

1 Rolling Convolution Filters for Lightweight Neural Networks in 2 Medical Image Analysis

3 Naveen Paluru^a, Mehak Arora^a, and Phaneendra K. Yalavarthy^a

4 ^aDepartment of Computational and Data Sciences, Indian Institute of Science, Bengaluru, Karnataka 560012, India

5 Abstract.

6 Purpose: To introduce a novel filter design element called rolling convolution filters for developing lightweight convolutional neural networks (CNNs) in medical image analysis, aiming to reduce model complexity and memory footprint without compromising performance.

7 Approach: Rolling convolution filters were generated by performing a channel-wise rolling operation on a single base filter, creating unique filters while restricting the learnable parameters. The method was applied to various two- and three-dimensional medical image analysis tasks, including reconstruction, segmentation, and classification across MRI, CT, and OCT modalities. The performance was compared with that of standard CNNs and other lightweight architectures.

8 Results: The proposed rolling convolution filters substantially reduced the number of parameters and model size compared to standard CNNs, with a negligible increase in performance error. For quantitative susceptibility mapping, the rolling filter approach achieved results comparable to those of state-of-the-art methods with $6\times$ fewer parameters. In COVID-19 anomaly segmentation, rolling filters performed on par with existing lightweight models while having approximately $68\times$ fewer parameters. For OCT classification, rolling filters maintained accuracy while significantly reducing the model size ($49\times$).

9 Conclusions: Rolling convolution filters offer an effective approach for designing lightweight CNNs for medical image analysis tasks, providing substantial reductions in model complexity and memory requirements while maintaining a performance comparable to that of larger models. This method can be easily incorporated into existing architectures and shows promise for deploying efficient deep learning models in resource-constrained medical imaging settings.

10 **Keywords:** Lightweight Networks, Parameter Redundancy, and Medical Image Analysis.

11 *Phaneendra K. Yalavarthy yalavarthy@iisc.ac.in

12 1 Introduction

13 Deep learning based medical image analysis has shown promising results in tasks such as segmentation, classification, reconstruction, super-resolution, etc. The standalone design aspects of architectures such as UNet,¹ ResNet² and their 3D variants³ have produced state-of-the-art frameworks for automated medical image analysis. Deep learning based models have surpassed conventional techniques for different tasks across various modalities. However, most existing deep learning models are heavy in terms of the number of parameters and model size, making them difficult to deploy on edge devices, particularly in point-of-care settings. Fast and efficient computer-based di-

34 agnosis is crucial in medical imaging to improve instant diagnosis, real-time healthcare solutions,
35 rapid treatment, and substantial cost reduction. Deep learning based computer-aided or point-
36 of-care analysis using efficient and lightweight convolutional neural networks is the need of the
37 hour. Techniques such as network pruning,⁴ network quantization,⁵ and knowledge distillation⁶
38 for developing lightweight CNNs have been extensively studied.

39 Pruning, quantization, and distillation methods often require a pretrained heavy model to de-
40 velop an efficient lightweight model. On the other hand, architectural design based lightweight
41 models have performed on par with existing state-of-the-art heavy models. MobileNets⁷⁻⁹ uti-
42 lized depth-wise separable convolutions^{3,10,11} along with residual blocks for building lightweight
43 models. As highlighted in Zhang *et al.*¹², interleaved group convolutions proposed a novel build-
44 ing block consisting of primary and secondary group convolutions, thereby promoting limited
45 model complexity and fewer parameters than the previous models. Furthermore, Zhang *et al.*¹²
46 also showed that regular and depth-wise separable convolutions form a special case of interleaved
47 group convolutions. MixConv¹³ introduced depth-wise separable convolutions using multiple ker-
48 nels with different spatial sizes to improve the model performance. Gao *et al.*¹⁴ introduced
49 channel-wise group convolutions (ChannelNets) to promote sparse connectivity among feature
50 maps. Zhang *et al.*¹⁵ and Ma *et al.*¹⁶ introduced channel shuffle operations and point-wise group
51 convolutions to facilitate efficient feature propagation, and proposed several practical guidelines
52 for designing extremely lightweight models, collectively known as ShuffleNets. Tan *et al.*¹⁷¹⁸ have
53 systematically studied the family of EfficientNets for scaling of deep models across the depth,
54 width, and spatial extent of feature maps. Slimmable neural networks¹⁹ train a single network
55 that is switchable to different widths (channels), promoting adaptability to different on-device
56 benchmarks and resource-constrained settings. Structured convolutions with composite kernel

57 structures²⁰ decompose the convolution operation into sum-pooling components, followed by con-
58 volution with fewer weights and less computational requirements. These methods map various
59 convolution operations to reduce the number of trainable parameters and model complexity. How-
60 ever, all these convolution operations need to be carried out independently, still having redundant
61 trainable parameters.

62 Learning filter bases for reducing model parameters has also shown great promise for building
63 lightweight models. Qiu *et al.*²¹ have shown that decomposing the convolution filters using a set
64 of pre-fixed basis and learning the coefficients of the expansion from the data has the potential
65 to reduce the trainable parameters and computation overhead. Yawei *et al.*²² propose to learn
66 the set of basis filters for reducing the parameters of deep models. Kang *et al.*²³ introduced a
67 deeply shared filter basis for reducing the number of parameters and model complexity. Yang *et*
68 *al.*²⁴ proposed lego filters for building a sophisticated module representation using a split-merge-
69 transform strategy leading to efficient convolutional neural networks. The primary bottleneck for
70 building such a filter basis in these methods lies in the choice of the number of basis filters at a
71 given layer, which is an additional hyperparameter.

72 Parameter re-usability and parameter-sharing methods for developing lightweight models have
73 shown promising results across several tasks. Savarese *et al.*²⁵ introduced a parameter-sharing
74 scheme for learning feature representations across convolutional layers as a learned linear combi-
75 nation of parameter tensors from a global dictionary. Yang *et al.*²⁶ introduced filter summary for
76 parameter re-usability/sharing across successive convolutional filters, thus leading to lightweight
77 models. Wang *et al.*²⁷ and Han *et al.*²⁸ proposed versatile convolution filters wherein secondary
78 filters have been derived from a primary filter using binary masks, leading to less memory and com-
79 putation cost. Han *et al.*²⁹ introduced a series of linear transformations on feature maps to generate

80 more representational features at a minimum cost to reduce the parameters/model complexity in
81 deep models. Cheng *et al.*³⁰ explored the redundancy of the parameters with the introduction of cir-
82 cular projections instead of linear projections in the fully connected layers. In addition, Refs.^{31–34}
83 have also explored circular symmetry for designing neural nets for various applications. However,
84 these methods do not achieve the desired level of reduction in trainable parameters, particularly for
85 tasks in medical image analysis.

86 This study proposes novel rolling convolution filters that promote parameter reusability/sharing
87 for designing lightweight CNNs. A novel filter design element, called rolling convolution filters,
88 has been introduced, which reduces the number of parameters in convolutional neural networks
89 (CNN), thereby reducing the model complexity and memory footprint. These sets of new filters
90 have been generated by performing a non-parameterized channel-wise rolling (or circular shifting)
91 operation on a single base filter. Each newly developed filter is unique, but the number of learnable
92 parameters is restricted to that of the base filter, which addresses the problem of redundant parame-
93 ters often observed in deep neural networks. The use case of these rolling convolution filters (both
94 3D and 2D) in medical image analysis across three different problems, including reconstruction
95 (3D), segmentation (2D), and classification (2D) have been investigated. The proposed filters ade-
96 quately reduce the number of parameters, accounting for the low model complexity.

97

98 The main contributions of this study can be summarized as follows:

99 1. Development of novel rolling convolutional filters based lightweight CNNs for efficient med-
100 ical image analysis. The proposed rolling convolution filters promote parameter reusability
101 to reduce model complexity and memory footprint, making them preferable for developing

102 lightweight CNNs.

103 2. This is also the first ever channel rolling operation (both in 3D and 2D) utilized to generate a
104 set of new convolution filters from a single base filter. The higher-dimensional equivalence
105 of the feature maps using the proposed filters with the standard convolutional filters is shown
106 in a use case.

107 3. It was also shown that the proposed rolling convolution filters based lightweight convolu-
108 tional neural networks (CNNs) perform on par with their heavyweight counterparts across
109 medical image analysis tasks like reconstruction, segmentation, and classification. Specif-
110 ically, quantitative susceptibility mapping (QSM) reconstruction, COVID-19 anomaly seg-
111 mentation, and OCT-based retinal disease classification were used to demonstrate the effi-
112 cacy of the proposed rolling convolution filters.

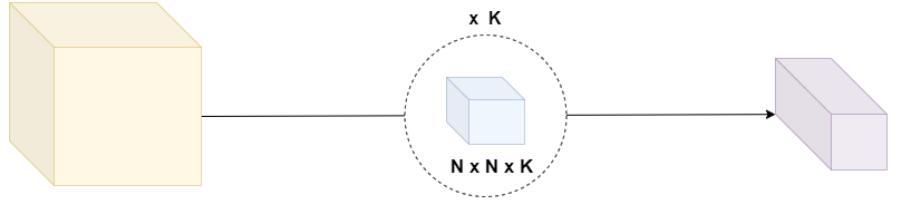
113 2 Methods

114 This section describes various lightweight convolution strategies used in the literature, along with
115 the proposed approach of rolling convolution filters to reduce the model size of CNNs. An
116 overview of the different convolution strategies is presented in Fig. 1. The discussion below
117 details two-dimensional convolutions and can be extended to three-dimensional convolutions.

