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Abstract—Optical coherence tomography (OCT) imaging has
become a point-of-care imaging modality for the diagnosis of retinal
diseases. Varying speckle noise in the OCT images across datasets
and scanners worsens the performance of existing artificial in-
telligence (deep learning) models, that have been trained mostly
with images having a particular noise level. The existing deep
learning models for predicting retinal diseases are heavy, requires
a sophisticated computing environment to train and deploy. Gen-
eralized lightweight deep learning models that can provide an
automated diagnosis on an edge platform are highly appealing in
the clinic. This work proposes a self distillation framework based on
lightweight deep learning models for building generalizable deep
models for retinal disease diagnosis. The proposed approach with
three different baseline models ResNet18, MobileNetV2 and Shuf-
fleNetV2, has been validated on simulated and real-time noisy OCT
B-scans spanning a range of SNRs from four OCT datasets. The
proposed method significantly outperforms the existing methods
with improvement (as high as 14%) in precision, accuracy, and
F1-score, to show that the self distillation framework can provide
more generalizability for automated retinal diagnosis.

Index Terms—Optical coherence tomography, lightweight
CNNs, retinal diseases, knowledge distillation, regularization.

I. INTRODUCTION

O PTICAL Coherence Tomography (OCT) is the gold
standard for diagnosing retinal diseases [1]. The most

common retinal diseases include Choroidal Neovasculariza-
tion (CNV), Diabetic Macular Edema (DME), and DRUSEN.
Fig. 1 shows the visually distinctive features of each retinal
disease. A small retinal fluid formed near the retinal layer
characterizes CNV, DME accounts for the formation of fluid-
filled cysts, and Drusen results in irregular retinal boundaries.
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Fig. 1. Example OCT images (first row) from UCSD dataset [2] for each
retinal disease given on top of each image correspondingly, with abnormal region
shown by an arrow. Zoomed versions of these regions are shown in the second
row correspondingly.

These distinct features makes computer-aided automated detec-
tion/classification of these abnormalities of vital interest, where
the aim is to provide this diagnosis in real-time. A volumetric
(three-dimensional, 3D) data capture in OCT imaging is the
standard. However, interpretation and classification of these 3D
OCT images is a tedious and time-consuming task, especially for
screening. This diagnosis in an automated fashion at the image
(two-dimensional, 2D) level is desirable for disease screening
at the population level.

Several attempts have been made to fully automate this
detection/classification without expert/clinician input. Hussain
et al. [3] have proposed a classification algorithm (Random
Forest) based on retinal features obtained from spectral-domain
optical coherence tomography (SD-OCT) for identifying Age-
related Macular Degeneration (AMD) and DME. Guillaume
et al. have [4] deployed local binary patterns of SD-OCT images
for separating the DME from the normal retinal condition. Al-
barrak et al. [5] have designed a pipeline that relies on Bayesian
decision on the features projected by principal component anal-
ysis for age-related macular degeneration (AMD) identification.
Fusion of histogram-of-oriented gradients (HoG) and local bi-
nary patterns within a multi-scale classification framework for
identifying DME have shown exciting results [6]. In a similar
study, Srinivasan et al. [7] have designed a support vector ma-
chine for discriminating the HoG features of AMD, DME, and
the normal retinal condition. Venhuizen et al. [8] have developed
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an unsupervised technique based on bag of visual words and
random forest classifier for identifying AMD. Lemaître et al. [4]
have proposed an SVM-based classifier for DME identification;
however, this algorithm did not report any results associated with
AMD, which is known as the most dominant retinal disease in
OCT images. 3D volume-based classifiers have also been de-
signed [9] for retinal abnormality classification, but all volumes
were constrained to have the same number of B-scans.

Convolutional Neural Networks (CNNs) based retinal dis-
ease diagnosis [2], [10], [11], [12], [13] and retinal image
enhancements [14], [15], [16], [17] using OCT images have
been explored in literature. Lu et al. [10] have proposed a deep
neural network, specifically ResNet101 based automated retinal
diagnosis using OCT images. Tan et al. [11] have explored
deep learning driven fundus image based macular degenera-
tion detection. Kermany et al. [2] have introduced a transfer
learning based deep model for retinal diagnosis and a popular
benchmarking OCT dataset with ∼ 109300 labeled B-scans. Li
et al. [18] have proposed a VGG-16 [19] based deep network
for retinal disease diagnosis from OCT images. The VGG-16
architecture has ∼ 138M parameters and is often known as
one of the over-parameterized models for classical 1000 class
Imagenet classification. A multi-scale ensemble of CNN’s [20]
has shown promising results in retinal diagnosis. This approach
performs volume-based normalization, followed by ROI and
VOI identification, and then an ensemble decision is made.
Lesion Aware CNNs (LACNN) [21] with added segmentation
and attention modules have improved the predictions of the
deep model for classifying OCT B-scans. However, the cost
of annotating the segmentation masks has been a bottleneck
for re-training the model on another dataset. Further, the seg-
mentation module adds more computation with increased model
parameters, size, and inference time. Li et al. [22] have intro-
duced an ensemble of deep residual networks for retinopathy
classification. In short, the authors [22] have proposed an en-
semble (in total four) of dilated convolutions based ResNet50
architecture for retinal disease detection. Again, ResNet50 is a
heavy model with ∼ 23M parameters, making it unsuitable for
point-of-care or resource-constrained settings. Semi-supervised
methods [23], [24] have shown the way for annotation efficient
deep learning methods for retinal disease diagnosis. A deep
domain adaptation method [25] has improved the generaliz-
ability of retinal disease predictions on cross datasets. This
work [25] have adapted the adversarial discriminative unsuper-
vised domain adaptation approach [26] and added an entropy
minimization module for building robust deep models for retinal
diagnosis.

