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Abstract

Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance imaging

(MRI) technique to quantify the magnetic susceptibility of the tissue under investigation.

Deep learning methods have shown promising results in deconvolving the susceptibility

distribution from the measured local field obtained from the MR phase. Although exist-

ing deep learning based QSM methods can produce high-quality reconstruction, they are

highly biased toward training data distribution with less scope for generalizability. This

work proposes a hybrid two-step reconstruction approach to improve deep learning based

QSM reconstruction. The susceptibility map prediction obtained from the deep learning

methods has been refined in the framework developed in this work to ensure consistency

with the measured local field. The developed method was validated on existing deep learn-

ing and model-based deep learning methods for susceptibility mapping of the brain. The

developed method resulted in improved reconstruction for MRI volumes obtained with dif-

ferent acquisition settings, including deep learning models trained on constrained (limited)

data settings.
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1 INTRODUCTION

Quantitative susceptibility mapping (QSM) is a magnetic resonance (MR) based parametric imaging method measuring tissue magnetic suscepti-
bility. Key applications of QSM include the assessment of various brain disorders, such as brain hemorrhage, multiple sclerosis, and Parkinson’s
disease 1. The QSM method has been used to estimate myelin and iron concentrations in the brain 2,3,4. Similarly, the other immediate application
of QSM includes differentiating calcification from blood deposits 5. The susceptibility maps are generated by using the measured magnetic field dis-
tribution (effect) to derive the local tissue magnetic susceptibility (source). Simply, QSM involves deconvolving the susceptibility distribution from
the relative difference field (also known as the local field or tissue phase) obtained from the phase information of the MR image. The relationship
between the local field y(r) and the susceptibility x(r) is as shown below:

y(r) =
1

4π

R3∫
r′ ̸=r

x(r′) 3cos2Θ− 1

|r − r′|3
dr′, (1)

where, r is a spatial location [x,y,z] in the three-dimensional (3D) MR volume, Θ is the angle between the unit vector along r − r′ and the unit
vector along the direction of the main magnetic field during MR acquisition. The relation in Eq. (1) can be written as a convolution operation (⊗)

0Abbreviations:QSM, quantitative susceptibility mapping; SSIM, structural similarity indexmeasure; PSNR, peak signal-to-noise ratio; NMSE, normalizedmean squared error; HFEN, high-frequency error norm
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Figure 1 An overview of different experimental conditions expected in the context of automated deep learning based medical image analysis.

between x(r) and d(r) (dipole kernel) as shown in Eq. (2). Given the dipole kernel d(r) (shown in Eq. (3)) and the measured local field y(r), Eq.
(2) needs to be deconvolved to reconstruct susceptibility x(r). In the Fourier domain, Eq. (2) can also be represented in matrix form as shown in
Eq. (4), where ϕ = FHDF , F is the matrix representation of the Fourier transform and D is the diagonal matrix with entries equal to the Fourier
coefficients of the dipole kernel. As the dipole kernel has zeros on the conical surface, the frequency content of x is undersampled, and hence
solving for x leads to an ill-posed problem. The ill-posedness of the QSM reconstruction problem can be mitigated by using multiple orientation
sampling that leads to well-conditioned inversion as in the case of calculation of susceptibility through multiple orientation sampling (COSMOS) 6
(a reliable method for estimating QSM, taking into account the isotropic magnetic susceptibility of the source in any B0 field orientation). As this
requires data frommultiple orientations, the data acquisition time is prohibitively long, leading to patient discomfort. Therefore, single-orientation-
based QSM reconstruction methods have been proposed in the literature, ranging from conventional closed-form, iterative, deep learning, and
model-based deep learning methods.

y(r) = x(r)⊗ d(r) (2)

d(r) =
3cos2Θ− 1

4π|r|3
(3)

ϕx = y (4)
Conventional techniques such as TKD 7, L2 8, and SDI 9 have proposed closed-form solutions by truncating the dipole kernel 7, regularizing the
pseudo-inverse 8, and correction of inversion artifacts 9 for the reconstruction of the susceptibility map from the measured local field. These
methods have been the most efficient in terms of reconstruction time and computational expense. However, due to the ill-posedness of the
QSM problem, such closed-form methods suffer from streaking artifacts. On the other hand, iterative methods such as morphology-enabled
dipole inversion (MEDI) 10,11, non-linear dipole inversion (NDI) 12 and hybrid data fidelity QSM (HD-QSM, also referred as L1L2) 13 have improved
susceptibility reconstruction compared to closed form methods. Specifically, MEDI incorporates structural consistency of the magnitude images as
a regularized constraint to improve the quality of susceptibility maps. NDI demonstrated that a high-quality QSM can be iteratively generated using
non-linear data fidelity without explicit regularization. The HD-QSM approach involves a two-step process, where it initially seeks a solution for the
L1-norm based linear data consistency and subsequently employs this solution as an initialization for the L2-norm based linear data consistency.
A TV regularizer has been used for the L1 and L2 steps of HD-QSM. This hybrid approach showed that using a previous reconstruction as an
initial point for the reconstruction of susceptibility maps is robust to outliers with good noise-reduction capabilities and stability with respect to
the regularization parameter.