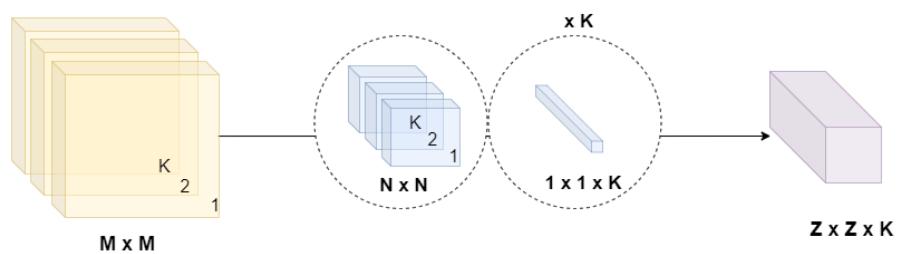
118 2.1 Existing Convolution Filters

119 2.1.1 Standard Convolution Filters

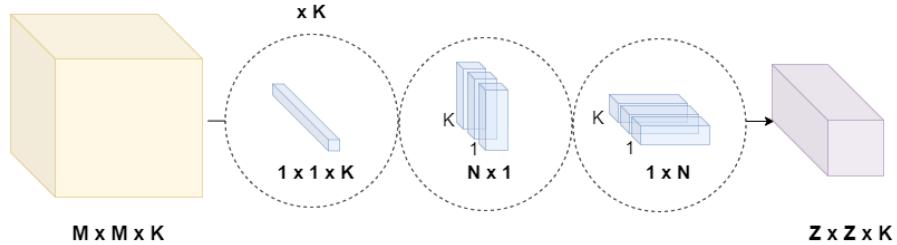
120 Given a set of feature maps x of dimensions (batch size = 1, in channels = K , spatial extent =
121 $M \times M$), a set of convolution filters F of dimensions (out channels (or no. of filters) = K , in



(a) Standard Convolution Filters : Parameters - $(N \times N \times K) \times K$



(b) Depth-Wise Convolution Filters : Parameters - $(N \times N \times 1) \times K + K \times K$



(c) Flattened Convolution Filters : Parameters - $K \times K + (N \times 1 \times 1) \times K + (1 \times N \times 1) \times K$



(d) Rolling Convolution Filters : Parameters - $(N \times N \times K) \times 1$

Fig 1 A comparison between existing convolution filters and proposed rolling convolution filters. (a) standard convolution filters, (b) depth-wise separable filters, (c) flattened convolution filters , and (d) rolling convolution filters. Depth-wise separable convolution filters perform independent channel-wise convolutions, and an assimilated representation is formed using 1×1 point-wise convolution. Flattened convolution filters perform the lateral convolution operation across the channels (1×1 point-wise), followed by convolution across the horizontal and vertical dimensions of the feature maps. In contrast, the proposed rolling convolution filters generate sets of new convolution filters by performing a non-parameterized channel-wise rolling (or circular shifting) operation on a single base filter.

122 channels = K, spatial extent = N x N), the output feature maps y obtained from the standard 2D
 123 convolution filters can be represented as follows:

$$\mathbf{y}_i = \mathbf{x} * F_i \quad (1)$$

124 where * is the convolution operator, \mathbf{y}_i is the i^{th} feature map in y and F_i is the i^{th} convolution filter.
 125 The number of parameters required for generating a K channel output feature map from a K channel
 126 input feature map using a filter with spatial extent $N \times N$ is $K^2 \times N^2$. During backpropagation,
 127 the gradients are computed as

$$\frac{\partial \mathcal{L}}{\partial F_{ij}} = \frac{\partial \mathcal{L}}{\partial \mathbf{y}_i} * \mathbf{x}_j \quad (2)$$

128

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}_j} = \sum_{i=1}^K \frac{\partial \mathcal{L}}{\partial \mathbf{y}_i} * \psi(F_{ij}) \quad (3)$$

129 where \mathcal{L} is the computed loss, F_{ij} is the j^{th} kernel of the i^{th} convolution filter, \mathbf{y}_i is the i^{th} feature
 130 map in y, \mathbf{x}_j is the j^{th} feature map in x and ψ is the flipping operator that flips the elements of
 131 the kernel both horizontally and vertically with respect to the center. The filters F_1, F_2, \dots, F_K are
 132 independent of each other, and only the i^{th} feature map in y contributes for updating the parameters
 133 of the convolution filter F_i .

134 *2.1.2 Depth-Wise Convolution Filters*

135 Depth-wise separable convolution filters¹⁰ perform convolution independently on each channel of
 136 the input feature map. Finally, point-wise 1×1 convolutions are used to increase or decrease the

137 number of feature maps. The same can be represented as

$$\mathbf{y}_i = \mathbf{x}_i * f_i \quad (4)$$

138 where \mathbf{y}_i is the i^{th} feature map in \mathbf{y} and f_i is the i^{th} channel of the convolution filter F and, \mathbf{x}_i is the
139 i^{th} feature map in \mathbf{x} . This separable convolution is followed by a point-wise convolution using 1×1
140 convolutions to generate a collective representation. Total parameters required for generating a K
141 channel output feature map from a K channel input feature map using a depth-wise separable filter
142 with spatial extent $N \times N$ is $K^2 + K \times N^2$. The former term originates from point-wise convolutions,
143 whereas the latter accounts for channel-wise convolutions.

144 *2.1.3 Flattened Convolution Filters*

145 Flattened convolutions³⁵ (also known as spatially separable or factorized convolutions) split the
146 standard convolution into three stages: lateral (across channels), followed by convolutions across
147 the horizontal and vertical dimensions. Lateral convolutions are performed using point-wise con-
148 volutions. The horizontal and vertical convolutions are followed by lateral convolutions and are
149 factorized across the respective dimensions, which are eventually performed independently (sim-
150 ilar to depth-wise separable filters) on each input-feature map. Note that in depth-wise separable
151 filters, point-wise convolutions are performed after separable convolutions, whereas in flattened
152 convolutions, separable convolutions are performed after point-wise (lateral) convolutions. The
153 total number of parameters required to generate a K channel output feature map from a K chan-
154 nel input feature map using a flattened convolution filter are $K^2 + K \times N \times 2$. The former term
155 originates from point-wise convolutions, whereas the latter accounts for flattened convolutions.

Rolling Convolution Filters

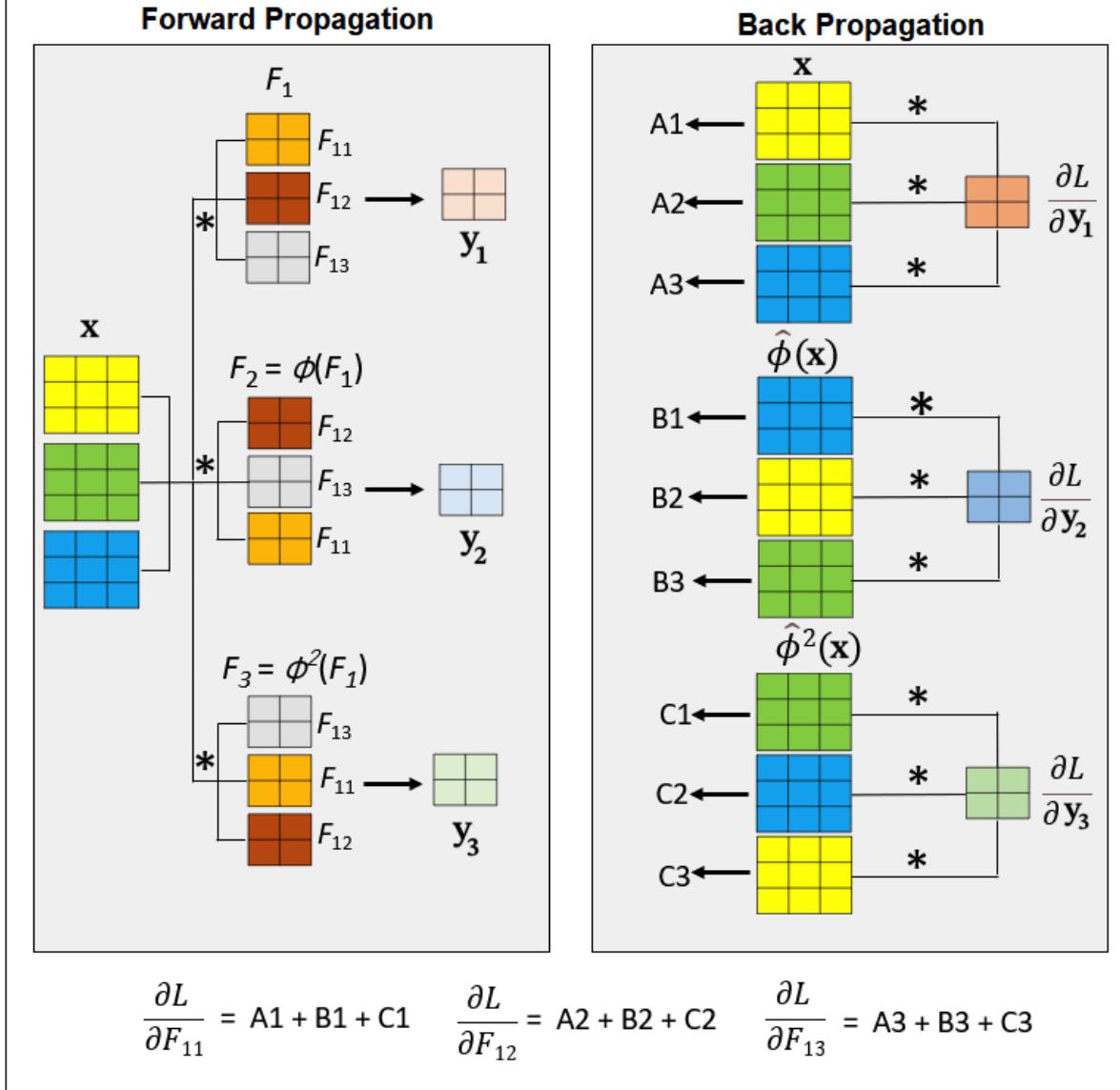


Fig 2 Forward propagation and backpropagation through 2D rolling convolution filters. x is a 3-channel feature map, $*$ is the convolution operator, ϕ is the channel-rolling operator, y is the output feature map, and $\hat{\phi}$ is the channel-rolling operator that operates in the opposite direction of ϕ .

156 2.2 *Proposed Rolling Convolution Filters*

157 This study proposes generating a set of convolution filters from a single base filter using the channel
 158 rolling operation, as shown in Fig. 2. Let F_1 be a convolution filter of dimension (out channels =
 159 1, in channels = K , and spatial extent = $N \times N$). Subsequently, the set of filters generated from F_1

160 are as follows

$$\begin{aligned} F_2 &= \phi(F_1) \\ F_3 &= \phi(F_2) = \phi^2(F_1) \\ &\vdots \\ F_K &= \phi(F_{K-1}) = \phi^{K-1}(F_1) \end{aligned} \tag{5}$$

161 where, ϕ is the channel rolling operator shown in Fig. 2. The channel rolling operator ϕ cyclically shifts the filter channels by a single position. ϕ^k performs k cyclic shifts, and ϕ^0 performs identity mapping. The output feature maps \mathbf{y} obtained from the rolling 2D convolutional filters are represented as follows:

$$\mathbf{y}_i = \mathbf{x} * \phi^{i-1}(F_1) \tag{6}$$

165 In standard convolution, the convolutions are performed among the corresponding channels of the
166 input and the filter. In rolling convolution, the channel-rolling operation on the filter convolves
167 each channel of the filter with every other channel of the input to generate a salient representation
168 of the feature space. The number of parameters required for generating a K channel output feature
169 map from a K channel input feature map using a rolling convolution filter with a spatial extent
170 $N \times N$ is limited to $K \times N^2$. During backpropagation, the gradients of the rolling convolution are
171 computed as follows:

$$\frac{\partial \mathcal{L}}{\partial F_{1j}} = \sum_{i=1}^K \frac{\partial \mathcal{L}}{\partial \mathbf{y}_i} * (\hat{\phi}^{i-1}(\mathbf{x}))_j \tag{7}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{x}_j} = \sum_{i=1}^K \frac{\partial \mathcal{L}}{\partial \mathbf{y}_i} * \psi(\phi^{i-1}(F_1))_j \tag{8}$$

