70%),

validation set (15%), and testing set (15%). The models were trained using the cross-entropy
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shown in Eq. (15), where y’ has the predicted softmax probabilities and y is the one-hot encoded
annotation. The models were trained for 30 epochs with a mini-batch size of 32. The initial
learning rate was 5e~* and gradually decayed by 0.1 once every 7 epochs. The parameters were

optimized using the Adam* optimizer.

3
L=-) yilog(y) (15)
t=0

Across all experiments, the data were carefully partitioned into training, validation, and testing
sets, as well as across different folds, with all splits performed at the patient level, promoting fair
evaluation practices and preventing data leakage. All experiments were performed using PyTorch®*
on a Linux workstation with 19 9900X (CPU) with 128 GB RAM and an NVIDIA Quadro RTX

8000 GPU card with a capacity of 96 GB.

4 Results
4.1 Quantitative Susceptibility Mapping

The representative reconstruction results of the dipole deconvolution methods DeepQSM,*’ xQSM,*
QSMnet,*! FINE,® LPCNN® and the proposed Rolling QSMnet on a sample test volume (sagittal
view) are shown in Fig. 4. The averaged figures of merit over the test volumes across all ori-
entations, utilizing all dipole deconvolution methods considered in this study, are listed in Table
1. Furthermore, comparisons with depth-wise separable filters and flattened convolution filters
(with QSMnet as the baseline) are detailed in Table 1. Despite having ~ 6x fewer parameters
and ~ 7x lighter in terms of model size than existing lightweight designs (Table 1), the proposed

Rolling QSMnet performed on par with depth-wise QSMnet, flattened QSMnet, and QSMnet (Ta-
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HFEN 49.17% HFEN 48.74% HFEN 48.22%

COSMOS
(Label) FINE LPCNN Rolling QSMnet

HFEN 49.91% HFEN 46.26% HFEN 43.82%
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IR ——

Fig 4 Representative susceptibility reconstruction results (sagittal view) across orientation 1 of considered methods

(column-wise) on a sample test volume. The high-frequency error component (HFEN(%) |) with reference to the gold
standard COSMOS was provided for each slice. Overall quantitative metrics of considered methods across the test
volumes are shown in Table 1.

ble 1). As shown in Fig. 4, a promising perceptual similarity of the proposed Rolling QSMnet to
QSMnet and to COSMOS was observed, and the same is evident from the metrics quantified in
Table 1. Voxel-wise difference (error) images between Rolling QSMnet and COSMOS, as well as
corresponding error maps for the other QSM methods were shown in Fig. 5. These maps show
that discrepancies are mainly localized to regions with strong susceptibility gradients. Overall, the
Rolling QSMnet exhibited a strong spatial agreement with COSMOS. The “promising perceptual
similarity” refers to the close visual correspondence in anatomical contrast, preservation of venous

structures, and accurate depiction of susceptibility variations in deep gray matter, with only minor

edge related differences and no obvious systematic bias.
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Table 1 Averaged figures of merit over 30 patient volumes (test cases) from all dipole deconvolution methods consid-
ered in this work. Note that the inference (s) reported were for the (GPU and CPU) implementation. Susceptibility

reconstruction results (sagittal view) across orientation 1 of considered methods are shown in Fig. 4.

DeepQSM xQSM QSMnet FINE LPCNN Depth Wise Flattened Rolling

40 3 4 05 66 QSMnet QSMnet QSMnet

(proposed)