Deep learning methods have shown promising results in reconstructing the susceptibility maps from the local field. These methods have the
advantage of rapid and high-quality susceptibility reconstruction. DeepQSM 14 utilized a 3D-UNet model to solve the ill-posed problem at hand.
The authors 14 showed that training the model on synthetic data and testing on the in-vivo data can generate marginally good susceptibility maps.
QSMnet 15 is also a 3D-UNet model designed with 5x5x5 convolution filters for susceptibility mapping. The developed model was trained on
in-vivo data and showed that high-quality reconstruction is possible with single orientation data. In a similar study, the authors of QSMnet+ 16
have explored the linearity in susceptibility mapping by augmenting the in-vivo dataset with scaled susceptibility maps. QSMnet + has improved
susceptibility imaging in the selected region of interest compared to QSMnet. Another network, QSMGAN 17 proposed adversarial training for
susceptibility reconstruction. The deep learning methods discussed so far followed an ideal scenario (as shown in Fig. 1) of training/testing for
QSM. A more generalizable and robust deep learning method for QSM, xQSM methods 18,19 have utilized octave convolutions for resolution
agnostic and accelerated QSM reconstruction. MoDL-QSM 20 and LPCNN 21 introduced model-based iterative pipelines for QSM with alternating
data consistency and deep learning based priors. Meta-learning for QSM, i.e., ICCU-Net 22 proposed a two-stage learning method for transferring
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knowledge from the synthetic domain to the in vivo domain to handle limited in vivo data. Further, meta-QSM 23 introduces a weight prediction
layers enabling resolution specific learning of weights and biases for susceptibility mapping. In a similar study, Oh et al. 24 introduced resolution
agnostic unsupervised susceptibility mapping using adaptive instance normalization. Furthermore, Xiong et al. 25 have introduced affine transform
based orientation and resolution agnostic susceptibility mapping. Similarly, recent methods 26,27,28,29,30 have shown great promise in high-quality
susceptibility mapping.

Deep learning models for QSM have focused on adding advantages in the form of high-quality reconstruction, inference time, unsupervised
learning, and resolution agnostic reconstruction. However, all these methods relied on advancements in deep learning. For example, xQSM 18 uti-
lized octave convolutions, and ICCU-Net 22 adapts meta-learning. Modeling robust deep learning methods for QSM has been challenging 31, where
data acquisition protocols including variability in scanner type may lead to inaccurate reconstruction maps. Techniques such as data augmentation
have been successful to an extent in improving the generalizability of deep learning models for susceptibility reconstruction. Training deep learn-
ing models on large heterogenous datasets have the highest capacity to build salience and robust feature representation for handling data-driven
tasks. This involves curating data from multiple centers, which is not plausible due to data privacy and security issues, especially in medical im-
age analysis tasks. The lack of generalizability in QSM using deep learning models can be attributed to variability in the acquisition of MR images.
Specifically, variations in magnetic field strength, TE (time to echo), TR (repetition time), and spatial resolution 31. Consistent or uniform protocols
across scanners are not a plausible solution. However, methods such as MoDL-QSM 20 and LPCNN 21 proposed model-based QSM pipelines for
improving generalizability by utilizing the physics of QSM. Nevertheless, the learned prior or the regularizer in these methods are still deep learning
based ones; hence, the problem of generalizability remains unsolved.

This work proposes a hybrid two-step reconstruction approach to improve deep learning based QSM reconstruction for a realistic scenario (as
shown in Fig. 1). The susceptibility map prediction obtained from deep learning methods has been refined in the developed framework to ensure
consistency with the measured local field. The extensive experiments conducted in this work have shown that the proposed method for QSM is
agnostic to variations in magnetic field strength and the amount of training data. The contributions of the proposed method can be summarized
as follows:

• A two-step hybrid reconstruction approach has been proposed for improving the generalizability of the deep learning based susceptibility
mapping. The proposed method can be easily integrated into existing deep learning methods for QSM reconstruction, making it the most
generic framework.

• The proposed two-step hybrid approach for QSM has been evaluated in different experimental settings designed on the basis of training
data availability and testing data variability to showcase the efficacy.

2 METHODS

Deep learning methods have shown promising results in reconstructing susceptibility maps from local field data obtained from the MR phase
images. This section introduces existing deep learning methods and the proposed hybrid method for QSM reconstruction. Let f represent a deep
model characterized by a set of parameters (or weights) θ, (y, xC) be the data pairs where y denotes the local field and xC denotes the COSMOS
reconstructed susceptibility map, L be a cost function, and N be the number of training data samples.

2.1 Existing Methods

The existing deep learning methods for susceptibility reconstruction can be broadly categorized into (1) End-to-End deep learning methods, (2)
Model based deep learning methods, and (3) Test time adaptation methods. The summary of these deep learning methods as a block diagram for
QSM is shown in Fig. 2.