Most existing deep learning based retinal disease diagnosis
methods are biased toward the training data distribution. For ex-
ample, work of Luo et al. [25] focused on building generalizable
deep models for retinal diagnosis. However, the authors [25]
have used VGG-16 as a baseline model, which is not ideal
for point-of-care or resource-constrained settings due to the
model being heavy. One of the critical challenge for building
such generalizable models via domain adaptation is the avail-
ability of the datasets from two different centers. Availing the
data sources from multiple centers is a challenge, especially in

medical image analysis, due to data privacy and security issues.
To address this issue, one solution is to approach source-free
domain adaptation techniques, where only the model (weights
or parameters) trained on the source dataset is available along
with an unannotated target dataset. This approach increases the
complexity of the problem due to this additional step, and it is
challenging to build a generalizable representation across two
different distributions using only the model trained with the
source dataset. The other approach is to go for federated deep
learning [27] where the data privacy can be maintained, and
a global model can be trained on the data from two different
data centers. However, the standard federated learning methods
assume that the data is labeled across two data centers, and
often, the learned global model’s generalizability can be poor
compared to domain adaptation methods.

The source for the lack of generalizabilty in the retinal diag-
nosis using OCT images can be attributed to the speckle noise
present in the OCT images [28], [29]. The noise modeling in
OCT has been studied in detail in the literature. A stretched
exponential distribution [30] has been proposed to model the
distribution of intensities in OCT images. In a similar study,
Amini et al. [31] proposed a mixture of normal-Laplace distri-
bution model to enhance the OCT image contrast. The methods
proposed in [32], [33], [34] used Gaussianization transforms
to model the OCT image content for applications in denoising.
Sudeep et al. [35] developed a Gamma prior for modeling the
multi-frame OCT data and applied the designed priors to an iter-
ative framework for denoising. Li et al. [36] designed the OCT
image content from local statistics and proposed a maximum
a-posteriori estimate for denoising. In a recent study, Tajmirriahi
et al. [37] developed a stochastic differential equation based
model and used it as a prior to denoise the OCT images.

The speckle noise is more dominant in SD-OCT, which is the
most widely available OCT variant due to cost-effectiveness.
As OCT imaging is making strides towards the point-of-care
diagnosis of retinal diseases, highly generalized deep learning
models that can provide an automated diagnosis on an edge
platform will be highly appealing in the clinic, especially in
resource-constrained settings. The potential of the lightweight
models has been proven to a reasonable extent in deep learning
based medical image analysis literature [13], [38], [39], [40],
[41].

This work proposes noise regularized lightweight deep learn-
ing models trained via self distillation for improving the deploy-
ability and the generalizability of automated retinal diagnosis
using OCT images. The high-speed OCT acquisition results in a
poor signal-to-noise ratio (SNR) because of the induced speckle.
To generate a high SNR OCT B-scan, multiple acquisitions are
taken at the same axial position, and the final scan is an average of
registered multiple acquisitions [42]. The multiple acquisitions
result in increased scan time, and the increased scan time results
in motion artifacts. This work presents a carefully engineered
data-dependent noise regularized self-distilled loss function for
deep learning based retinal diseases classification that can work
on low SNR OCT images.

The proposed framework has distinct advantages compared
to its counterparts and provides solution to three immediate
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Fig. 2. Proposed NRSD (noise regularized self distillation) for robust retinal disease diagnosis. The lightweight model f is allowed to make predictions on x and
the corresponding low SNR counterpart F(x). To have a consistent prediction irrespective of the SNR level, both these predictions are matched by minimizing KL
divergence.

issues with deep learning based retinal diagnosis: (1) easy
deployment (using existing lightweight models) for a point-
of-care and resource constraint settings, (2) robustness towards
variable SNR levels for retinal diagnosis during high-speed OCT
acquisition, (3) The proposed method is agnostic to the noise
models in OCT based retinal diagnosis and is computationally
and quantitatively optimal than using the denoising algorithms
followed by classification models for retinal disease diagnosis.
The proposed method and the corresponding baseline mod-
els have been also systematically evaluated on four SD-OCT
datasets. In short, the novelty of this work can be summarized
as follows: Development of regularized lightweight models for
robust retinal diagnosis via self distillation. Task tailored data-
dependent noise regularized cost function has been proposed to
provide better generalizability for the task at hand especially for
building above mentioned lightweight models. This work also
shows that irrespective of the SNR level, the proposed approach
of building lightweight deep models for retinal diagnosis can
accurately identify the region of interest for predicting the retinal
abnormalities, providing better explainability of the proposed
framework.