172 where $\hat{\phi}$ is the channel rolling operator that operates in the opposite direction of ϕ and ψ is the
173 flipping operator that flips the kernel elements both horizontally and vertically with respect to the
174

Algorithm 1 Rolling Convolution Operation (2D)

```
1: Input:  $x \leftarrow$  Input Feature Map  $(B, C, H_1, W_1)$ 
    $w \leftarrow$  Convolution Filter  $(1, C, K, K)$ 
    $s \leftarrow$  Stride
    $p \leftarrow$  Padding
2: Output:  $y \leftarrow$  Output Feature Map  $(B, C, H_2, W_2)$ 
3: for  $i = 1$  to  $C$  do
4:   if  $i == 1$  then
5:      $f \leftarrow w$ 
6:   else
7:      $w \leftarrow$  CircularShift( $w$ , dim = 1, shift = 1)
8:      $f \leftarrow$  Concatenate( $f, w$ , dim = 0)
9:   end if
10: end for
11:  $\{f$  is the Rolled Filter with Dimensions  $(C, C, K, K)\}$ 
12:  $y \leftarrow$  Convolution( $x, f$ , stride =  $s$ , padding =  $p$ )
13:  $y \leftarrow$  ReLU( $y$ )
14: return  $y$ 
```

175 center. As the rolling convolution generates all output feature maps from a single base filter, the
176 gradients accumulate during backpropagation. The channel rolling operator $\hat{\phi}$ cyclically shifts
177 the filter channels by a single position. $\hat{\phi}^K$ performs K cyclic shifts, and $\hat{\phi}^0$ performs identity
178 mapping. The forward and backward propagations through the 2D rolling convolution filters are
179 shown in Fig. 2. Further, a detailed pseudocode explaining the rolling convolution operation (2D)
180 is shown in Algorithm 1. Similarly, the rolling convolution operation can be extended to the 3D
181 case as well. Given a K -channeled filter, at most a K -channeled feature map can be generated using
182 rolling convolutions. To increase the number of feature maps, say to $2K$, two independent filters,
183 each with K channels, must be used.

184 *2.3 Rolling Filters: Effective for Medical Image Analysis*

185 The proposed rolling convolution filters can be deployed in any deep learning model. However,
186 the proposed methodology is more effective for medical image analysis in the following ways:
187 First, the complexity/variability in modeling input-to-output mapping is limited in medical image

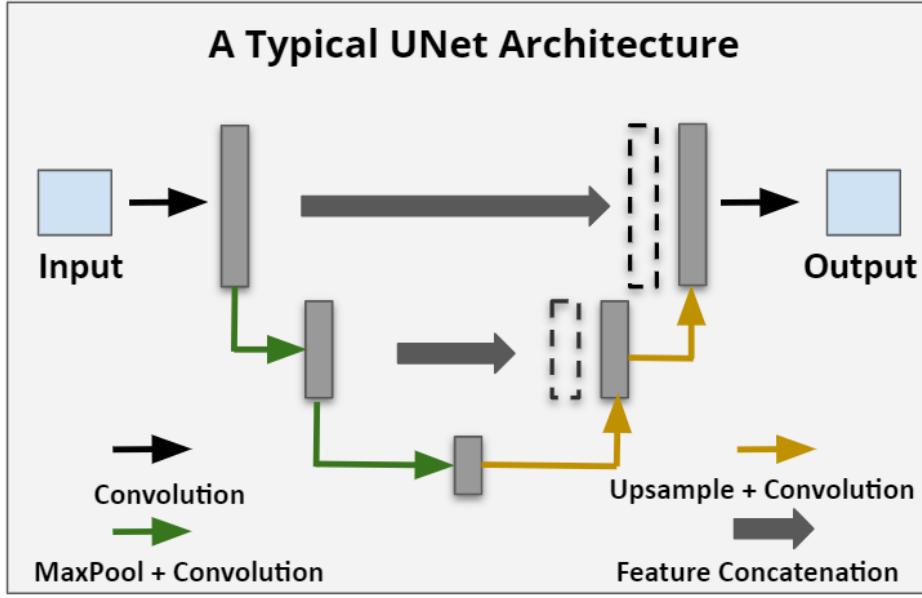


Fig 3 A typical design aspect of a UNet architecture. The encoder-decoder structure embedded with feature concatenations forms a method for salience representation. Feature maps (convolution layer 1) obtained from UNet and Rolling UNet on a sample chest CT slice for the task of COVID-19 anomaly segmentation are shown in Fig. 7.

188 analysis compared with computer vision tasks. Hence, the extreme compression offered by the
 189 rolling convolution filter has little effect on the performance of deep learning models in automat-
 190 ing medical image analysis. Second, the design aspect of UNet has laid a strong foundation for
 191 the development of various image-to-image (and volume-to-volume)-based deep learning models
 192 for automated medical image analysis. A typical UNet architecture is shown in Fig. 3. The model
 193 consists of an encoder-decoder structure embedded with feature concatenation. Feature concatena-
 194 tion provides a salient representation and enables a hierarchical gradient flow for efficient training.
 195 As shown in Fig. 3, it is worth noting that the UNet model's final output is strongly dependent on
 196 the features extracted from the initial layers. The proposed rolling convolution filters with fewer
 197 parameters can capture similar semantics from the initial layers compared to standard convolution
 198 filters (refer to Fig. 7).

199 **3 Experiments**

200 The related works, datasets, and implementation details of various tasks considered in this study
201 are detailed in each subsection.

202 *3.1 Quantitative Susceptibility Mapping*

203 Quantitative susceptibility mapping (QSM) is a magnetic resonance (MR) imaging-based paramet-
204 ric imaging method that measures magnetic susceptibility and has applications in the assessment
205 of several brain disorders, such as brain hemorrhage, multiple sclerosis, and Parkinson's disease.³⁶
206 A vital step in QSM is reconstruction (dipole inversion), which is a classical ill-posed inverse
207 problem in medical imaging. This involves deconvolving the susceptibility distribution from the
208 relative difference field (also known as the local field or tissue phase) obtained from the phase
209 information in the MR image. The relationship between the local field (also known as the relative
210 difference field or tissue phase) $\delta_B(r)$ and susceptibility $\chi(r)$ is as follows:³⁷

$$\delta_B(r) = \frac{1}{4\pi} \int_{\mathbf{r}' \neq \mathbf{r}}^{R^3} \chi(r') \frac{3\cos^2\Theta - 1}{|r - r'|^3} dr' \quad (9)$$

211 where, r is a spatial location [x,y,z] in the three-dimensional (3D) MR volume and Θ is the angle
212 between the unit vector along $r - r'$ and the unit vector along the direction of the main magnetic
213 field during MR acquisition. The same relation can be written as a convolution operation (*)
214 between $\chi(r)$ and $d(r)$ (known as the dipole kernel³⁸), as follows:

$$\delta_B(r) = \chi(r) * d(r) \quad (10)$$

215 where,

$$d(r) = \frac{3\cos^2\Theta - 1}{4\pi|r|^3} \quad (11)$$

216 Given $d(r)$ and $\delta_B(r)$, Eq. (10) must be deconvolved to reconstruct $\chi(r)$. Conventionally, decon-
217 volution is performed in the Fourier domain. The deconvolution problem becomes ill-posed when
218 $\Theta \sim 54.7356^\circ$, leading to a division by zero in the Fourier domain. As a result, several streaking
219 artifacts get induced in the reconstructed susceptibility maps. Liu *et al.*³⁹ have introduced the
220 COSMOS algorithm (that serves as the gold standard for QSM), which utilizes multiple head ori-
221 entations data for effective susceptibility mapping. This requires data from multiple orientations,
222 which makes the data acquisition time prohibitively long. Recently, deep-learning methods such
223 as DeepQSM,⁴⁰ QSMnet,⁴¹ QSMnet+,⁴² and xQSM⁴³ were more effective than traditional meth-
224 ods for solving ill-posed dipole deconvolution. In the existing literature,⁴⁴ deep learning methods
225 for QSM are heavy models based on 3D-UNet (for example, QSMnet has ~ 99 million param-
226 eters). As highlighted in Jung *et al.*⁴⁵, efficient designs (or frameworks) for deep learning based
227 susceptibility mapping is the need of the hour.

228 A total of 12 healthy volunteers' MRI data from five different head orientations were used in
229 this study.⁴¹ In total, there were 60 ($= 12 \times 5$) scans (three-dimensional (3D) data), of which
230 25 scans were utilized for training, 5 scans for validation, and 30 scans for testing. The data
231 acquisition details are provided in.⁴¹ All the deep models in this study were trained using 3D
232 patches of dimensions $64 \times 64 \times 64$. There were 16800 3D patches in the training set and 1680
233 3D patches in the validation set. Following Yoon *et al.*,⁴¹ the data pairs, that is, the input local
234 field and label COSMOS maps matching the input local-field orientation, were utilized to train the

235 proposed framework. Experiments using the proposed method of rolling kernels were conducted
 236 using QSMnet⁴¹ as the baseline. The peak signal-to-noise ratio (PSNR), structural similarity index
 237 (SSIM), high-frequency error component (HFEN), and normalized mean square error (NMSE)
 238 were used to quantify the performance of the quantitative susceptibility mapping methods.⁴⁶

239 As shown in Eq. (13), a linear combination of ℓ_1 error and the regularization loss \mathcal{L}_{reg} Eq. (12)
 240 was backpropagated to train the Rolling QSMnet, where χ is the predicted susceptibility, χ_C is the
 241 COSMOS-generated susceptibility, and ∇ is the gradient extraction kernel that returns the x, y, and
 242 z gradients. Following Yoon *et al.*,⁴¹ the values of w_1 and w_2 were set to 0.5 and 0.1, respectively.
 243 The model was trained for 25 epochs with a mini-batch size of 16. The initial learning rate was
 244 $5e^{-3}$ and was gradually decayed by 0.1 once for every 15 epochs. The model parameters were
 245 optimized using the Adam⁴⁷ optimizer.

$$\mathcal{L}_{reg} = w_1 \left\| d * \chi - d * \chi_C \right\|_1 + w_2 \left\| \nabla * \chi - \nabla * \chi_C \right\|_1 \quad (12)$$

$$\mathcal{L}_{total} = \left\| \chi - \chi_C \right\|_1 + \mathcal{L}_{reg} \quad (13)$$

246 *3.2 COVID-19 Anomalies Segmentation*

247 Findings from chest computed tomography (CT) images are beneficial for screening COVID-19.⁴⁸
 248 Deep-learning-based data-driven approaches have been proposed for instant COVID-19 diagno-
 249 sis.^{49–52} The imaging features of interest from the CT images of COVID-19 patients were ground-
 250 glass opacities (GGOs), Consolidations, and Pleural effusions^{52–54}. Among these, the GGO was the
 251 predominant feature. The segmentation of GGOs from chest CT images has been extensively stud-

252 ied well in the literature. Anamorphic depth embedding-based lightweight CNN,⁵⁵ called Anam-
253 Net, has been proposed for efficient segmentation of COVID-19 anomalies in a point-of-care set-
254 ting. Fan *et al.*⁵⁶ proposed a multi-attention semi-supervised approach for segmenting COVID-19
255 anomalies from chest CT images. Wang *et al.*⁵⁷ addressed the problem of high-level annotations
256 by proposing a robust COVID-19 segmentation framework trained from low-level (noisy) annota-
257 tions.