2.1.1 End-to-End Deep Learning

Given a set of training data pairs (y, xC ), the deep learning models are trained to optimize a cost function as shown in Eq. (5). The trained deep learn-
ing models are then subjected to make predictions on the test cases to reconstruct the susceptibility maps. Methods like QSMnet 15, DeepQSM 14,
QSMnet+ 16, xQSM 18 etc. fall under this category.

argmin
θ

1

N

N∑
i=1

L
(
f(yi, θ), xCi

) (5)
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Figure 2 Overview of the deep learning based QSM reconstruction methods. (a) End-to-End deep learning methods using convolutional neural
networks (CNN) such as QSMnet 15, xQSM 18 etc. (b) Model-based deep learning methods like LPCNN 21, MoDL-QSM 20, etc, with DC representing
the data consistency term and CNN playing the role of proximal regularizer, (c) Test time adaptation methods like FINE 32. (d) The proposed two-
step hybrid reconstruction framework based on data fidelity for QSM (DF-QSM). The detailed description of the proposed DF-QSM framework is
shown in Fig. 3.

2.1.2 Model Based Deep Learning

Methods like MoDL-QSM 20 and LPCNN 21 use proximal gradient descent combining data consistency and a deep learning-based regularizer for
effective susceptibility mapping. The iterations shown in Eq. (6) are initialized from x0 = 0 and succinctly denote the final estimate xn as g(y, θ),
the parameters of deep learning based regularizer are optimized as shown in Eq. (7). Model-based deep learning methods perform reasonably well
under limited training data settings due to the data consistency step.

xk+1 = f(xk − αϕH(ϕxk − y), θ) (6)

argmin
θ

1

N

N∑
i=1

L
(
g(yi, θ), xCi

) (7)
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Figure 3 The training and the testing procedure of the proposed data fidelity based two-step hybrid reconstruction framework for quantitative
susceptibility mapping (DF-QSM). The deep model f utilized in the proposed DF-QSM framework is a 3D-UNet architecture. The testing phase of
the proposed hybrid approach framework has two steps (prediction followed by correction).

2.1.3 Test Time Adaptation

The training process of deep learning models under this category is similar to end-to-end deep learning methods. However, to develop subject
(or test volume) specific deep learning models , methods such as the fidelity-imposed network edit (FINE) 32 proposed the test time adaptation
approach to tune the parameters of a trained deep model specific to the testing volume by minimizing the data consistency error as shown in Eq.
(8), whereW denotes the weighting matrix.

argmin
θ

∣∣∣∣W (
ϕf(ytest, θ)− ytest

)∣∣∣∣2
2

(8)

2.2 Proposed Method: DF-QSM

The proposed framework is a decoupledmodel based deep learningmethod forQSM. The deep learningmodel in the proposed framework is trained
independently of data consistency (DC), but the output of the trained deep learning model is refined using the data fidelity during inference (test
time). The proposed two-step hybrid reconstruction (DF-QSM) has been evaluated under different experimental settings, designed on the basis
of training data availability and testing data variability. The training and testing procedures of the proposed two-step hybrid QSM reconstruction
framework (Fig. 3) are as follows:

2.2.1 Training

Let f represent a 3D-UNet model with four encoding and four decoding levels, as shown in Fig. 3. The numbers given for each feature block
represent the number of channels (C) present in the 4D feature maps (C × Z × Y × X). Each convolution block operates using a 3 × 3 × 3 filter,
followed by batch normalization and ReLU activation. Max pooling in the encoder is done with a stride of 2 × 2 × 2 and transposed convolution
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Figure 4 Analysis for the stopping criterion using the validation set in the correction stage of the proposed DF-QSM framework. The cost function
is 1

2

∣∣∣∣ϕx − y
∣∣∣∣2
2
and the gradient norm is ϕH(ϕx − y). The iterations are terminated as soon as the gradient norm falls below 0.75 (resembling

minimum NMSE). The threshold for the gradient norm, determined through the validation set (as shown above), remains constant for all test cases
in each experiment.

in the decoder is done with a filter of 2 × 2 × 2 with a stride 2 × 2 × 2. The circular connector represents the feature concatenation operation.
The deep model f is trained by minimizing the cost function, as shown in Eq. (9). The models trained in this fashion have poor generalization, when
evaluating them on the data obtained from different acquisition settings.

argmin
θ

1

N

N∑
i=1

∣∣∣∣f(yi, θ)− xCi
∣∣∣∣2
2

(9)

2.2.2 Testing

The testing phase of the proposed framework has two steps. As shown in Eq. (10), an initial estimate of the susceptibility map has been obtained
using the trained deep model,

x0 = f(ytest, θ) (10)
The initial estimate obtained in Eq. (10) was used to initialize the following minimization,

argmin
x

1

2

∣∣∣∣ϕx− ytest
∣∣∣∣2
2

(11)

xk+1 = xk − α
(
ϕH(ϕx− ytest)

) (12)
The minimization shown in Eq. (11) is solved iteratively using the gradient descent update shown in Eq. (12). The initial estimate x0 from the
prediction stage of the proposed framework acts as a good starting point for optimizing the subject (testing volume) specific minimization problem
shown in Eq. (11). The iterations are terminated as soon as the gradient norm falls below 0.75 (Fig. 4). The iterative updates in the gradient descent
for the proposedDF-QSM include implicit regularization,which is achieved by controlling the number of iterations. Consequently, if a higher number
of iterations is used, DF-QSM exhibits the risk of overfitting the data, similar to the trends reported in 12 for iterative refinement of susceptibility
maps without explicit regularization. To mitigate this risk of overfitting, an early stopping criterion is employed that helps in preventing unnecessary
iterations, ensures a balance between convergence, and avoids fitting noise or irrelevant details in the reconstructed images. The gradient norm
threshold is pre-established using the validation set and remains consistent across all test cases in every experiment.