II. METHODS

Hinton et al. [43] introduced the concept of knowledge dis-
tillation (KD) using soft targets for transferring knowledge be-
tween the models. The soft targets have been used as regularizers
for building generalizable models [43], [44], [45]. The OCT
images are corrupted by speckle noise arising out of interaction
of multiple scattering sources during signal recording. SNR of
the OCT image is one of the essential characteristic features
that varies among the scans obtained from different OCT ma-
chines. This work proposes a data-dependent noise regularized

Fig. 3. Example OCT image with DME from UCSD dataset [2] at varying
noise levels. The noise level (variance of the data-dependent/multiplicative
noise) is shown at the bottom of the corresponding image. The SNR of the
OCT image decreases with increase in the variance of the noise level.

self-distilled cost function to handle the SNR variability during
the retinal diagnosis using OCT scans.

The details of steps involved in the proposed approach are
shown in Fig. 2. Given a mini-batch of high SNR (clean) B-scan
images {xi}Ni=1 along with corresponding expert annotations
{yi}Ni=1 (yi ∈ {1, 2, .., C}), a lightweight model f parameter-
ized by θ is trained using the classical cross-entropy as shown
in (2). Note that C is the total number of classes, yij is one hot
representation for yi and ŷcij denotes softmax probabilities (1)
with fj being the logit of the lightweight model for jth class.
Given a OCT B-scan xi, its SNR is altered by adding a simulated
data-dependent noise as shown in (3), where (a, b) denotes the
spatial coordinates, η represents uniformly distributed random
noise with 0 mean and variance v. Fig. 3 shows a sample
OCT B-scan with varying noise levels. As shown in Fig. 2,

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on February 11,2023 at 13:42:25 UTC from IEEE Xplore.  Restrictions apply. 



7200812 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 29, NO. 4, JULY/AUGUST 2023

the lightweight model f makes a prediction on xi and the
corresponding low SNR counterpart F(xi).

ŷc
ij =

exp (fj(xi, θ))∑C
j=1 exp (fj(xi, θ))

(1)

L1
ce = − 1

N

N∑

i=1

C∑

j=1

yij log ŷc
ij (2)

F (xi(a, b)) = xi(a, b) + η(a, b) ∗ xi(a, b) (3)

ŷn
ij =

exp (fj(F(xi), θ))∑C
j=1 exp (fj(F(xi), θ))

(4)

L2
ce = − 1

N

N∑

i=1

C∑

j=1

yij log ŷn
ij (5)

The cross entropy loss has been enforced for the model predic-
tions on noisy B-scans (5) as well, where ŷnij denotes softmax
probabilities (4) for a noisy B-scan with fj being the logit of the
lightweight model for jth class. To have a consistent prediction
irrespective of the SNR level, the KL divergence between the
soft predictions ŷc

ij (6) and ŷn
ij (7) is being minimized (8),

(9) via deep mutual learning [46], [47]. This forms the critical
step of self-distillation to provide better generalizability. As
KL-divergence provides a statistical measure of information
loss between distributions (original and noisy), the convergence
in this case is much stronger in measures of information, thus
leading to better self-distillation. Note that, (6) and (7) denote
the temperature scaled soft predictions of f on the B-scan xi

and the noisy B-scan F(xi) with T being a temperature scaling
parameter.

ŷc
ij =

exp (fj(xi, θ)/T )∑C
j=1 exp (fj(xi, θ)/T )

(6)

ŷn
ij =

exp (fj(F(xi), θ)/T )∑C
j=1 exp (fj(F(xi), θ)/T )

(7)

L1
sd =

T 2

N

N∑

i=1

C∑

j=1

ŷc
ij log

ŷc
ij

ŷn
ij

(8)

L2
sd =

T 2

N

N∑

i=1

C∑

j=1

ŷn
ij log

ŷn
ij

ŷc
ij

(9)

Finally, the total loss for optimizing the model parameters
is defined in (10). The self-distilled cost function ensures that
the lightweight model learns a generic and discriminative fea-
ture representation of OCT B-scans. Lce is the classical cross-
entropy (L1

ce + L2
ce), and Lsd is the data-dependent noise regu-

larized cost function minimizing the KL divergence (L1
sd + L2

sd)
enforcing a consistent prediction irrespective of the noise level.
Note that λ is the weight for the data-dependent noise regularized
terms in the cost function. The original knowledge distillation
approach [43] matches the predictions on a single image from
two networks. Yun et al. [44] proposed a self-distillation frame-
work to match the predictions of two different images belonging
to same class. In contrast, this work matches the predictions on

TABLE I
DETAILS OF THE DATASETS UTILIZED IN THIS WORK

a high SNR B-scan and low SNR B-scan from a single network,
i.e., self-distillation. In short, the proposed approach can be
written as noise regularized self distillation (NRSD).