258 The dataset⁵⁸ consists of 3410 axial CT slices obtained from 20 patients. These slices were
259 divided into four folds at the patient level. Three-fold cross-validation on folds F1, F2, and F3
260 was performed. The fold F4 (with 545 slices) was explicitly used for testing. The datasets were
261 split, and the preprocessing of the CT slices was performed as described in Ref.⁵⁵ The annotations
262 consisted of three labels: abnormal region (class-0, having GGOs, consolidations, or pleural effu-
263 sions), the normal region (class-1), and the background (class-2, non-lung region). Experiments
264 with the proposed method of rolling kernels were conducted to segment COVID-19 anomalies us-
265 ing UNet¹ as a baseline. Standard figures of merit, Specificity, Sensitivity, Accuracy, and Dice
266 score were utilized to quantify the performance of the segmentation models considered in this
267 study.

268 The CT COVID dataset exhibited class imbalance among the background, normal, and abnor-
269 mal regions. To address this, we employed a weighted cross-entropy loss across all models in our
270 experiments.⁵⁵ The weighted cross-entropy loss is shown in Eq. (14), where \mathbf{y}' has the predicted
271 softmax probabilities, \mathbf{y} is the one-hot encoded annotation, and w_{ij} is the weight given to the corre-
272 sponding label at ij^{th} location. These weights were computed as $w(t) = 1/p(t)$, where $p(t)$ is the
273 fraction of voxels having label $t \in \{0,1,2\}$ in the training set. The model was trained for 50 epochs
274 with a mini-batch size of 5. The initial learning rate was $5e^{-4}$ and gradually decayed by a factor of

275 0.1 once every 33 epochs. The model parameters were optimized using Adam⁴⁷ optimizer.

$$\mathcal{L} = - \sum_{i=1}^{\text{rows}} \sum_{j=1}^{\text{cols}} (w_{ij}) \sum_{t=0}^2 \mathbf{y}_{ijt} \log (\mathbf{y}'_{ijt}) \quad (14)$$

276 *3.3 OCT B-scans Classification*

277 The most common retinal diseases that can be diagnosed using OCT B-scan images include
278 Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), and Drusen (DRU). A
279 small amount of retinal fluid formed near the retinal layer characterizes CNV; DME accounts for
280 the formation of fluid-filled cysts, and Drusen results in irregular retinal boundaries. Given these
281 distinctions, computer-aided automated detection and classification of these abnormalities is of vi-
282 tal interest, which one wishes to perform in real time. Several deep-learning-based attempts^{59–62}
283 have been made to fully automate this detection/classification without the need for expert or clin-
284 ician intervention. The current state-of-the-art method is an ensemble of deep residual networks
285 proposed by Feng *et al.*⁶³ This framework instantiates the responses from four ResNet-50² archi-
286 tectures and makes an ensemble decision for its prediction. Given the task of automated classifi-
287 cation of retinal diseases using OCT images (a small problem compared with vision-based general
288 object classification), mini convolutional neural networks with proper hyperparameters perform
289 on par with current deep (heavy) models. Experiments with the proposed method of rolling fil-
290 ters were conducted to classify OCT B-scans using ResNet-18² as the baseline. The University of
291 California San Diego (UCSD) OCT dataset⁵⁹ was used for modeling retinal disease classification.

292 The UCSD dataset had 37455 B-scans for CNV, 11598 for DME, 8866 for Drusen, and 51390
293 for Normal. There were approximately 109308 images that were split into the training set (70%),
294 validation set (15%), and testing set (15%). The models were trained using the cross-entropy

295 shown in Eq. (15), where \mathbf{y}' has the predicted softmax probabilities and \mathbf{y} is the one-hot encoded
 296 annotation. The models were trained for 30 epochs with a mini-batch size of 32. The initial
 297 learning rate was $5e^{-4}$ and gradually decayed by 0.1 once every 7 epochs. The parameters were
 298 optimized using the Adam⁴⁷ optimizer.

$$\mathcal{L} = - \sum_{t=0}^3 \mathbf{y}_t \log (\mathbf{y}'_t) \quad (15)$$

299 Across all experiments, the data were carefully partitioned into training, validation, and testing
 300 sets, as well as across different folds, with all splits performed at the patient level, promoting fair
 301 evaluation practices and preventing data leakage. All experiments were performed using PyTorch⁶⁴
 302 on a Linux workstation with i9 9900X (CPU) with 128 GB RAM and an NVIDIA Quadro RTX
 303 8000 GPU card with a capacity of 96 GB.

304 **4 Results**

305 *4.1 Quantitative Susceptibility Mapping*

306 The representative reconstruction results of the dipole deconvolution methods DeepQSM,⁴⁰ xQSM,⁴³
 307 QSMnet,⁴¹ FINE,⁶⁵ LPCNN⁶⁶ and the proposed Rolling QSMnet on a sample test volume (sagittal
 308 view) are shown in Fig. 4. The averaged figures of merit over the test volumes across all ori-
 309 entations, utilizing all dipole deconvolution methods considered in this study, are listed in Table
 310 1. Furthermore, comparisons with depth-wise separable filters and flattened convolution filters
 311 (with QSMnet as the baseline) are detailed in Table 1. Despite having $\sim 6\times$ fewer parameters
 312 and $\sim 7\times$ lighter in terms of model size than existing lightweight designs (Table 1), the proposed
 313 Rolling QSMnet performed on par with depth-wise QSMnet, flattened QSMnet, and QSMnet (Ta-

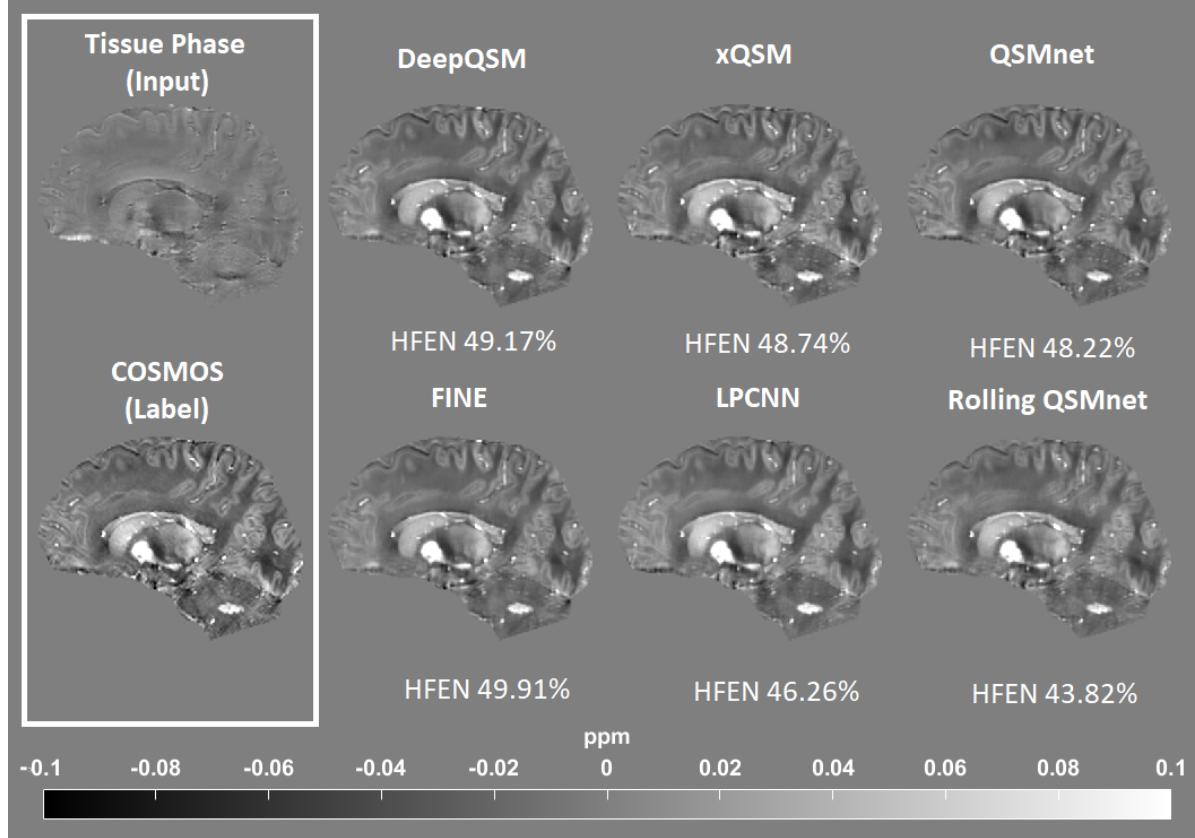


Fig 4 Representative susceptibility reconstruction results (sagittal view) across orientation 1 of considered methods (column-wise) on a sample test volume. The high-frequency error component (HFEN(%)) with reference to the gold standard COSMOS was provided for each slice. Overall quantitative metrics of considered methods across the test volumes are shown in Table 1.

ble 1). As shown in Fig. 4, a promising perceptual similarity of the proposed Rolling QSMnet to QSMnet and to COSMOS was observed, and the same is evident from the metrics quantified in Table 1. Voxel-wise difference (error) images between Rolling QSMnet and COSMOS, as well as corresponding error maps for the other QSM methods were shown in Fig. 5. These maps show that discrepancies are mainly localized to regions with strong susceptibility gradients. Overall, the Rolling QSMnet exhibited a strong spatial agreement with COSMOS. The “promising perceptual similarity” refers to the close visual correspondence in anatomical contrast, preservation of venous structures, and accurate depiction of susceptibility variations in deep gray matter, with only minor edge related differences and no obvious systematic bias.

Table 1 Averaged figures of merit over 30 patient volumes (test cases) from all dipole deconvolution methods considered in this work. Note that the inference (s) reported were for the (GPU and CPU) implementation. Susceptibility reconstruction results (sagittal view) across orientation 1 of considered methods are shown in Fig. 4.