The two-step hybrid approach presented in this study (DF-QSM) shares similarities with the study conducted by Lambert et al. (referred to as
HD-QSM) 13. The HD-QSM approach also consists of a two-step procedure, in which it initially aims to find a solution using an L1 norm based linear
data consistency approach and then employs this solution as an initial estimate for an L2-norm based linear data consistency method. In contrast,
the proposed DF-QSM approach utilizes a pre-trained deep learning model for the initial prediction of susceptibility, subsequently employing this
prediction as an initialization for the L2-norm based linear data consistency step. The proposed approach also shares similarities with the testing
phase correction approach, DL with L2 regularization (DLL2) 33. Both approaches initially compute an initial estimate of the susceptibility map
using the trained deep model using Eq. (10). However, in the case of DLL2, an improved estimate for the susceptibility map is obtained by the
minimization problem shown in Eq. (13).

xDLL2 = argmin
x

∣∣∣∣W (ϕx− ytest)
∣∣∣∣2
2
+ λ

∣∣∣∣x− x0

∣∣∣∣2
2
, (13)
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The solution for the updated susceptibility map was then computed analytically. Both the approaches differ in terms of minimization problem as
well as the implementation. In contrast to utilizing the initial estimate from the deep learning model in the regularization term (like in DLL2, Eq.
(13)) ensuring proximity of the solution, the proposed DF-QSM uses it as the initial guess for the gradient descent update as shown in Eq. (12). In
addition, DLL2 adopts an analytical expression with regularization parameter λ to acquire the refined susceptibility map, in contrast to the iterative
implementation that uses gradient descent update steps, where the number of iterations serves as implicit regularization in the proposed DF-QSM.
By utilizing the initial estimate from the deep learning model as the starting point for the susceptibility map in the gradient descent update, the
proposed approach benefits from a more informed and accurate initialization. This can lead to a faster convergence and improved reconstruction
accuracy. The proposed approach directly leverages the output of the deep learningmodel as an initial estimate of the susceptibility map. This direct
integration of deep learning information has been shown to exploit the learned features of the model more effectively in QSM reconstruction.

3 EXPERIMENTS

3.1 Datasets

In this study, three benchmark datasets were considered to show the efficacy of the proposed approach. Dataset I 15 consisted of 60 scans taken
at 3 Tesla from twelve healthy subjects using Siemens Healthineers, Forchheim, Germany’s Tim Trio (nine subjects), and MAGNETOM Skyra (three
subjects). A 3D single echo gradient echo (GRE) sequence with the following settings was used to acquire the scans at five different head orien-
tations: voxel size of 1×1×1 mm3, TR of 33 ms, TE of 25 ms, bandwidth of 100 Hz/pixel, and flip angle of 15o. Tim Trio and Skyra scans have
their field of view (FOVs) set to 256×224×176 mm3 and 224×224×176 mm3, respectively. The matrix size of 176 ×176×160 was constant
across all volumes present in the dataset. Eight healthy subjects scans from four distinct head orientations at 7 Tesla (Philips Achieva) made up
Dataset-II 21, which produced 32 volumes. Three different 3D GRE sequences with a voxel size of 1×1×1 mm3 were used to acquire the data.
The first four subjects had the following sequence parameters: five echoes, a FOV of 224×224×126mm3, a TR of 28ms, and a TE1/δTE of 5/5
ms. TR of 45ms, TE1/δTE of 2/2ms, nine echoes, and FOV of 224×224×110mm3 were the parameters for the next three individuals. The final
subject had a FOV of 224×224×110 mm3, a TR of 45 ms, and a TE1/δTE of 2/2 ms with 16 echoes. Of these, 16 volumes had a matrix size of
224×224×126, and the other 16 volumes had a matrix size of 224×224×110. To evaluate the proposed method on the dataset with different
resolution, the proposed method was tested on the subject with hemorrhage 20, whose data was captured using 3T MR scanner with matrix size:
256×256×66 and voxel size: 0.86×0.86×2mm3.

3.2 Experimental Studies

The data pairs, i.e., the input local field and the COSMOS label maps that match the input local field orientation, were used to train all the deep
learning models considered in this work. Similar data augmentation techniques used in Ref. 15 were also used here to increase the training data. All
deep learning models were trained on 64 × 64 × 64 three-dimensional patches. Across all the experimental studies, the models were trained on
training subjects from Dataset I. The models were tested on testing subjects from Dataset I. Further, the Dataset II was entirely used for testing.
The experimental details are as follows:

3.2.1 Study 1 (Maximum Data Training)

The aim of this experimental setup was to evaluate the generalizability of deep learning models for QSM in maximum data training settings. The
deep learning models considered in this study were trained using five subjects with 25 scans from Dataset I. Training subjects were chosen in a
similar way to those of QSMnet 15. In this experimental study, the deep models were evaluated as:

(a) The trained deep learning models were evaluated on the six testing subjects with 30 scans of Dataset I similar to the QSMnet study 15.
(b) Furthermore, deep learningmodels were also tested onDataset II (eight subjects with 32 scans) captured under different acquisition settings.