L = Lce + λ Lsd (10)

III. EXPERIMENTS

A. Datasets

In this study, four publicly available datasets were considered
to show the efficacy of the proposed approach. Specifically, the
University of California San Diego (UCSD) dataset [2], the
Noor Eye Hospital (NEH) dataset [20], the DHU dataset [7]
and the noisy B-scans dataset [48], [49]. For the noisy B-
scans dataset, the labels (AMD or Normal) were marked by an
Ophthalmologist. The summary of these datasets was provided
in Table I. The OCT B-scans from UCSD dataset [2], DHU
dataset [7] and, NEH dataset [20] were captured using the
Heidelberg Spectralis imaging system. The noisy OCT B-scans
used from the dataset [48], [49] were captured using Bioptigen,
Inc. imaging system. The UCSD dataset has ∼ 109000 OCT
B-scans captured from ∼ 5420 subjects. The DHU dataset has
45 OCT volumes (15 each for AMD, DME, and, Normal). The
axial resolution was 3.85μm; the lateral resolution ranged from
6-12 μm; the number of A-scans ranged from 512-1024, and
31-97 B-scans were acquired from different patients. The NEH
database has 148 OCT volumes (48 for AMD, 50 for DME, and
50 for Normal). The axial resolution was 3.5μm. The lateral and
azimuthal resolutions were not uniform across patients, and the
number of A-scans ranged from 512-768, with 19-61 B-scans
obtained from various patients. The dataset [48], [49] has 28
OCT B-scans collected from 28 subjects with and without AMD.
The axial resolution was 4.5μm with 1000 A-scans per B-scan.

B. Lightweight Models

Three lightweight models namely ResNet18 [50], Mo-
bileNetV2 [51] and ShuffleNetV2 [52] were utilized for vali-
dating the proposed noise regularized self distillation approach
for robust retinal diagnosis. The fully connected layers of these
networks were modified to provide a four class classification for
UCSD dataset and three class classification for NEH and DHU
datasets respectively.

C. Baseline Models

For a fair evaluation of the proposed noise regularized self
distillation method, the standard noise regularized (training

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on February 11,2023 at 13:42:25 UTC from IEEE Xplore.  Restrictions apply. 



PALURU et al.: SELF DISTILLATION FOR IMPROVING THE GENERALIZABILITY OF RETINAL DISEASE DIAGNOSIS 7200812

lightweight models with noisy B-scans) results were also pre-
sented. In short, the baseline models were ResNet18 (denoted as
R18); standard noise regularized R18 (denoted as R18+Noise);
MobileNetV2 (denoted as MV2) and standard noise regularized
MV2 (denoted as MV2+Noise); ShuffleNetV2 (denoted as SV2)
and standard noise regularized SV2 (denoted as SV2+Noise).
Note that the proposed lightweight networks were denoted as
R18+NRSD, MV2+NRSD and SV2+NRSD.

D. Experimental Studies

1) Study 1: The OCT B-scans used in this study were taken
from the UCSD dataset. The UCSD dataset consists of∼ 109000
B-scans. Table I shows the split among the retinal abnormalities.
The dataset was split at the patient level into 70% training, 15%
validation, and 15% testing (with ∼ 14500 OCT B-scans). As
shown in (6), the B-scans with different data-dependent noise
levels were simulated with variance v ∈ [0.1, 2.2] with a step
size of 0.3. Note that, during training of the proposed approach
and the baseline (standard noise regularized) approaches, the
noise levels considered were [0.7, 1.0, 1.3]. All lightweight mod-
els in this study were trained three times with different random
seeds, and the quantitative metrics on the testing dataset were
reported as mean ± standard deviation. For the retinal diagnosis
of real time noisy OCT images (AMD or Normal, present in
the dataset [48], [49]), the above mentioned lightweight models
were fine tuned on NEH dataset (for the classes AMD, DME,
and Normal). Finally, the proposed approach and equivalent
baselines were evaluated on real time noisy B-scans (low SNR)
and corresponding clean B-scans (high SNR) taken from an
example dataset that has been widely used for bench-marking
denoising algorithms of OCT images [48], [49].