	DeepQSM ⁴⁰	xQSM ⁴³	QSMnet ⁴¹	FINE ⁶⁵	LPCNN ⁶⁶	Depth Wise QSMnet	Flattened QSMnet	Rolling QSMnet (proposed)
Parameters	~ 5.64 M	~ 5.21 M	~ 99 M	~ 5.64 M	~ 470 K	~ 2.5 M	~ 2.2 M	~ 445 K
Size (MB)	21.54	19.89	379.38	21.54	1.71	9.75	8.59	1.70
Inference (s)	0.85, 8.25	1.25, 13.6	1.32, 14.1	90.25, 285.35	3.72, 24.35	0.62, 16.5	1.25, 17.6	1.41, 15.2
SSIM	0.910 ± 0.01	0.908 ± 0.01	0.910 ± 0.01	0.909 ± 0.01	0.905 ± 0.01	0.900 ± 0.01	0.900 ± 0.01	0.900 ± 0.01
PSNR	41.10 ± 0.93	40.98 ± 1.03	41.04 ± 1.01	41.07 ± 0.91	40.88 ± 1.06	40.72 ± 0.98	40.79 ± 0.98	40.71 ± 1.03
NMSE (%)	51.19 ± 3.39	52.23 ± 3.78	51.39 ± 3.81	51.40 ± 3.37	52.93 ± 4.01	53.31 ± 4.20	52.89 ± 3.61	53.34 ± 3.72
HFEN (%)	49.21 ± 3.82	50.43 ± 4.66	48.41 ± 4.42	49.43 ± 3.81	49.71 ± 4.78	51.22 ± 5.16	50.64 ± 4.53	51.31 ± 4.54



Fig 5 Error maps of the QSM reconstructions shown in Fig. 4, computed with respect to the COSMOS reconstructions as reference. Error maps are shown for all the compared QSM methods. The comparison between the baseline QSMnet and the proposed Rolling QSMnet is highlighted, illustrating differences in spatial error distribution and overall agreement with COSMOS.

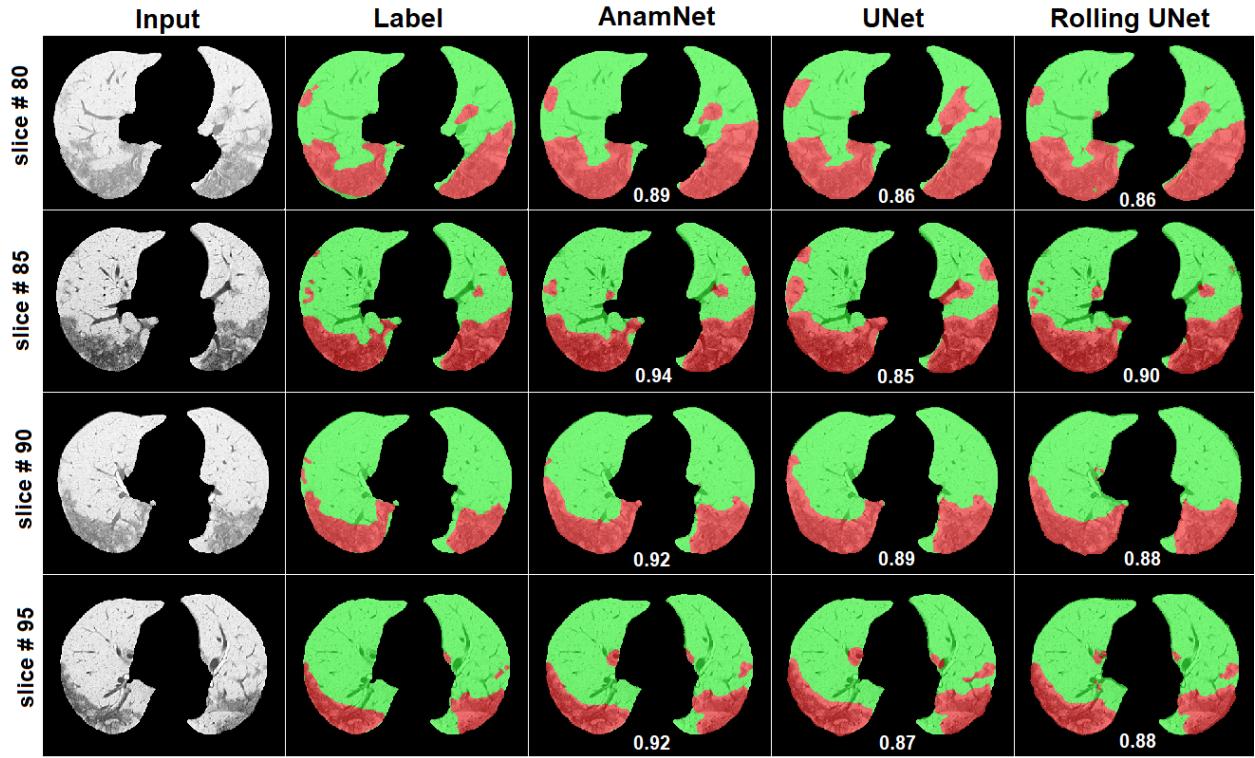


Fig 6 Representative segmentation results on a patient volume (test cases). The input slices (test cases) are shown in the first column. The respective annotations (ground truth) are presented in the second column. The predictions of the UNet and Rolling UNet are presented in the fourth and fifth columns, respectively. Abnormalities in the lung region are indicated in red, and the normal lung region is indicated in green. The average Dice Similarity scores are given below the corresponding slices. Overall quantitative metrics of considered methods across the test cases are shown in Table 2.

323 *4.2 COVID-19 Anomalies Segmentation*

324 Representative COVID-19 anomaly segmentation results were shown in Fig. 6, and the corre-
 325 sponding figures of merit were provided in Table 2. The UNet and the proposed rolling counterpart
 326 performed equally well, with comparable Dice similarity scores for COVID-19 anomaly segmen-
 327 tation. The proposed Rolling UNet (for COVID-19 segmentation) performed on par (refer to Table
 328 2 and Fig. 6) with the existing state-of-the-art lightweight model AnamNet⁵⁵ ($\sim 4.4\text{M}$ parameters).
 329 Rolling UNet had $\sim 68\times$ fewer parameters and $\sim 64\times$ lighter model size than existing lightweight
 330 designs (Depth-Wise UNet and Flattened UNet).

331 Intuitively, these results indicate that the rolling convolution operation effectively preserves the

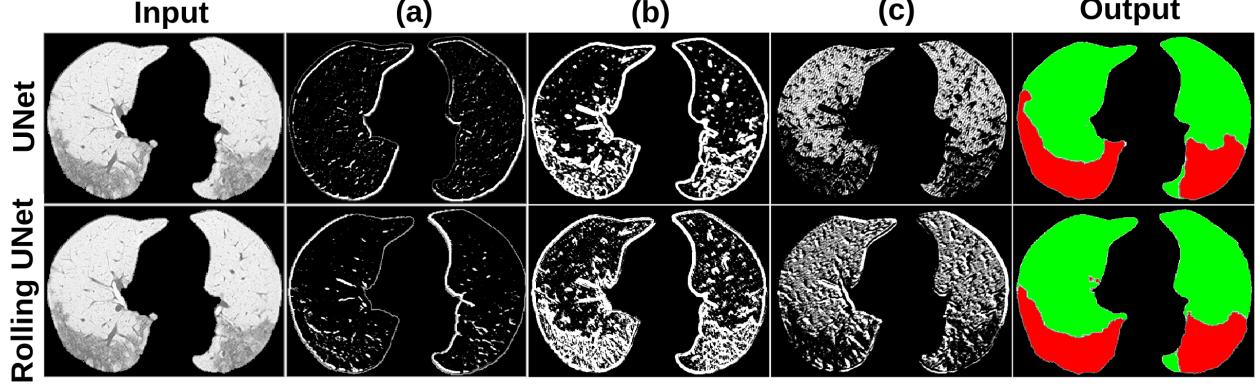


Fig 7 Feature representations of CT images from the initial layers of UNet driven architectures while segmenting COVID-19 anomalies. The input CT images are presented in the first column. The final predictions are presented in the fifth column. The features obtained with standard convolutions (UNet) and from rolling convolutions (Rolling UNet) are shown in the first and second rows, respectively. (a) clearly distinguishes the lung region from the background (through edge extraction), (b) most of the neurons fired for the abnormal region (shown in red color), and (c) activated neurons focused on the normal/healthy tissue (shown in green color) of the lung.

Table 2 Average figures of merit across three cross folds for the COVID-19 anomalies segmentation. Note that the reported inference (s) were for GPU and CPU. Representative segmentation results on sample chest CT slices (test cases) are shown in Fig. 6.

	AnamNet 55	UNet 67	Depth Wise UNet	Flattened UNet	Rolling UNet (proposed)
Parameters	~4.4 M	~31 M	~6.01 M	~6.01 M	~88 K
Size (MB)	17.21	118.5	22.90	22.90	0.34
Inference (s)	0.36, 1.5	0.52, 1.2	0.21, 0.99	0.21, 1.15	0.45, 2.3
Sensitivity	0.914	0.910	0.906	0.884	0.909
Specificity	0.993	0.992	0.990	0.991	0.989
Accuracy	0.988	0.987	0.984	0.984	0.983
Dice Score	0.869	0.864	0.829	0.829	0.831

332 critical spatial and contextual information required for accurate anomaly segmentation, even with
 333 a substantially reduced number of parameters. By efficiently reusing and shifting filter responses,
 334 the rolling design minimizes redundancy inherent in conventional convolutions, enabling compact
 335 models to maintain strong representational capacity without compromising segmentation perfor-
 336 mance. Despite using significantly fewer parameters, the proposed rolling convolution filters are
 337 able to capture semantic representations in the early layers that are comparable to those learned

Table 3 Average figures of merit (over ~ 14500 OCT B-scans, Test Cases) for OCT classification task. Note that inference (s) reported were for GPU, CPU.

	MobileNetV2 ⁸	ShuffleNetV2 ¹⁶	SqueezeNet ⁶⁸	ResNet18 ²	Rolling ResNet18 (proposed)
Parameters	~ 2.2 M	~ 1.2 M	~ 724 K	~ 11 M	~ 226 K
Size (MB)	8.50	4.79	2.76	42.25	0.86
Inference (s)	0.18, 0.2	0.19, 0.2	0.18, 0.1	0.15, 0.2	0.18, 0.5
Precision	0.96 ± 0.01	0.95 ± 0.01	0.96 ± 0.01	0.96 ± 0.01	0.95 ± 0.01
F1 Score	0.94 ± 0.01	0.93 ± 0.01	0.95 ± 0.01	0.94 ± 0.01	0.92 ± 0.01
Accuracy	0.97 ± 0.01	0.96 ± 0.01	0.97 ± 0.01	0.96 ± 0.01	0.96 ± 0.01

338 by standard convolution filters (see Fig. 7). This indicates that the rolling mechanism effectively
 339 reuses filter weights to extract similar low level features without sacrificing representational capac-
 340 ity.