3.2.2 Study 2 (Limited Data Training)

The aim of this experiment was to evaluate the generalizability of deep learning models for QSM under limited data training settings. The deep
learning models considered in this study were trained using one subject with 5 scans from Dataset I. The training process was repeated five
times by changing the training subject. Training subjects were chosen similar to QSMnet study 15. The evaluation metrics were averaged from five
single-subject-trained models. In this experimental study the deep models were evaluated as:
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Table 1 Quantitative metrics (mean ± std) of the reconstructed susceptibility maps for experimental study 1. The best results are shown in bold.
Compared to the second-best-performing model (LPCNN), statistically significant results (P < 0.05) from the two-tailed t test (Welch test) were
shown with *.

Testing Dataset Dataset I Dataset II

Experiment Study 1(a) Study 1(b)

Model |Metric SSIM PSNR NMSE HFEN SSIM PSNR NMSE HFEN
↑ (dB)↑ (%) ↓ (%) ↓ ↑ (dB) ↑ (%) ↓ (%) ↓

QSMnet 0.910 ± 0.01 41.04 ± 1.01 51.39 ± 3.81 48.41 ± 4.42 0.928 ± 0.01 32.98 ± 1.72 61.78 ± 3.32 56.43 ± 4.49
xQSM 0.908 ± 0.01 40.98 ± 1.03 52.23 ± 3.78 50.43 ± 4.66 0.928 ± 0.01 33.10 ± 1.83 61.68 ± 3.34 57.54 ± 4.50

3D-UNet 0.910 ± 0.01 41.10 ± 0.93 51.19 ± 3.39 49.21 ± 3.82 0.928 ± 0.01 33.07 ± 1.75 61.64 ± 3.28 57.27 ± 4.49
LPCNN 0.905 ± 0.01 40.88 ± 1.06 52.93 ± 4.01 49.71 ± 4.78 0.929 ± 0.01 33.09 ± 1.79 57.83 ± 3.88 55.14 ± 4.36
FINE 0.909 ± 0.01 41.07 ± 0.91 51.40 ± 3.37 49.43 ± 3.81 0.928 ± 0.01 33.14 ± 1.78 61.94 ± 3.33 57.80 ± 4.61

DF-QSM (proposed) 0.919± 0.01* 41.58± 0.99* 49.08± 4.15* 46.76± 4.87* 0.935± 0.01 33.36± 1.88 55.99± 5.27 54.07± 5.64

(a) The trained deep learning models were evaluated on the six testing subjects with 30 scans from Dataset I similar to the study QSMnet 15.
(b) Furthermore, deep learningmodels were also tested onDataset II (eight subjects with 32 scans) captured under different acquisition settings.

3.3 Comparison Methods

The proposed approach (DF-QSM) was evaluated under various experimental conditions and compared with deep architecture benchmarking for
QSM. Specifically, the proposed method was compared with deep learning methods QSMnet 15, xQSM 18, and 3D-UNet (Fig. 3), model based
deep learning method LPCNN 21, and test time adaptation method FINE 32. To have a fair comparison between FINE and the proposed DF-QSM,
3D-UNet shown in Fig. 3 was utilized in FINE.

3.4 Implementation

The 3D-UNet considered in this work was trained using the PyTorch framework 34. The 3D-UNet parameters in all experimental studies were
optimized using the Adam optimizer 35. The initial learning rate was 5e−4 and was decayed by 0.1 once training completes for 50% and 75% of
total epochs. The size of the mini-batch considered was 16. The total number of epochs was fixed at 25 in all experiments. Step length α was set
empirically equal to 1. In all experiments to augment the training dataset, the COSMOS QSM maps were subjected to rotational transformations
within an angle range of -45 to +45 degrees relative to B0, and local field maps were subsequently generated through dipole convolution. To
quantify the performance of the deep learning model, the standard merit figures for QSM 36, such as structural similarity index (SSIM), normalized
mean square error (NMSE), and high frequency error norm (HFEN), were calculated in all experiments. All computations performed in this work,
including the training of deep learning models, used a Linux workstation with i9 9900X (CPU), 128 GB RAM, and two NVIDIA Quadro RTX 8000

GPU cards that have a memory of 48GB each.