2) Study 2: The OCT B-scans used in this study were taken
from the NEH dataset. The NEH dataset consists of ∼ 4000
B-scans captured from 148 patients. Table I shows the split (three
categories) among the retinal abnormalities. The dataset was
split at the patient level into 60% training, 20% validation, and
20% testing (with 995 B-scans). The pre-trained weights (till
the fully connected layer) of the lightweight models trained in
study 1 were used to initiate the transfer learning for lightweight
models in this study. Note that, during training of the pro-
posed approach and the baseline (standard noise regularized)
approaches, the noise levels considered were [0.09, 0.1, 0.11].
All lightweight models in this study were also trained three times
with different random seeds, and the quantitative metrics on the
testing dataset were also reported as mean ± standard deviation.
In this study, generalizability of the lightweight models was
evaluated on unseen dataset (during training) by quantifying
them on the DHU dataset.

3) Study 3: The OCT B-scans used in this study were taken
from the DHU dataset. The DHU dataset consists of ∼ 3200
B-scans captured from 45 patients. Table I shows the split (3
categories) among the retinal abnormalities. The dataset was
split at the patient level into 60% training, 20% validation, and
20% testing (with 816 B-scans). The pre-trained weights (till
the fully connected layer) of the lightweight models trained
in study 1 were utilized to initiate the transfer learning for

lightweight models in this study. Note that, during training of the
proposed approach and the baseline (standard noise regularized)
approaches, the noise levels considered were [0.09, 0.1, 0.11].
As with earlier studies, the lightweight models in this study were
also trained three times with different random seeds, and the
quantitative metrics on the testing dataset were reported as mean
± standard deviation. The generalizability of the lightweight
models was evaluated on unseen dataset (during training) by
quantifying them on the NEH dataset.

E. Implementation

The lightweight models considered in this work were trained
using the PyTorch framework [53]. The model parameters in
all studies were optimized using the Adam [54] optimizer along
with a weight decay factor of 1e−4. In study 1, the initial learning
rate was 5e−4 and was decayed by a factor of 0.1 once training
completes for 50% and 75% of total epochs. The batch size
in study 1 was 32. For the studies 2 and 3, the batch size was
64. The initial learning rate for these experiments was 5e−5

and was decayed by a factor of 0.1 once training completes
for 50% and 75% of total epochs. The total number of epochs
was fixed at 30 across all experiments. The values for λ and T
were chosen as 1.0 and 4.0 respectively, and these values were
consistent across all studies. To quantify the lightweight models
performance, the figures of merit like F1-score, precision, and
accuracy were computed in all experiments. All computations
performed in this work, including training of lightweight mod-
els, utilized a Linux workstation with i9 9900X (CPU) with
128 GB RAM and two NVIDIA Quadro RTX 8000 GPU card
having a memory capacity of 48˜GB. The metric that was
used across all experiments was the F1-Score, which is the
harmonic mean of precision and recall. It provides a better mea-
sure of the misdiagnosed cases than the precision and accuracy
metrics.

IV. RESULTS

The performance metrics from study 1 were detailed in
Table II. Note that, during training of the proposed approach
and the baseline (standard noise regularized) approaches, the
noise levels considered were [0.7, 1.0, 1.3]. As shown in Ta-
ble II, across all noise levels, the proposed methods R18+NRSD
and MV2+NRSD outperformed the standard noise regularized
models R18+Noise and MV2+Noise. Specifically, MV2+NRSD
outperformed MV2+Noise with a margin of ∼ 3% for the
noise levels [1.6, 1.9, 2.2]. Similarly, R18+NRSD outperformed
R18+Noise with a maximum margin of 6% for the noise lev-
els [1.3, 1.6, 1.9]. The comparison between SV2+Noise and
SV2+NRSD also followed a similar trend. The precision and
accuracy scores were shown in Fig. 4. The proposed approach
also showed a consistent improvement in terms of these met-
rics. Further, the proposed methods had minor deviation (refer
to Table II) across multiple runs with different random seeds
indicating the stability of lightweight models for varying noise
levels of the input B-scans. The class activation maps were
shown in Fig. 5. The columns show the overlayed gradients
on the input images across different noise levels (column-wise),
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TABLE II
AVERAGED F1-SCORES (MEAN ± STD) FROM THREE INDEPENDENT RUNS (WITH DIFFERENT RANDOM SEEDS) ON ∼ 14500 TEST OCT B-SCANS FROM UCSD

DATASET AT VARYING NOISE LEVELS

Fig. 4. Averaged precision and accuracy from three independent runs (with different random seeds) on ∼ 14500 test OCT B-scans from the UCSD dataset as a
function of noise level (X-axis). The study details were presented in Section III.D.1 (Study 1) with R18 : ResNet-18, MV2 : MobileNetV2, SV2 : ShuffleNetV2
and NRSD : noise regularized self distillation (proposed approach).