Parameters ~5.64M ~ 521 M ~9M ~ 5.64 M ~ 470 K ~25M ~22M ~ 445 K

Size (MB) 21.54 19.89 379.38 21.54 1.71 9.75 8.59 1.70

Inference (s)  0.85, 8.25 1.25,13.6 1.32,14.1  90.25,285.35 3.72,24.35 0.62,16.5 1.25,17.6 1.41,15.2
SSIM 0910 +£ 0.01 0.908 £0.01 0.910+0.01 0.909 £0.01 0.905+0.01 0.900 £ 0.01 0.900 £+ 0.01 0.900 + 0.01
PSNR 41.10 + 093 40.98 £1.03 41.04 +£1.01 41.07 £091 40.88+1.06 40.72 +0.98 40.79 +0.98 40.71 £+ 1.03
NMSE (%) 51.19 £3.39 5223 +3.78 51.39+3.81 5140+3.37 5293+401 53.31+420 52.89+3.61 53.34+3.72
HFEN (%) 49.21 +£3.82 5043 +£4.66 48.41 +4.42 4943 +3.81 49.71 +£4.78 5122 +5.16 50.64 £4.53 51.31 +£4.54

DeepQSM

QSMnet

T

Fig 5 Error maps of the QSM reconstructions shown in Fig. 4, computed with respect to the COSMOS reconstructions
as reference. Error maps are shown for all the compared QSM methods. The comparison between the baseline

QSMnet and the proposed Rolling QSMnet is highlighted, illustrating differences in spatial error distribution and
overall agreement with COSMOS.
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Input Label AnamNet UNet Rolling UNet

slice # 90 slice # 85 slice # 80

slice # 95

Fig 6 Representative segmentation results on a patient volume (test cases). The input slices (test cases) are shown in
the first column. The respective annotations (ground truth) are presented in the second column. The predictions of the
UNet and Rolling UNet are presented in the fourth and fifth columns, respectively. Abnormalities in the lung region
are indicated in red, and the normal lung region is indicated in green. The average Dice Similarity scores are given

below the corresponding slices. Overall quantitative metrics of considered methods across the test cases are shown in
Table 2.

4.2 COVID-19 Anomalies Segmentation

Representative COVID-19 anomaly segmentation results were shown in Fig. 6, and the corre-
sponding figures of merit were provided in Table 2. The UNet and the proposed rolling counterpart
performed equally well, with comparable Dice similarity scores for COVID-19 anomaly segmen-
tation. The proposed Rolling UNet (for COVID-19 segmentation) performed on par (refer to Table
2 and Fig. 6) with the existing state-of-the-art lightweight model AnamNet>> (~ 4.4M parameters).
Rolling UNet had ~ 68 x fewer parameters and ~ 64 x lighter model size than existing lightweight
designs (Depth-Wise UNet and Flattened UNet).

Intuitively, these results indicate that the rolling convolution operation effectively preserves the
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333

334

335

336

Input (a) (b) (c) Output

UNet

Rolling UNet

Fig 7 Feature representations of CT images from the initial layers of UNet driven architectures while segmenting
COVID-19 anomalies. The input CT images are presented in the first column. The final predictions are presented in the
fifth column. The features obtained with standard convolutions (UNet) and from rolling convolutions (Rolling UNet)
are shown in the first and second rows, respectively. (a) clearly distinguishes the lung region from the background
(through edge extraction), (b) most of the neurons fired for the abnormal region (shown in red color), and (c) activated

neurons focused on the normal/healthy tissue (shown in green color) of the lung.

Table 2 Average figures of merit across three cross folds for the COVID-19 anomalies segmentation. Note that the
reported inference (s) were for GPU and CPU. Representative segmentation results on sample chest CT slices (test

cases) are shown in Fig. 6.

AnamNet UNet Depth Wise Flattened Rolling
UNet UNet UNet

33 67 (proposed)