4 RESULTS

4.1 Study 1 (Maximum Data Training)

The performance metrics from the study 1 were detailed in Table 1. As shown in Table 1, across all methods, the proposed hybrid method out-
performed the existing deep learning models for QSM. A similar trend was observed when the generalizability of deep learning models in Dataset
II obtained under different acquisition settings was evaluated. The representative results from study 1 were shown in Fig. 5 (study 1(a)) and Fig.
6 (study 1(b)). The improvements in reconstruction quality in the proposed iterations on the sample axial slices (study 1(b) shown in Fig. 6) were
shown in Fig. 7. The correlation coefficient, coefficient of determination, and slope of the scatter plots were improved across iterations.
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Figure 5 Quantitative susceptibility maps of the sample test volume from Dataset I. The experimental details of the deep learning models were
given in study 1(a) and study 2(a). The NMSE (%) and HFEN (%) of the test volumes with respect to COSMOS were given below for each of the
reconstruction methods.
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Table 2 Quantitative metrics (mean ± std) of the reconstructed susceptibility map for experimental study 2. The metrics were averaged over five
different runs conducted in the study. The best results are shown in bold. Compared to the second best performing model (LPCNN), statistically
significant results (P < 0.05) of the two-tailed t test (Welch test) were shown with *.

Testing Dataset Dataset I Dataset II

Experiment Study 2(a) Study 2(b)

Model |Metric SSIM PSNR NMSE HFEN SSIM PSNR NMSE HFEN
↑ (dB)↑ (%) ↓ (%) ↓ ↑ (dB) ↑ (%) ↓ (%) ↓

QSMnet 0.891 ± 0.01 40.21 ± 1.19 57.24 ± 4.96 55.32 ± 5.59 0.920 ± 0.01 33.07 ± 1.77 65.27 ± 3.14 60.93 ± 4.28
xQSM 0.892 ± 0.01 40.09 ± 1.03 57.42 ± 3.78 55.78 ± 4.56 0.919 ± 0.01 32.98 ± 1.69 65.52 ± 3.10 61.37 ± 4.10

3D-UNet 0.892 ± 0.01 40.15 ± 1.01 57.10 ± 4.01 56.41 ± 4.64 0.920 ± 0.01 33.01 ± 1.72 65.43 ± 2.86 61.76 ± 3.87
LPCNN 0.898 ± 0.01 40.44 ± 1.06 56.27 ± 3.97 53.28 ± 4.62 0.923 ± 0.01 33.10 ± 1.75 60.36 ± 3.80 58.38 ± 4.20
FINE 0.897 ± 0.01 40.30 ± 0.95 57.13 ± 3.90 56.63 ± 4.51 0.924 ± 0.01 33.42± 1.76 64.16 ± 3.62 62.51 ± 4.25

DF-QSM (proposed) 0.905± 0.01* 40.78± 1.04* 53.70± 4.70* 52.83± 5.53 0.930± 0.01* 33.33 ± 1.87 58.16± 4.75* 57.11± 5.18*

4.2 Study 2 (Limited Data Training)

The performance metrics from the study 2 were detailed in Table 2. As shown in Table 2, in all methods, the proposed method outperformed the
existing deep learning models for QSM. Specifically, the improvements in terms of SSIM, PSNR, and NMSE were statistically significant compared
to the second-best performing model LPCNN. A similar trend was observed when evaluated for the generalizability of deep learning models on
Dataset II obtained under different acquisition settings. The representative reconstruction results from study 2 were shown in Fig. 5 (Study 2(a))
and Fig. 6 (Study 2(b)) respectively.

4.3 Susceptibility Region of Interest Analysis

The representative region of interest (ROI) analysis on a sample test volume from Dataset I was performed for three different local regions as
highlighted in Fig. 8 (a). The scatter plots of reconstructed susceptibility values of different model based methods such as LPCNN, FINE, DLL2,
and the proposed DF-QSM versus that of COSMOS were shown in Fig. 8 (b). The scattered data points in Fig. 8 were marked with different colors
to distinguish between brain regions. These plots confirm the superiority of the proposed method. This was also obvious from the correlation
coefficient and the coefficient of determination of the proposed method compared to LPCNN. The mean and standard deviation (across five
different head orientations) of these local regions obtained using LPCNN, FINE, DLL2, and the proposed DF-QSM were compared with that of
COSMOS in Fig. 8 (c).

4.4 DF-QSM with Existing Deep Learning Methods

Performance comparison of the proposed framework on the existing deep learning methods for QSM was shown in Table 3. The deep learning
model (3D-UNet) used in the proposed framework was replaced by QSMnet, LPCNN and FINE, for this experiment. As shown in Table 3, the
proposed method has shown a similar trend in improving the end-to-end deep learning method ‘QSMnet,’ model based deep learning method
‘LPCNN,’ and test time adaptation method ‘FINE’. This also affirms that the proposed methodology can be utilized with other CNN based models
to improve the QSM reconstruction, making it the most generalizable method compared to existing methods.

4.5 Comparison with Conventional Reconstruction Methods

The proposed method was also compared with conventional susceptibility reconstruction methods. Specifically, L2 8, TKD 7, MR-TKD 37, NDI 12,
FANSI 38 and DLL2 33 were compared (Table 4 and Fig. 9) on Dataset I. As shown in the Table 4 and Fig. 9, the proposed DF-QSM has shown better
reconstruction compared to existing conventional methods.
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Figure 6Quantitative susceptibility maps (axial view) and difference images (with respect to COSMOS) of the sample test volume from Dataset II.
The experimental details of the deep learning models were given in study 1(b) and study 2(b). The NMSE (%) and HFEN (%) of the test volumes
with respect to COSMOS were given below for each of the reconstruction methods.
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Figure 7 The improvement in reconstruction quality across iterations of the proposed DF-QSM method for the sample axial slice shown in Fig. 4.