precisely the Grad-CAM [55] visualizations. The confidence
score (softmax probability) of the lightweight models was given
at the bottom of the corresponding image. The scores of failure
cases (wrong predictions) were shown in the red color. As
shown in Fig. 5, irrespective of the SNR level of the B-scan, the
heatmaps of the proposed NRSD approach were more relevant
to the region of interest (refer to DME and Drusen in Fig. 5)
than the standard noise regularized counterparts. This can be
attributed to the noise regularized self-distilled component of
the loss function. The performance metrics on the real time
noisy and corresponding clean B-scans were shown in Table III.
The proposed method (deployed on several lightweight mod-
els) outperformed the equivalent baselines in predicting retinal
diseases from real time noisy B-scans. The same was evident
from the confidence scores detailed in Table III, also sample
real time noisy B-scans and corresponding clean B-scans along
with the confidence scores (softmax probabilities) were shown
in Fig. 6. The SNR (11) shown in Fig. 6 is defined as the ratio of
mean of the intensities in foreground region (μf ) to the standard
deviation of the intensities in foreground region (σf ). Further,
the final SNR was computed as an average of all SNRs from
foreground region of interests selected in the OCT B-scan [16].

TABLE III
ACCURACY AND CONFIDENCE SCORES ON REAL TIME NOISY (LOW SNR) AND

CLEAN (HIGH SNR) B-SCANS FROM THE DATASET [48]

The foreground regions were illustrated using bounding boxes
as shown in Fig. 6.

SNR =
μf

σf
(11)
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TABLE IV
QUANTITATIVE METRICS (MEAN ± STD) ON 995 TEST OCT B-SCANS FROM THE NEH DATASET AND 3231 OCT B - SCANS FROM THE DHU DATASET

Fig. 5. Example OCT images (first column) from UCSD dataset for each
class of retinal disease, with abnormal region marked by a bounding box. The
subsequent columns show the overlayed gradients on the input images across
different noise levels (column wise), precisely the Grad-CAM visualizations for
the example ResNet18 model. The study details were presented in Sub-Section
III.D.1 (Study 1). The corresponding confidence score of the utilized model was
shown at the bottom of the image. The confidence scores of failure cases (wrong
predictions) are shown in red color.

The quantified metrics for study 2 were detailed in Table IV.
As mentioned earlier, the models were trained on a subset of
the NEH dataset and were tested on unseen leftover B-scans
from the NEH dataset. The models were also tested on the

DHU dataset, which was entirely unseen during training and
this dataset has been curated from a different center. As shown in
Table IV, the performance of all lightweight models considered
was comparable on the NEH dataset. However, while evaluating
the generalizability of the lightweight models on the DHU
dataset (different site), R18+NRSD outperformed R18+Noise
with a margin of 6% in precision, 14% in F1-score, and 11%
in terms of accuracy. Also, the deviation from multiple runs
was minimal for the proposed NRSD approach. Similarly, with
MV2, the proposed approach improved 1% in precision, 1% in
F1-score, and 2% in accuracy with minimum deviation across
multiple runs. A similar trend was observed for the models
SV2+Noise and SV2+NRSD.

The quantified metrics for study 3 were presented in Table V.
As mentioned earlier, the models were trained on a subset of
the DHU dataset and were tested on unseen leftover B-scans
from the DHU dataset. The models were also tested on the NEH
dataset, which was unseen during training and was obtained
from a different center. As shown in Table V, the performance
of all lightweight models considered was comparable on the
DHU dataset. However, while evaluating the generalizability
of the lightweight models on the NEH dataset, R18+NRSD
outperformed R18+Noise with a margin of 9% in precision,
9% in F1-score, and 7% in terms of accuracy. Also, the de-
viation from multiple runs was a bit high for the proposed
NRSD approach. Similarly, with MV2, the proposed approach
improved 5% in accuracy and 6% in F1-score with minimum
deviation across multiple runs. The NEH dataset has poor SNR
compared to the DHU dataset. As a result, the performance of
deep models, including the proposed NRSD approach was low.
However, the proposed NRSD approach was more consistent
than the baseline models. In experimental studies 2 and 3,
the SV2+Noise outperformed SV2+NRSD with a margin of
2%. However, SV2+NRSD was more competent in F1-score
and accuracy. Further, in Table VI the proposed approach was
compared with existing deep models for retinal diagnosis. The
proposed method R18+NRSD outperformed Lu et al. [10] with
22%, Sunija et al. [13] with 7% and Li et al. [18] with 8% in
terms of F1-score. The over-parameterized deep models (refer
to Table VI) not only increased the computational burden, but
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Fig. 6. Performance of the lightweight models on noisy (low SNR) OCT images (a,b) and corresponding high SNR (clean) OCT images (c,d) taken from the
dataset [48], [49] with confidence scores (softmax probabilities) of the models shown at the bottom of the image. The confidence scores shown in red color (less than
0.8) indicate that the model performance is subpar. The study details were presented in Sub-Section III.D.1 (Study 1) with R18 : ResNet-18, MV2 : MobileNetV2,
SV2 : ShuffleNetV2 and NRSD : noise regularized self distillation (proposed approach). The foreground regions were illustrated as white boxes and the metrics
SNR, PSNR and, SSIM were reported for noisy B-scans and SNR was reported for corresponding clean B-scans.