Parameters ~44 M ~31 M ~6.01 M ~6.01 M ~88 K

Size (MB) 17.21 118.5 22.90 22.90 0.34
Inference (s) 0.36,1.5 052,12 0.21,099 0.21,1.15 045,23
Sensitivity 0.914 0.910 0.906 0.884 0.909
Specificity 0.993 0.992 0.990 0.991 0.989
Accuracy 0.988 0.987 0.984 0.984 0.983
Dice Score 0.869 0.864 0.829 0.829 0.831

critical spatial and contextual information required for accurate anomaly segmentation, even with
a substantially reduced number of parameters. By efficiently reusing and shifting filter responses,
the rolling design minimizes redundancy inherent in conventional convolutions, enabling compact
models to maintain strong representational capacity without compromising segmentation perfor-
mance. Despite using significantly fewer parameters, the proposed rolling convolution filters are

able to capture semantic representations in the early layers that are comparable to those learned
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Table 3 Average figures of merit (over ~ 14500 OCT B-scans, Test Cases) for OCT classification task. Note that
inference (s) reported were for GPU, CPU.

MobileNetV2 ShuffleNetV2 SqueezeNet ResNetl8 Rolling
8 16 68

2 ResNet18
(proposed))
Parameters ~22M ~12M ~724 K ~11M ~ 226 K
Size (MB) 8.50 4.79 2.76 42.25 0.86
Inference (s) 0.18,0.2 0.19,0.2 0.18, 0.1 0.15, 0.2 0.18,0.5

Precision 0.96 £+ 0.01 0.95+0.01 096 +0.01 096+0.01 0.95+0.01
F1 Score 0.94 £ 0.01 093+0.01 0.95+0.01 094+0.01 0.92+£0.01
Accuracy 0.97 £0.01 096 +0.01 097 £0.01 0.96+0.01 0.96+£0.01

by standard convolution filters (see Fig. 7). This indicates that the rolling mechanism effectively

reuses filter weights to extract similar low level features without sacrificing representational capac-

ity.

4.3 OCT B-scans Classification

The performance of the rolling convolution filters was consistent with that of retinal disease clas-
sification. The average results in terms of precision, F1 score, and accuracy on the UCSD dataset
are listed in Table 3. Comparisons with existing lightweight models, such as MobileNetV2,® Shuf-
fleNetV2,'® and SqueezeNet,® were also detailed in Table 3. The abnormal regions and Grad-
Cam® visualizations are shown in Fig. 8. The differences observed in some of the Grad-CAM
visualizations can be attributed to the reduced parameterization of the Rolling ResNet18. While
the rolling convolution filters reuse weights to generate multiple effective filters, this constrained
parameter space can lead the network to rely on slightly different feature combinations and acti-
vation pathways compared to the standard ResNet18. Consequently, the regions emphasized by
Grad-CAM may vary in some cases, even though the overall predictive performance remains com-

parable. Despite this, the Grad-CAM visualizations for Rolling ResNet18 consistently focus on
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356

357

358

359

360

361

the regions of interest highlighted by the bounding boxes, capturing the relevant visual semantics
associated with the abnormalities. Further Fig. 9 presents the One-vs-Rest (OVR) ROC curves for
OCT image classification across CNV, DME, Drusen, and Normal classes using (a) the baseline
ResNetl8 and (b) the proposed Rolling ResNetl18. The similar ROC profiles across all classes
indicate that the proposed method performs on par with the baseline model in terms of class-wise

discrimination.

CNV DME DRU

ResNet18

Rolling ResNet18

Fig 8 Example OCT images (first row) from UCSD dataset for each class of retinal disease given correspondingly
on top of each image (column-wise), with abnormal region shown by a bounding box. The subsequent rows show
the overlaid gradients on the input images, specifically the Grad-CAM visualizations. Overall quantitative metrics of

considered methods across the test cases are shown in Table 3

5 Discussion

This study introduced a novel method for designing lightweight convolutional networks using a
nonparameterized channel-rolling operation. The proposed method of generating a new set of
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Fig 9 One-vs-Rest (OVR) Receiver Operating Characteristic (ROC) curves for OCT image classification across the
four categories - Class 0 (CNV), Class 1 (DME), Class 2 (Drusen), and Class 3 (Normal) corresponding to (a)
ResNet18 and (b) Rolling ResNet18.