Figure 8 Region of interest (ROI) analysis performed using model based/hybrid QSMmethods. (a) COSMOS map with ROIs highlighted, (b) Scatter
plots of the susceptibility values in reference to the COSMOS, and (c) mean and standard deviations of the considered local regions in (ppb) across
five orientations.

4.6 Performance Comparison on Dataset with Hemorrhage

To evaluate the proposed method on a dataset with different resolution, the proposed method was tested on the subject with hemorrhage 20
(the dataset details were given in Sec. 3.1.). The axial views of the reconstructed susceptibility maps using Star-QSM 39, LPCNN, FINE, DLL2, and
DF-QSM were displayed in Fig. 10. Since the COSMOS acquisitions were not available in this case, the local field was re-computed using the
forward operator and was then compared with the given local field. As, shown in Fig. 10, the proposed method yielded a better reconstruction
compared to the existing methods.
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Table 3 Performance comparison of the proposed framework on the existing deep learning methods for QSM. The experimental details were given
in study 2. The deep learning model (3D-UNet) used in the proposed DF-QSM framework was replaced by QSMnet, LPCNN, and FINE for this
experiment. The best results were shown in bold.

Testing Dataset Dataset I Dataset II

Experiment Study 2(a) Study 2(b)

Model |Metric SSIM PSNR NMSE HFEN SSIM PSNR NMSE HFEN
↑ (dB)↑ (%) ↓ (%) ↓ ↑ (dB) ↑ (%) ↓ (%) ↓

QSMnet 0.891 ± 0.01 40.21 ± 1.01 57.24 ± 4.96 55.32 ± 5.59 0.920 ± 0.01 33.07 ± 1.77 65.27 ± 3.14 60.93 ± 4.28
QSMnet + DF-QSM 0.906± 0.01 40.90± 1.10 53.41± 4.98 51.93± 6.01 0.931± 0.01 33.39± 1.88 57.92± 5.01 56.65± 5.49

LPCNN 0.898 ± 0.01 40.44 ± 1.06 56.27 ± 3.97 53.28 ± 4.62 0.923 ± 0.01 33.10 ± 1.75 60.36 ± 3.80 58.38 ± 4.20
LPCNN + DF-QSM 0.908± 0.01 40.92± 1.09 53.77± 5.15 51.45± 6.07 0.932± 0.01 33.31± 1.85 56.79± 5.16 55.33± 5.49

FINE 0.897 ± 0.01 40.30 ± 0.95 57.13 ± 3.90 56.63 ± 4.51 0.924 ± 0.01 33.42 ± 1.76 64.16 ± 3.62 62.51 ± 4.25
FINE + DF-QSM 0.905± 0.01 40.80± 1.01 54.68± 5.05 53.76± 6.01 0.931± 0.01 33.57± 1.85 59.11± 4.90 58.31± 5.43

Table 4 Performance comparison of the proposed framework with conventional QSM reconstruction methods. The metrics were averaged over
30 test volumes from Dataset I. The best reporting results were shown in bold.

Method |Metric SSIM PSNR NMSE HFEN
↑ (dB)↑ (%) ↓ (%) ↓

L2 0.876± 0.02 37.70± 1.30 76.67± 8.05 66.48± 7.68

TKD 0.850± 0.02 38.51± 1.01 73.34± 7.13 67.47± 8.59

MR-TKD 0.882± 0.02 39.35± 1.03 64.98± 5.29 60.87± 5.87

NDI 0.877± 0.02 38.99± 1.07 66.56± 5.98 62.41± 5.32

FANSI 0.888± 0.01 39.50± 1.21 65.05± 7.53 59.11± 6.97

DLL2 (Study 2(a)) 0.896 ± 0.01 40.29 ± 1.01 56.43 ± 4.04 56.03 ± 4.72
DLL2 (Study 1(a)) 0.913 ± 0.01 41.22 ± 0.92 50.72 ± 3.40 48.86 ± 3.90

DF-QSM (proposed: Study 2(a)) 0.905 ± 0.01 40.78 ± 1.04 53.70 ± 4.70 52.83 ± 5.53
DF-QSM (proposed: Study 1(a)) 0.919± 0.01 41.58± 0.97 49.08± 4.10 46.76± 4.80

4.7 Computation and Inference Analysis

A comprehensive comparison of the key characteristics of the proposed hybrid model (DF-QSM) for susceptibility mapping was shown in Table 5.
This evaluation includes parameters, model size, and inference time. In particular, the findings reveal that the proposed DF-QSM model excels in
delivering high-quality susceptibility maps while incurring only a minimal, practically negligible increase in computational time during the inference
stage. This demonstrates the effectiveness of the model in maintaining computational efficiency without compromising the quality of its output,
making it a promising solution for susceptibility mapping tasks.