TABLE V
QUANTITATIVE METRICS (MEAN ± STD) ON 816 TEST OCT B-SCANS FROM THE DHU DATASET AND 4091 OCT B - SCANS FROM THE NEH DATASET

also had poor generalization for small-scale problems like retinal
diagnosis.

V. DISCUSSION

Automated retinal disease classification is of crucial interest
in Ophthalmology, especially for screening of patients. Earlier

techniques relied on the classical handcrafted features for build-
ing machine learning methods [3], [5], [8], [9] for retinal diagno-
sis. The technical advancements in automated feature extraction
methods like CNN’s have drawn significant attention to build
deep learning based methods for retinal diagnosis. The deep
learning based methods like Li et al. [18] used VGG-16 (∼ 134M
parameters), and Kermany et al. [2] used Inception V3 (∼ 23M
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TABLE VI
COMPARISON WITH THE EXISTING DEEP LEARNING BASED RETINAL DISEASE CLASSIFICATION METHODS

parameters) [56] based models for retinal disease classification.
These models provided promising classification performance,
but at a heavy cost of computation. Due to advancements
in lightweight models, the initial deep learning architectures
like VGG are now recognized as overparameterized models
for the 1000 class ImageNet classification problem. Given the
small-scale classification problem of retinal diagnosis from OCT
B-scans, using such heavy models is not necessary. Lightweight
models (ResNet18 ∼ 11M parameters, MobileNetV2 ∼ 2.2M
parameters, and ShuffleNetV2∼ 1.2M parameters), which were
used in this study are useful for addressing overparameterization,
model size, and heavy cost computation issues. The use of
these lightweight networks, which are easy to train from scratch
(training time of less than one hour) are beneficial especially for
easy deployment in the low-resource settings, and the proposed
methods are adequate for the immediate task of robust and
efficient OCT image analysis.

OCT imaging systems such as Heidelberg Spectralis inher-
ently apply the log-operator as a pre-processing step for B-mode
images before they are displayed. The noise distribution in
these B-mode OCT scans will be Gaussian. To analyze the
performance of deep learning models on such type of images,
an investigation was carried out involving OCT B-scans with
Gaussian noise model. In this, we have added zero mean Gaus-
sian noise with variance ∈ [0.04, 0.1, 0.16] to B-scans from
the UCSD dataset. The noisy B-scans were tested for retinal
diagnosis using the baseline models and the proposed approach.
R18 (ResNet18) and R18+Noise were the baseline models for
this experiment, and R18+NRSD was the proposed approach.
The results of the same were reported in Table VII. From
the results it is clear that the performance of the proposed
approach was superior to others in this case. This also asserts
that the proposed method would be able to handle Gaussian noise
models.

TABLE VII
AVERAGED F1-SCORES (MEAN ± STD) FROM THREE INDEPENDENT RUNS

(WITH DIFFERENT RANDOM SEEDS) ON ∼ 14500 TEST OCT B-SCANS FROM

UCSD DATASET AT VARYING NOISE LEVELS (ADDITIVE GAUSSIAN NOISE)

There are many OCT denoising algorithms for generating
high SNR B-scans [16], [48], [57]. The effect of such denoising
algorithms before the classification model has been investigated
in this work. The popular OCT speckle denoising algorithms
like BM3D [57], NLM [58], and SiameseGAN [16], were
used to denoise the OCT B-scans. We also report the retinal
disease diagnosis on B-scans denoised from the benchmarking
UNet [59] architecture. The denoised B-scans obtained from
above mentioned methods were sent to the classification model
to predict the retinal diseases. These experiments were con-
ducted in two stages: (a) This experiment considered noisy
B-scans from the dataset [48], [49]. The baseline models were
SiameseGAN+R18, i.e., SiameseGAN denoiser, followed by
ResNet18 classifier and UNet+R18, i.e., UNet denoiser, fol-
lowed by ResNet18 classifier. The SiameseGAN and UNet
models were trained on subset of B-scans from the dataset [48],
[49]. The quantitative metrics on the test cases for this ex-
periment were shown in Table VIII. The proposed approach
R18+NRSD outperforms SiameseGAN+R18 and UNet+R18
with a significant margin in terms of confidence scores. (b)
This experiment considered test cases varying at noise levels
[0.4, 1.0, 1.6] from the UCSD dataset. The baseline models
were BM3D+R18, i.e., BM3D denoiser, followed by ResNet18
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TABLE VIII
EFFECT OF B-SCANS DENOISING USING SIAMESEGAN AND UNET ON

RETINAL DISEASE DIAGNOSIS

TABLE IX
EFFECT OF B-SCANS DENOISING USING BM3D AND NLM ON RETINAL

DISEASE DIAGNOSIS

classifier, and NLM+R18, i.e., NLM denoiser, followed by
ResNet18 classifier. The quantitative metrics for this experi-
ment were shown in Table IX. Retinal disease prediction from
BM3D+R18 and NLM+R18 were sub-optimal compared to
predictions by R18 because the SNR of the denoised B-scans is
different from the SNR of B-scans from training data. Also, the
denoisers will add additional compute time, resulting in delayed
results/diagnosis.”