convolutional filters from a single base filter resulted in efficient forward and backward flows for

training deep learning models. Channel rolling filters facilitate the design of deep models without

increasing their complexity. The shared weights across the filters reduce the classical overfitting

problem in CNNs. The proposed rolling filters were easily incorporated into popular state-of-

the-art architectures to analyze the performance of the proposed rolling convolution filters. As

shown in Fig. 3, the UNet model’s final output strongly depends on the features extracted from the

initial layers. The proposed rolling convolution filters with fewer parameters can capture similar

semantics from the initial layers compared to standard convolution filters (refer to Fig. 7). The

relationship between the number of input and output channels in the baseline models was either

1x, 2x, or 0.5x. In the proposed design of the rolling filters, to generate output channels equal to

the input channels (1), the rolling operations of the single-base filter must be equal to the number

of input channels. For generating output channels of 2x input channels, two base filters were used.

The independent rolling operations performed on the two base filters were equal to the number of
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corresponding input channels. Similarly, to generate output channels of 0.5 input channels, half
the number of rolling operations were performed on a single-base filter.

Achieving a balance between model size, computational efficiency, and accuracy is a significant
challenge in the design of lightweight CNNs. Although lightweight models aim to reduce resource
requirements, they often sacrifice accuracy compared to larger and more complex models. The
filters utilized in these models play an important role in developing tailor-made lightweight models.
Existing architectural modifications, such as depth-wise separable convolutions, skip connections,
and efficient building blocks, have focused on decreasing the number of operations rather than
on an efficient filter design. Thus, this work is a significant step towards efficient filter design for
medical imaging tasks that are less complex, with the added advantage of seamless incorporation of
the proposed rolling filters into existing deep learning architectures to convert them into lightweight
models. Moreover, the proposed rolling-filter-based architectures are as accurate as larger/complex
models, thus addressing the major limitations in designing these lightweight models.

The performance of the proposed rolling convolution filters was statistically compared with
other lightweight design approaches, namely depth-wise separable filters and flattened convolu-
tion filters, across multiple tasks using two-tailed Welch’s t-tests. For all evaluation metrics and
tasks, the resulting p-values were greater than 0.05, indicating no statistically significant differ-
ences between the proposed and existing lightweight designs. Importantly, this lack of statistical
difference suggests performance equivalence rather than inferiority, demonstrating that the pro-
posed approach achieves comparable performance while requiring fewer parameters. To further
improve the accuracy and performance of the proposed rolling filters, the following detailed stud-
ies will be considered in future work: (1) increasing the number of independent filters at a given
convolution layer, (2) introducing attention modules within the layer activations that can further
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aes  boost performance, and (3) determining the optimal number of independent filters in a given layer.

e 6 Conclusion

a0 This study presented a novel approach for designing lightweight convolutional neural networks us-
s01  1ng rolling convolution filters, demonstrating significant reductions in model size and parameters
sz while maintaining comparable performance across various medical image analysis tasks. The pro-
a3 posed method outperforms other lightweight CNN designs in terms of parameter efficiency and can
s04 be easily integrated into existing architectures. By addressing the challenge of developing efficient
s0s deep learning models in medical imaging, the proposed method showed promise for deploying
a6 CNNs in resource-constrained settings. The successful application of rolling convolution filters
a7 to quantitative susceptibility mapping reconstruction, COVID-19 anomaly segmentation, and reti-
a8 nal disease classification from OCT images, highlighted its generalizability and applicability for

s00 automated medical image analysis.
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List of Figures

1

A comparison between existing convolution filters and proposed rolling convolu-
tion filters. (a) standard convolution filters, (b) depth-wise separable filters, (c)
flattened convolution filters , and (d) rolling convolution filters. Depth-wise sep-
arable convolution filters perform independent channel-wise convolutions, and an
assimilated representation is formed using 1 x 1 point-wise convolution. Flattened
convolution filters perform the lateral convolution operation across the channels
( 1 x 1 point-wise), followed by convolution across the horizontal and vertical
dimensions of the feature maps. In contrast, the proposed rolling convolution fil-
ters generate sets of new convolution filters by performing a non-parameterized
channel-wise rolling (or circular shifting) operation on a single base filter.
Forward propagation and backpropagation through 2D rolling convolution filters.
x is a 3-channel feature map, * is the convolution operator, ¢ is the channel-rolling
operator, y is the output feature map, and (5 is the channel-rolling operator that
operates in the opposite direction of ¢.