341 *4.3 OCT B-scans Classification*

342 The performance of the rolling convolution filters was consistent with that of retinal disease clas-
 343 sification. The average results in terms of precision, F1 score, and accuracy on the UCSD dataset
 344 are listed in Table 3. Comparisons with existing lightweight models, such as MobileNetV2,⁸ Shuf-
 345 fleNetV2,¹⁶ and SqueezeNet,⁶⁸ were also detailed in Table 3. The abnormal regions and Grad-
 346 Cam⁶⁹ visualizations are shown in Fig. 8. The differences observed in some of the Grad-CAM
 347 visualizations can be attributed to the reduced parameterization of the Rolling ResNet18. While
 348 the rolling convolution filters reuse weights to generate multiple effective filters, this constrained
 349 parameter space can lead the network to rely on slightly different feature combinations and acti-
 350 vation pathways compared to the standard ResNet18. Consequently, the regions emphasized by
 351 Grad-CAM may vary in some cases, even though the overall predictive performance remains com-
 352 parable. Despite this, the Grad-CAM visualizations for Rolling ResNet18 consistently focus on

353 the regions of interest highlighted by the bounding boxes, capturing the relevant visual semantics
 354 associated with the abnormalities. Further Fig. 9 presents the One-vs-Rest (OVR) ROC curves for
 355 OCT image classification across CNV, DME, Drusen, and Normal classes using (a) the baseline
 356 ResNet18 and (b) the proposed Rolling ResNet18. The similar ROC profiles across all classes
 357 indicate that the proposed method performs on par with the baseline model in terms of class-wise
 358 discrimination.

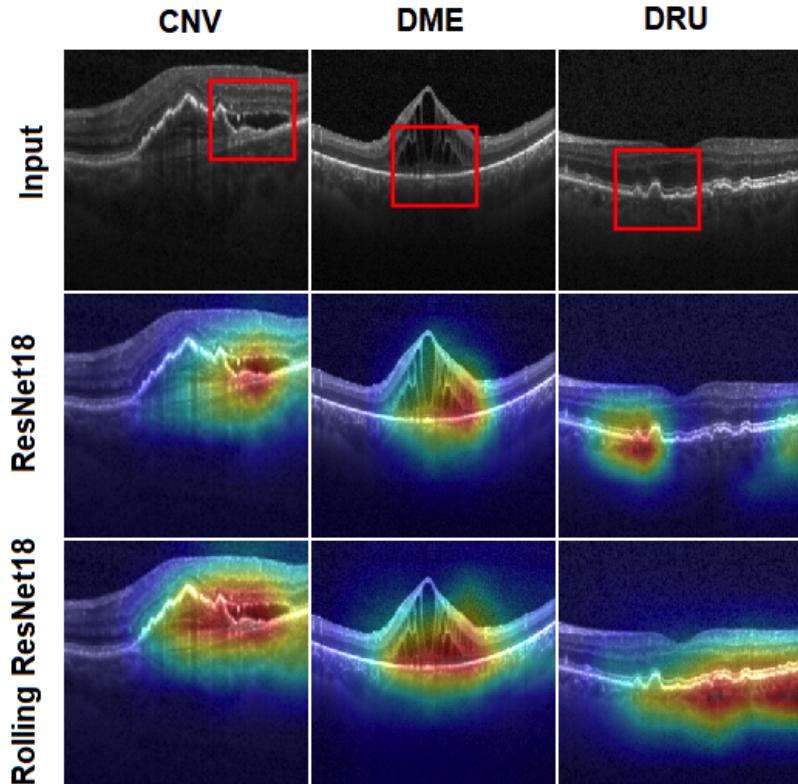


Fig 8 Example OCT images (first row) from UCSD dataset for each class of retinal disease given correspondingly on top of each image (column-wise), with abnormal region shown by a bounding box. The subsequent rows show the overlaid gradients on the input images, specifically the Grad-CAM visualizations. Overall quantitative metrics of considered methods across the test cases are shown in Table 3

359 **5 Discussion**

360 This study introduced a novel method for designing lightweight convolutional networks using a
 361 nonparameterized channel-rolling operation. The proposed method of generating a new set of

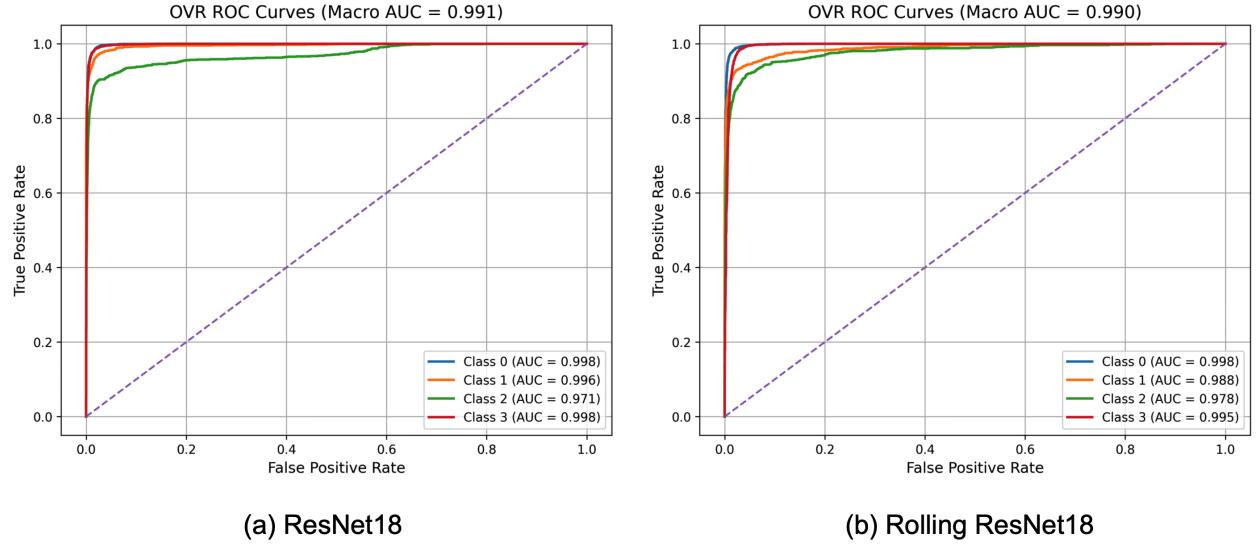


Fig 9 One-vs-Rest (OVR) Receiver Operating Characteristic (ROC) curves for OCT image classification across the four categories - Class 0 (CNV), Class 1 (DME), Class 2 (Drusen), and Class 3 (Normal) corresponding to (a) ResNet18 and (b) Rolling ResNet18.

362 convolutional filters from a single base filter resulted in efficient forward and backward flows for
 363 training deep learning models. Channel rolling filters facilitate the design of deep models without
 364 increasing their complexity. The shared weights across the filters reduce the classical overfitting
 365 problem in CNNs. The proposed rolling filters were easily incorporated into popular state-of-
 366 the-art architectures to analyze the performance of the proposed rolling convolution filters. As
 367 shown in Fig. 3, the UNet model's final output strongly depends on the features extracted from the
 368 initial layers. The proposed rolling convolution filters with fewer parameters can capture similar
 369 semantics from the initial layers compared to standard convolution filters (refer to Fig. 7). The
 370 relationship between the number of input and output channels in the baseline models was either
 371 $1\times$, $2\times$, or $0.5\times$. In the proposed design of the rolling filters, to generate output channels equal to
 372 the input channels ($1\times$), the rolling operations of the single-base filter must be equal to the number
 373 of input channels. For generating output channels of $2\times$ input channels, two base filters were used.
 374 The independent rolling operations performed on the two base filters were equal to the number of

375 corresponding input channels. Similarly, to generate output channels of $0.5 \times$ input channels, half
376 the number of rolling operations were performed on a single-base filter.

377 Achieving a balance between model size, computational efficiency, and accuracy is a significant
378 challenge in the design of lightweight CNNs. Although lightweight models aim to reduce resource
379 requirements, they often sacrifice accuracy compared to larger and more complex models. The
380 filters utilized in these models play an important role in developing tailor-made lightweight models.
381 Existing architectural modifications, such as depth-wise separable convolutions, skip connections,
382 and efficient building blocks, have focused on decreasing the number of operations rather than
383 on an efficient filter design. Thus, this work is a significant step towards efficient filter design for
384 medical imaging tasks that are less complex, with the added advantage of seamless incorporation of
385 the proposed rolling filters into existing deep learning architectures to convert them into lightweight
386 models. Moreover, the proposed rolling-filter-based architectures are as accurate as larger/complex
387 models, thus addressing the major limitations in designing these lightweight models.

388 The performance of the proposed rolling convolution filters was statistically compared with
389 other lightweight design approaches, namely depth-wise separable filters and flattened convolu-
390 tion filters, across multiple tasks using two-tailed Welch's t-tests. For all evaluation metrics and
391 tasks, the resulting p-values were greater than 0.05, indicating no statistically significant differ-
392 ences between the proposed and existing lightweight designs. Importantly, this lack of statistical
393 difference suggests performance equivalence rather than inferiority, demonstrating that the pro-
394 posed approach achieves comparable performance while requiring fewer parameters. To further
395 improve the accuracy and performance of the proposed rolling filters, the following detailed stud-
396 ies will be considered in future work: (1) increasing the number of independent filters at a given
397 convolution layer, (2) introducing attention modules within the layer activations that can further

398 boost performance, and (3) determining the optimal number of independent filters in a given layer.

399 **6 Conclusion**

400 This study presented a novel approach for designing lightweight convolutional neural networks us-
401 ing rolling convolution filters, demonstrating significant reductions in model size and parameters
402 while maintaining comparable performance across various medical image analysis tasks. The pro-
403 posed method outperforms other lightweight CNN designs in terms of parameter efficiency and can
404 be easily integrated into existing architectures. By addressing the challenge of developing efficient
405 deep learning models in medical imaging, the proposed method showed promise for deploying
406 CNNs in resource-constrained settings. The successful application of rolling convolution filters
407 to quantitative susceptibility mapping reconstruction, COVID-19 anomaly segmentation, and reti-
408 nal disease classification from OCT images, highlighted its generalizability and applicability for
409 automated medical image analysis.

410 **Disclosures**

411 The authors have no conflicts of interest to declare that are relevant to the content of this article.

412 **Code and Data Availability**

413 COVID-19 dataset is publicly available at <http://medicalsegmentation.com/covid19/>.

414 The QSM data from QSMnet⁴¹ was made available to the authors by Prof. Lee (e-mail: jonghoyi@snu.ac.kr)

415 of the Department of Electrical and Computer Engineering, Seoul National University. The OCT

416 dataset⁵⁹ is publicly available at <https://www.kaggle.com/datasets/paultimothymooney/>

417 [kermany2018](#). The proposed lightweight convolution filter design code was made available as

418 an open source for enthusiastic users at <https://github.com/NaveenPaluru/Rolling-Filters>

419 **Acknowledgment**

420 The authors thank Prof. Jongho Lee, Seoul National University, Seoul, South Korea, for providing
421 the QSM data.

422 **Funding Information**

423 This work was supported by the Prime Minister's Research Fellowship (PMRF) and also the
424 WIPRO-GE Collaborative Laboratory on Artificial Intelligence in Healthcare and Medical Imag-
425 ing.