OCT imaging protocols vary mainly depending on the geo-
graphical location and investigation needed [60]. Adding to this,
the current emphasis for the OCT imaging systems has been
on making it more affordable, accurate, and accessible [61],
in short, moving towards point-of-care technology. Most of
these point-of-care scanning protocols (including instruments)
provide low SNR OCT images. The need for generalizable deep
learning models that adapt to different scanning protocols is of
utmost importance. The proposed method serves this purpose by
carefully engineering SNR-dependent regularized constraints in
the cost function. The SNR is an essential characteristic feature
that often varies across the scanning protocols and scanners,
and having such a regularized constraint enabled the proposed
method to predict retinal diseases robustly. The same is evident
from the generalizability studies 2 and 3 performed in this work.
Using the ablation experiments, the significance of various loss
components was also assessed. (refer to Table X), asserting that
the proposed loss function provides the much needed improved
performance. The existing generalizable deep models for retinal
diagnosis are based on domain adaptation [25]. However, this
assumes that the access to datasets from multiple centers is
feasible, and in reality, this is challenging because of the data pri-
vacy and security. Domain adaptation methods have significantly
improved generalizability of deep models in computer vision
literature. Alongside, source-free domain adaptation included
the vital criterion of data privacy. An interesting future direction

TABLE X
ABLATION STUDY FOR DIFFERENT COMPONENTS OF THE LOSS FUNCTION

for building beneficial deep models for retinal diagnosis is to
embed lightweight deep models within a federated learning
driven domain adaptation framework. The lightweight models
will account for low cost computation, memory size, high-speed
inference, etc.; federated learning will consider data privacy and
security issues, and domain adaptation will build generalizable
deep models.

The work presented here has a distinct advantage of working
across datasets and varying SNR levels in OCT images providing
same performance in terms of confidence score provided by the
proposed model for retinal disease prediction (Fig. 6). Current
artificial intelligence (AI) driven diagnosis of retinal diseases
requires a denoising of these low SNR OCT images with several
works in the literature [14], [15], [16], [17] highlighting the extra
step to provide acceptable performance for patient screening and
triaging. The proposed framework eliminates the denoising step
without compromise in the performance, thus making AI based
diagnosis more efficient along with much needed generalizabil-
ity across datasets.

The proposed method has few limitations. The noise levels for
building generalized models were chosen empirically. However,
non reference based metrics like CNR or SNR might help to
determine to what extent the model can provide a correct pre-
diction irrespective of the SNR level. Also, developing methods
to transform the B-scans during test time to match or lie within
the SNR margin of the B-scans from training time might boost
the performance. Embedding such methods via domain adaption
techniques might improve the generalizability of deep learning
based retinal diagnosis. Also, the proposed approach utilized
KL-divergence loss minimization to provide better generaliza-
tion, the other losses (including hybrid ones) which can take
into account the physics of the problem were not explored in
this work. The proposed framework has utilized cross entropy
loss function, which is commonly used loss function for classifi-
cation task. This frame work is capable of incorporation of noise
regularization in other loss functions as well since it provides
regularized gradients for better classification of OCT images.
Even though the proposed framework is computationally ef-
ficient, it requires careful choice of hyperparameters regular-
ization constant (λ) and temperature scaling (T ), which were
empirically chosen as 1 and 4 throughout the experiments. These
are needed to be tuned or chosen empirically, if the underlying
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classification problem is different. These investigations will be
taken up as a future work. Even though the proposed method
is capable of handling the noisy B-scans (including various
types of noise distributions), the method will not be able to
handle the domain shift cases like the B-scans from the Swept
Source (SS)-OCT data [37]. To handle such extreme variabil-
ity, domain adaptation methods needs to be experimented and
such investigations will carried as a future work. The devel-
oped codes were made publicly available for enthusiastic users
at [62].

VI. CONCLUSION

This work introduced regularized lightweight models for
robust retinal disease diagnosis using OCT B-scan images.
Precisely, a novel regularizing term has been proposed for
enforcing a consistent prediction irrespective of the SNR level
of the B-scan. The proposed self-distillation approach provided
highly generalizable models across scanning protocols and OCT
acquisitions from different machines. It was shown through
rigorous experimentation that the proposed NRSD can be easily
integrated into popular deep/lightweight learning models to
provide improved performance/generalization that is agnostic
to SNR of the OCT images and datasets. Thus the proposed
NRSD with lightweight models is an efficient and robust deep
learning framework for the retinal diseases diagnosis using OCT
images.
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