5 DISCUSSION

Automated susceptibility mapping is of crucial interest in MR based quantitative imaging. Conventional QSM methods relied on classical signal
processing techniques for closed-form and iterative solutions. Deep learning based methods in QSM have shown a great promise especially in
terms of improved reconstructed image quality and the computational advantage. However, the existing deep learning models for QSM had an
inherent bias toward the distribution of training data. As a result, the generalization towards completely unseen data was minimal. As shown in the
results section, on top of existing deep learning models across different experimental studies, the proposed method clearly provides a significant
improvement in reconstruction quality and correlation analysis (refer to Figs. 5, 6, 8, and 9). The proposed method can generalize well to unseen
test cases in limited data environments for susceptibility mapping. The same is evident from the limited data training and generalizability studies
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Figure 9Quantitative susceptibility maps of the sample test volume from Dataset I. The NMSE (%) and HFEN (%) of the test volumes with respect
to COSMOS were given below for each of the reconstruction methods.

Table 5Deep learning models for QSM reconstruction: Comparison in terms of parameters (in million), model size (megabytes), and inference time
(in seconds).

Model |Metric Parameters Model Size Inference (s)
(M) (MB) CPU GPU

QSMnet 99.45 379.38 12.35 ± 1.36 1.52 ± 0.65
xQSM 5.21 19.89 15.25 ± 1.28 0.84 ± 0.12
LPCNN 0.47 1.7 24.35 ± 1.56 3.72 ± 0.05
3D-UNet 5.64 21.54 3.80 ± 0.05 0.28 ± 0.65
FINE 5.64 21.54 285.35 ± 3.25 90.25 ± 1.25

DF-QSM (proposed) 5.64 21.54 8.80 ± 0.05 1.28 ± 0.05

performed in this work (Table 2). While the primary goal remains to enhance performance in scenarios with restricted training data, DF-QSM has
demonstrated statistically significant improvements, even in maximum data settings. This suggests that the benefits of the method extend beyond
overcoming data scarcity, making it a valuable enhancement across a spectrum of data availability (Table 1 and Table 2). Moreover, the DF-QSM
exhibits robustness in the face of diverse acquisition protocols, including variations in resolution settings (Fig. 10) and across different scanners
(Table 1 and Table 2). This versatility is particularly crucial in real-world applications where imaging conditions can vary widely.

The existing generalizable deep learning models for QSM are based on model based frameworks. Specifically, MoDL-QSM 20 and LPCNN 21 al-
ternate between the data consistency blocks and deep learning based priors. MoDL-QSM 20 reasonably improved the performance of susceptibility
mapping but having a deep model for learning the prior limits the generalizability (MoDL-QSM 20 improves over QSMnet 15 by less than ∼ 1% in
NMSE and HFEN, refer to Table 1 in 20). Furthermore, methods such as FINE 32 proposed a test-time adaptation approach to tune the parameters
of the deep model specific to the test sample by minimizing the error in data consistency. The performance of FINE was slightly sub-optimal (in
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Figure 10 Quantitative susceptibility maps of the sample test volume with hemorrhage 20.

terms of NMSE and HFEN) and was on par (in terms of SSIM and PSNR) compared to LPCNN across the experimental studies. FINE relies signifi-
cantly on the initial state of the trained model weights, and its focus on adjusting these weights based on data fidelity during inference introduces
complexities or challenges that affect its overall performance. Further, in the experiments study 2(a) and study 2(b), the evaluation metrics were
averaged from five single-subject-trained models, making it even challenging for FINE. Despite this, FINE offered reliable consistency using sub-
ject specific data fidelity optimization. However, the hyperparameters and the computation overhead are the bottlenecks for clinical adaptability
of FINE (see the inference analysis in Table 5). On the contrary, this work proposed a two-step hybrid reconstruction method based on data fidelity
with minimal computation (see inference analysis in Table 5) that can be easily embedded in existing deep learning models (see Table 3) for highly
generalizable susceptibility mapping.

The proposed method marginally increases the computational burden for improving the initial reconstruction obtained from deep learning
models. The final estimate of the reconstruction is highly dependent on the initial estimate obtained from the deep model. The initial estimate will
be of good quality if the deep learning model is trained on a large amount of data and testing volume being captured under similar acquisition
conditions. The proposed method has a significant advantage when the initial estimate is of poor quality, such as the initial estimates coming
from deep learning models trained on limited training data or the testing volume captured from different acquisition settings (refer to Table 2 and
Fig. 5 Study 2(a)). Furthermore, compared to the existing FINE test time adaptation method, the computational cost of the proposed framework
was much less since the proposed framework does not require iterative updation of the network parameters. The developed source codes were
released to enthusiastic users at the URL 40.

6 CONCLUSION

This work introduced a two-step hybrid reconstruction method based on data fidelity to improve the quality of susceptibility mapping using deep
learning. The proposed hybrid method was shown to be generalizable across scanning protocols and acquisitions. The proposed hybrid method
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was also shown to easily integrate with well-known deep learning models to deliver increased performance/generalization independent of data
properties. The proposed hybrid method DF-QSM offers a reliable and effective deep learning framework for improved quantitative susceptibility
mapping. It also addresses the challenges associated with deep learning based QSM of the brain, ultimately leading to more accurate and reliable
QSM images.
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