426 *References*

- 427 1 O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical im-
428 age segmentation," in *International Conference on Medical image computing and computer-
429 assisted intervention*, 234–241, Springer (2015).
- 430 2 K. He, X. Zhang, S. Ren, *et al.*, "Deep residual learning for image recognition," in *Proceed-
431 ings of the IEEE conference on computer vision and pattern recognition*, 770–778 (2016).
- 432 3 M. Gridach, "Pydinet: Pyramid dilated network for medical image segmentation," *Neural
433 Networks* **140**, 274–281 (2021).
- 434 4 D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, *et al.*, "What is the state of neural network
435 pruning?," *Proceedings of machine learning and systems* **2**, 129–146 (2020).
- 436 5 A. Gholami, S. Kim, Z. Dong, *et al.*, "A survey of quantization methods for efficient neural
437 network inference," in *Low-Power Computer Vision*, 291–326, Chapman and Hall/CRC.
- 438 6 J. Gou, B. Yu, S. J. Maybank, *et al.*, "Knowledge distillation: A survey," *International Jour-
439 nal of Computer Vision* **129**(6), 1789–1819 (2021).

440 7 A. G. Howard, M. Zhu, B. Chen, *et al.*, “Mobileneets: Efficient convolutional neural networks
441 for mobile vision applications,” *arXiv preprint arXiv:1704.04861* (2017).

442 8 M. Sandler, A. Howard, M. Zhu, *et al.*, “Mobilenetv2: Inverted residuals and linear bottle-
443 necks,” in *2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 4510–
444 4520 (2018).

445 9 A. Howard, R. Pang, H. Adam, *et al.*, “Searching for mobilenetv3,” in *2019 IEEE/CVF In-
446 ternational Conference on Computer Vision (ICCV)*, 1314–1324 (2019).

447 10 V. Vanhoucke, “Learning visual representations at scale,” *ICLR invited talk* **1**(2) (2014).

448 11 F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in *Proceedings
449 of the IEEE conference on computer vision and pattern recognition*, 1251–1258 (2017).

450 12 T. Zhang, G.-J. Qi, B. Xiao, *et al.*, “Interleaved group convolutions,” in *Proceedings of the
451 IEEE international conference on computer vision*, 4373–4382 (2017).

452 13 M. Tan and Q. V. Le, “Mixconv: Mixed depthwise convolutional kernels,” in *30th British Ma-
453 chine Vision Conference 2019, BMVC 2019, Cardiff, UK, September 9-12, 2019*, 74, BMVA
454 Press (2019).

455 14 H. Gao, Z. Wang, and S. Ji, “Channelnets: Compact and efficient convolutional neural net-
456 works via channel-wise convolutions,” *Advances in neural information processing systems*
457 **31** (2018).

458 15 X. Zhang, X. Zhou, M. Lin, *et al.*, “Shufflenet: An extremely efficient convolutional neural
459 network for mobile devices,” in *2018 IEEE/CVF Conference on Computer Vision and Pattern
460 Recognition*, 6848–6856 (2018).

461 16 N. Ma, X. Zhang, H.-T. Zheng, *et al.*, “Shufflenet v2: Practical guidelines for efficient cnn ar-
462 chitecture design,” in *Proceedings of the European Conference on Computer Vision (ECCV)*,
463 122–138 (2018).

464 17 M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural net-
465 works,” in *International Conference on Machine Learning*, 6105–6114 (2019).

466 18 M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,” in *International*
467 *conference on machine learning*, 10096–10106, PMLR (2021).

468 19 J. Yu, L. Yang, N. Xu, *et al.*, “Slimmable neural networks,” in *7th International Conference*
469 *on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*, OpenRe-
470 view.net (2019).

471 20 Y. Bhalgat, Y. Zhang, J. M. Lin, *et al.*, “Structured convolutions for efficient neural network
472 design,” *Advances in Neural Information Processing Systems* **33**, 5553–5564 (2020).

473 21 Q. Qiu, X. Cheng, G. Sapiro, *et al.*, “Dcfnet: Deep neural network with decomposed con-
474 volutional filters,” in *International Conference on Machine Learning*, 4198–4207, PMLR
475 (2018).

476 22 Y. Li, S. Gu, L. V. Gool, *et al.*, “Learning filter basis for convolutional neural network com-
477 pression,” in *Proceedings of the IEEE/CVF International Conference on Computer Vision*,
478 5623–5632 (2019).

479 23 W. Kang and D. Kim, “Deeply shared filter bases for parameter-efficient convolutional neural
480 networks,” in *Advances in Neural Information Processing Systems*, M. Ranzato, A. Beygelz-
481 imer, Y. Dauphin, *et al.*, Eds., **34**, 7397–7408, Curran Associates, Inc. (2021).

482 24 Z. Yang, Y. Wang, C. Liu, *et al.*, “Legonet: Efficient convolutional neural networks with lego
483 filters,” in *International Conference on Machine Learning*, 7005–7014, PMLR (2019).

484 25 P. Savarese and M. Maire, “Learning implicitly recurrent cnns through parameter sharing,” in
485 *International Conference on Learning Representations*, (2019).

486 26 Y. Yang, J. Yu, N. Jojic, *et al.*, “Fsnet: Compression of deep convolutional neural networks
487 by filter summary,” in *International Conference on Learning Representations*, (2020).

488 27 Y. Wang, C. Xu, C. Xu, *et al.*, “Learning versatile filters for efficient convolutional neural
489 networks,” *Advances in Neural Information Processing Systems* **31** (2018).

490 28 K. Han, Y. Wang, C. Xu, *et al.*, “Learning versatile convolution filters for efficient visual
491 recognition,” *IEEE Transactions on Pattern Analysis and Machine Intelligence* **44**(11), 7731–
492 7746 (2021).

493 29 K. Han, Y. Wang, Q. Tian, *et al.*, “Ghostnet: More features from cheap operations,” in *Pro-
494 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, 1580–
495 1589 (2020).

496 30 Y. Cheng, F. X. Yu, R. S. Feris, *et al.*, “An exploration of parameter redundancy in deep
497 networks with circulant projections,” in *Proceedings of the IEEE international conference on
498 computer vision*, 2857–2865 (2015).

499 31 C. Deng, S. Liao, Y. Xie, *et al.*, “Permdnn: efficient compressed dnn architecture with per-
500 muted diagonal matrices,” in *Proceedings of the 51st Annual IEEE/ACM International Sym-
501 posium on Microarchitecture*, 189–202 (2018).

502 32 A. Araujo, B. Negrevergne, Y. Chevaleyre, *et al.*, “Training compact deep learning models

503 for video classification using circulant matrices,” in *Proceedings of the European Conference*
504 *on Computer Vision (ECCV) Workshops*, 271–286 (2018).

505 33 C. Liu, W. Ding, X. Xia, *et al.*, “Circulant binary convolutional networks: Enhancing the
506 performance of 1-bit dcnn with circulant back propagation,” in *2019 IEEE/CVF Conference*
507 *on Computer Vision and Pattern Recognition (CVPR)*, 2691–2699 (2019).

508 34 Y. Wang, C. Xu, C. Xu, *et al.*, “Beyond filters: Compact feature map for portable deep
509 model,” in *International Conference on Machine Learning*, 3703–3711, PMLR (2017).

510 35 J. Jin, A. Dundar, and E. Culurciello, “Flattened convolutional neural networks for feed-
511 forward acceleration,” in *3rd International Conference on Learning Representations, ICLR*
512 *2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings*, Y. Bengio and
513 Y. LeCun, Eds. (2015).

514 36 Y. Wang, P. Spincemaille, Z. Liu, *et al.*, “Clinical quantitative susceptibility mapping (qsm):
515 Biometal imaging and its emerging roles in patient care,” *Journal of magnetic resonance*
516 *imaging* **46**(4), 951–971 (2017).

517 37 Y. Wang and T. Liu, “Quantitative susceptibility mapping (qsm): decoding mri data for a
518 tissue magnetic biomarker,” *Magnetic resonance in medicine* **73**(1), 82–101 (2015).

519 38 C. Liu, W. Li, K. A. Tong, *et al.*, “Susceptibility-weighted imaging and quantitative suscep-
520 tibility mapping in the brain,” *Journal of magnetic resonance imaging* **42**(1), 23–41 (2015).

521 39 T. Liu, P. Spincemaille, L. De Rochefort, *et al.*, “Calculation of susceptibility through mul-
522 tiple orientation sampling (cosmos): a method for conditioning the inverse problem from
523 measured magnetic field map to susceptibility source image in mri,” *Magnetic Resonance*

524 *in Medicine: An Official Journal of the International Society for Magnetic Resonance in*
525 *Medicine* **61**(1), 196–204 (2009).

526 40 K. G. B. Rasmussen, M. Kristensen, R. G. Blendal, *et al.*, “Deepqsm-using deep learning to
527 solve the dipole inversion for mri susceptibility mapping,” *BioRxiv* , 278036 (2018).

528 41 J. Yoon, E. Gong, I. Chatnuntawech, *et al.*, “Quantitative susceptibility mapping using deep
529 neural network: Qsmnet,” *Neuroimage* **179**, 199–206 (2018).

530 42 W. Jung, J. Yoon, S. Ji, *et al.*, “Exploring linearity of deep neural network trained qsm:
531 Qsmnet+,” *Neuroimage* **211**, 116619 (2020).

532 43 Y. Gao, X. Zhu, B. A. Moffat, *et al.*, “xqsm: quantitative susceptibility mapping with octave
533 convolutional and noise-regularized neural networks,” *NMR in Biomedicine* **34**(3), e4461
534 (2021).

535 44 Z. Li, S. Ying, J. Wang, *et al.*, “Reconstruction of quantitative susceptibility mapping from
536 total field maps with local field maps guided uu-net,” *IEEE Journal of Biomedical and Health
537 Informatics* **27**(4), 2047–2058 (2023).

538 45 W. Jung, S. Bollmann, and J. Lee, “Overview of quantitative susceptibility mapping using
539 deep learning: Current status, challenges and opportunities,” *NMR in Biomedicine* , e4292
540 (2020).

541 46 C. Langkammer, F. Schweser, K. Shmueli, *et al.*, “Quantitative susceptibility mapping: report
542 from the 2016 reconstruction challenge,” *Magnetic resonance in medicine* **79**(3), 1661–1673
543 (2018).

544 47 D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in *3rd International*

545 *Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,*

546 *Conference Track Proceedings*, Y. Bengio and Y. LeCun, Eds. (2015).

547 48 Y. Fang, H. Zhang, J. Xie, *et al.*, “Sensitivity of chest ct for covid-19: Comparison to rt-pcr,”

548 *Radiology*, 200432 (2020). PMID: 32073353.

549 49 N. Awasthi, A. Dayal, L. R. Cenkeramaddi, *et al.*, “Mini-covidnet: Efficient lightweight deep

550 neural network for ultrasound based point-of-care detection of covid-19,” *IEEE Transactions*

551 *on Ultrasonics, Ferroelectrics, and Frequency Control* **68**(6), 2023–2037 (2021).