A typical design aspect of a UNet architecture. The encoder-decoder structure
embedded with feature concatenations forms a method for salience representation.
Feature maps (convolution layer 1) obtained from UNet and Rolling UNet on a
sample chest CT slice for the task of COVID-19 anomaly segmentation are shown

in Fig. 7.
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Representative susceptibility reconstruction results (sagittal view) across orienta-
tion 1 of considered methods (column-wise) on a sample test volume. The high-
frequency error component (HFEN(%) |) with reference to the gold standard COS-
MOS was provided for each slice. Overall quantitative metrics of considered meth-
ods across the test volumes are shown in Table 1.

Error maps of the QSM reconstructions shown in Fig. 4, computed with respect
to the COSMOS reconstructions as reference. Error maps are shown for all the
compared QSM methods. The comparison between the baseline QSMnet and the
proposed Rolling QSMnet is highlighted, illustrating differences in spatial error
distribution and overall agreement with COSMOS.

Representative segmentation results on a patient volume (test cases). The input
slices (test cases) are shown in the first column. The respective annotations (ground
truth) are presented in the second column. The predictions of the UNet and Rolling
UNet are presented in the fourth and fifth columns, respectively. Abnormalities
in the lung region are indicated in red, and the normal lung region is indicated
in green. The average Dice Similarity scores are given below the corresponding
slices. Overall quantitative metrics of considered methods across the test cases are

shown in Table 2.
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Feature representations of CT images from the initial layers of UNet driven archi-
tectures while segmenting COVID-19 anomalies. The input CT images are pre-
sented in the first column. The final predictions are presented in the fifth column.
The features obtained with standard convolutions (UNet) and from rolling convo-
lutions (Rolling UNet) are shown in the first and second rows, respectively. (a)
clearly distinguishes the lung region from the background (through edge extrac-
tion), (b) most of the neurons fired for the abnormal region (shown in red color),
and (c) activated neurons focused on the normal/healthy tissue (shown in green
color) of the lung.

Example OCT images (first row) from UCSD dataset for each class of retinal dis-
ease given correspondingly on top of each image (column-wise), with abnormal
region shown by a bounding box. The subsequent rows show the overlaid gradients
on the input images, specifically the Grad-CAM visualizations. Overall quantita-
tive metrics of considered methods across the test cases are shown in Table 3
One-vs-Rest (OVR) Receiver Operating Characteristic (ROC) curves for OCT im-
age classification across the four categories - Class 0 (CNV), Class 1 (DME), Class
2 (Drusen), and Class 3 (Normal) corresponding to (a) ResNetl8 and (b) Rolling

ResNet18.
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oo List of Tables

680 1 Averaged figures of merit over 30 patient volumes (test cases) from all dipole de-
681 convolution methods considered in this work. Note that the inference (s) reported
682 were for the (GPU and CPU) implementation. Susceptibility reconstruction results
683 (sagittal view) across orientation 1 of considered methods are shown in Fig. 4.

684 2 Average figures of merit across three cross folds for the COVID-19 anomalies seg-
685 mentation. Note that the reported inference (s) were for GPU and CPU. Represen-
686 tative segmentation results on sample chest CT slices (test cases) are shown in Fig.
687 6

688 3 Average figures of merit (over ~ 14500 OCT B-scans, Test Cases) for OCT classi-

689 fication task. Note that inference (s) reported were for GPU, CPU.
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