552 50 S. Roy, W. Menapace, S. Oei, *et al.*, “Deep learning for classification and localization of

553 covid-19 markers in point-of-care lung ultrasound,” *IEEE transactions on medical imaging*

554 **39**(8), 2676–2687 (2020).

555 51 J. Wang, Y. Bao, Y. Wen, *et al.*, “Prior-attention residual learning for more discriminative

556 covid-19 screening in ct images,” *IEEE Transactions on Medical Imaging* **39**(8), 2572–2583

557 (2020).

558 52 C. Li, L. Dong, Q. Dou, *et al.*, “Self-ensembling co-training framework for semi-supervised

559 covid-19 ct segmentation,” *IEEE Journal of Biomedical and Health Informatics* **25**(11),

560 4140–4151 (2021).

561 53 J. P. Kanne, “Chest ct findings in 2019 novel coronavirus (2019-ncov) infections from wuhan,

562 china: Key points for the radiologist,” (2020). PMID: 32017662.

563 54 M. Chung, A. Bernheim, X. Mei, *et al.*, “Ct imaging features of 2019 novel coronavirus

564 (2019-ncov),” *Radiology* **295**(1), 202–207 (2020).

565 55 N. Paluru, A. Dayal, H. B. Jenssen, *et al.*, “Anam-net: Anamorphic depth embedding-based

566 lightweight cnn for segmentation of anomalies in covid-19 chest ct images,” *IEEE Transac-*
567 *tions on Neural Networks and Learning Systems* **32**(3), 932–946 (2021).

568 56 D.-P. Fan, T. Zhou, G.-P. Ji, *et al.*, “Inf-net: Automatic covid-19 lung infection segmentation
569 from ct images,” *IEEE Transactions on Medical Imaging* **39**(8), 2626–2637 (2020).

570 57 G. Wang, X. Liu, C. Li, *et al.*, “A noise-robust framework for automatic segmentation of
571 covid-19 pneumonia lesions from ct images,” *IEEE Transactions on Medical Imaging* **39**(8),
572 2653–2663 (2020).

573 58 M. Jun, G. Cheng, W. Yixin, *et al.*, “COVID-19 CT Lung and Infection Segmentation
574 Dataset,” (2020).

575 59 D. S. Kermany, M. Goldbaum, W. Cai, *et al.*, “Identifying medical diagnoses and treatable
576 diseases by image-based deep learning,” *Cell* **172**(5), 1122–1131 (2018).

577 60 Y. Rong, D. Xiang, W. Zhu, *et al.*, “Surrogate-assisted retinal oct image classification based
578 on convolutional neural networks,” *IEEE Journal of Biomedical and Health Informatics*
579 **23**(1), 253–263 (2019).

580 61 L. Fang, C. Wang, S. Li, *et al.*, “Attention to lesion: Lesion-aware convolutional neural
581 network for retinal optical coherence tomography image classification,” *IEEE transactions
582 on medical imaging* **38**(8), 1959–1970 (2019).

583 62 N. Paluru, H. Ravishankar, S. Hegde, *et al.*, “Self distillation for improving the generalizabil-
584 ity of retinal disease diagnosis using optical coherence tomography images,” *IEEE Journal
585 of Selected Topics in Quantum Electronics* **29**(4: Biophotonics), 1–12 (2023).

586 63 F. Li, H. Chen, Z. Liu, *et al.*, “Deep learning-based automated detection of retinal diseases

587 using optical coherence tomography images,” *Biomedical Optics Express* **10**(12), 6204–6226

588 (2019).

589 64 A. Paszke, S. Gross, F. Massa, *et al.*, “Pytorch: An imperative style, high-performance deep
590 learning library,” in *Advances in neural information processing systems*, 8026–8037 (2019).

591 65 J. Zhang, Z. Liu, S. Zhang, *et al.*, “Fidelity imposed network edit (fine) for solving ill-posed
592 image reconstruction,” *Neuroimage* **211**, 116579 (2020).

593 66 K.-W. Lai, M. Aggarwal, P. van Zijl, *et al.*, “Learned proximal networks for quantitative
594 susceptibility mapping,” in *International Conference on Medical Image Computing and
595 Computer-Assisted Intervention*, 125–135, Springer (2020).

596 67 O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical im-
597 age segmentation,” in *Medical Image Computing and Computer-Assisted Intervention (MIC-
598 CAI), LNCS* **9351**, 234–241, Springer (2015). (available on arXiv:1505.04597 [cs.CV]).

599 68 F. N. Iandola, S. Han, M. W. Moskewicz, *et al.*, “SqueezeNet: Alexnet-level accuracy with
600 50x fewer parameters and 0.5 mb model size,” *arXiv preprint arXiv:1602.07360* (2016).

601 69 R. R. Selvaraju, M. Cogswell, A. Das, *et al.*, “Grad-cam: Visual explanations from deep net-
602 works via gradient-based localization,” in *Proceedings of the IEEE international conference
603 on computer vision*, 618–626 (2017).

604 Naveen Paluru received his Ph.D. in Medical Image Analysis from the Depart-

605 ment of Computational and Data Sciences, Indian Institute of Science, Bangalore. He was awarded

606 the Best Ph.D. Thesis Medal for the year 2024, and his doctoral research was funded by the Prime

607 Minister's Research Fellowship. He is currently a Senior AI Scientist at the Science and Technol-
608 ogy Organization, GE HealthCare, India. His research interests lie at the intersection of artificial
609 intelligence, signal processing, and medical imaging.

610

611 Mehak Arora holds an MS in Electrical and Computer Engineering from Geor-
612 gia Institute of Technology. She is currently pursuing a PhD in Computer Engineering at Duke
613 University, where she is building prognostic risk estimations models from multimodal, longitu-
614 dinal clinical data. Her research interests lie at the intersection of machine learning and clinical
615 informatics.

616

617 Phaneendra Yalavarthy holds a Ph.D. from Dartmouth College and leads TANUH,
618 the AI-Centre of Excellence in Healthcare and is also a Professor of Computational and Data Sci-
619 ences at IISc Bangalore. Awards include INAE Young Engineer (2013), and S. Ramachandran-
620 National Bioscience Award (2020). His research interests includes computational/deep learning in
621 medical imaging, physiological signals, and non-destructive imaging. A senior IEEE/OSA/SPIE
622 member and serves as an associate editor of IEEE Transactions on Medical Imaging.

623 **List of Figures**

624 1 A comparison between existing convolution filters and proposed rolling convolution filters. (a) standard convolution filters, (b) depth-wise separable filters, (c) flattened convolution filters , and (d) rolling convolution filters. Depth-wise separable convolution filters perform independent channel-wise convolutions, and an assimilated representation is formed using 1×1 point-wise convolution. Flattened convolution filters perform the lateral convolution operation across the channels (1×1 point-wise), followed by convolution across the horizontal and vertical dimensions of the feature maps. In contrast, the proposed rolling convolution filters generate sets of new convolution filters by performing a non-parameterized channel-wise rolling (or circular shifting) operation on a single base filter.

630 2 Forward propagation and backpropagation through 2D rolling convolution filters.

631 \mathbf{x} is a 3-channel feature map, $*$ is the convolution operator, ϕ is the channel-rolling operator, \mathbf{y} is the output feature map, and $\hat{\phi}$ is the channel-rolling operator that operates in the opposite direction of ϕ .

632 3 A typical design aspect of a UNet architecture. The encoder-decoder structure embedded with feature concatenations forms a method for salience representation.

633 Feature maps (convolution layer 1) obtained from UNet and Rolling UNet on a sample chest CT slice for the task of COVID-19 anomaly segmentation are shown

634 in Fig. 7.

635

636

637

638

639

640

641

642

643 4 Representative susceptibility reconstruction results (sagittal view) across orienta-
644 tion 1 of considered methods (column-wise) on a sample test volume. The high-
645 frequency error component (HFEN(%) \downarrow) with reference to the gold standard COS-
646 MOS was provided for each slice. Overall quantitative metrics of considered meth-
647 ods across the test volumes are shown in Table 1.

648 5 Error maps of the QSM reconstructions shown in Fig. 4, computed with respect
649 to the COSMOS reconstructions as reference. Error maps are shown for all the
650 compared QSM methods. The comparison between the baseline QSMnet and the
651 proposed Rolling QSMnet is highlighted, illustrating differences in spatial error
652 distribution and overall agreement with COSMOS.

653 6 Representative segmentation results on a patient volume (test cases). The input
654 slices (test cases) are shown in the first column. The respective annotations (ground
655 truth) are presented in the second column. The predictions of the UNet and Rolling
656 UNet are presented in the fourth and fifth columns, respectively. Abnormalities
657 in the lung region are indicated in red, and the normal lung region is indicated
658 in green. The average Dice Similarity scores are given below the corresponding
659 slices. Overall quantitative metrics of considered methods across the test cases are
660 shown in Table 2.

661 7 Feature representations of CT images from the initial layers of UNet driven archi-
662 tectures while segmenting COVID-19 anomalies. The input CT images are pre-
663 sented in the first column. The final predictions are presented in the fifth column.
664 The features obtained with standard convolutions (UNet) and from rolling convo-
665 lutions (Rolling UNet) are shown in the first and second rows, respectively. (a)
666 clearly distinguishes the lung region from the background (through edge extrac-
667 tion), (b) most of the neurons fired for the abnormal region (shown in red color),
668 and (c) activated neurons focused on the normal/healthy tissue (shown in green
669 color) of the lung.

670 8 Example OCT images (first row) from UCSD dataset for each class of retinal dis-
671 ease given correspondingly on top of each image (column-wise), with abnormal
672 region shown by a bounding box. The subsequent rows show the overlaid gradients
673 on the input images, specifically the Grad-CAM visualizations. Overall quantita-
674 tive metrics of considered methods across the test cases are shown in Table 3

675 9 One-vs-Rest (OVR) Receiver Operating Characteristic (ROC) curves for OCT im-
676 age classification across the four categories - Class 0 (CNV), Class 1 (DME), Class
677 2 (Drusen), and Class 3 (Normal) corresponding to (a) ResNet18 and (b) Rolling
678 ResNet18.

679 **List of Tables**

680 1 Averaged figures of merit over 30 patient volumes (test cases) from all dipole de-
681 convolution methods considered in this work. Note that the inference (s) reported
682 were for the (GPU and CPU) implementation. Susceptibility reconstruction results
683 (sagittal view) across orientation 1 of considered methods are shown in Fig. 4.

684 2 Average figures of merit across three cross folds for the COVID-19 anomalies seg-
685 mentation. Note that the reported inference (s) were for GPU and CPU. Represen-
686 tative segmentation results on sample chest CT slices (test cases) are shown in Fig.
687 6.

688 3 Average figures of merit (over ~ 14500 OCT B-scans, Test Cases) for OCT classi-
689 fication task. Note that inference (s) reported were for GPU, CPU.