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Abstract— Chest computed tomography (CT) imaging has
become indispensable for staging and managing coronavirus
disease 2019 (COVID-19), and current evaluation of anom-
alies/abnormalities associated with COVID-19 has been per-
formed majorly by the visual score. The development of auto-
mated methods for quantifying COVID-19 abnormalities in these
CT images is invaluable to clinicians. The hallmark of COVID-19
in chest CT images is the presence of ground-glass opacities
in the lung region, which are tedious to segment manually.
We propose anamorphic depth embedding-based lightweight
CNN, called Anam-Net, to segment anomalies in COVID-19 chest
CT images. The proposed Anam-Net has 7.8 times fewer para-
meters compared to the state-of-the-art UNet (or its variants),
making it lightweight capable of providing inferences in mobile
or resource constraint (point-of-care) platforms. The results
from chest CT images (test cases) across different experiments
showed that the proposed method could provide good Dice
similarity scores for abnormal and normal regions in the lung.
We have benchmarked Anam-Net with other state-of-the-art
architectures, such as ENet, LEDNet, UNet++, SegNet, Attention
UNet, and DeepLabV3+. The proposed Anam-Net was also
deployed on embedded systems, such as Raspberry Pi 4, NVIDIA
Jetson Xavier, and mobile-based Android application (Cov-
Seg) embedded with Anam-Net to demonstrate its suitability
for point-of-care platforms. The generated codes, models, and
the mobile application are available for enthusiastic users at
https://github.com/NaveenPaluru/Segmentation-COVID-19.

Index Terms— Abnormalities, coronavirus, coronavirus disease
2019 (COVID-19), deep learning, segmentation.
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I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) is an illness
caused by a novel coronavirus, formerly known as

2019-nCoV. It is a constituent of a spectrum of viruses
that cause respiratory diseases, such as severe acute respi-
ratory syndrome (SARS) and middle east respiratory syn-
drome (MERS) [1]. COVID-19 virus was first identified in
Wuhan, Hubei, China. The virus causes respiratory disorders
with common symptoms being fever, dry cough, and short-
ness of breath [2]. Currently, reverse transcription-polymerase
chain reaction (RT-PCR) is the standard test for diagnos-
ing COVID-19 [3]. However, imaging-based diagnosis [ultra-
sound, chest X-ray, and chest computed tomography (CT)] is
also playing a crucial role in the identification and manage-
ment of COVID-19 infection. Notably, a shortage of RT-PCR
tests for the diagnosis of COVID-19 has led to considering
chest CT as a screening and diagnostic tool [4]. The RT-PCR
tests have high false negatives, which requires serial sampling,
and in such cases, findings in CT were beneficial [5]. The
CT-based conclusions on 76 asymptomatic individuals with
confirmed COVID-19 from the “Diamond Princess” cruise
ship were able to identify pneumonia in 54% of these cases [6].
Also, CT is more sensitive to parenchymal lung disease,
disease progression, and alternative diagnoses, including acute
heart failure from COVID-19 myocardial injury [7]. Even a
multinational consensus statement that was recently released
confirmed that chest CT would provide clinically action-
able items in diagnosis, management, triage, and therapy of
COVID-19 [3].

The common imaging features observed from a chest CT
of COVID-19 patient include anomalies/abnormalities, such
as ground-glass opacity (GGO), consolidation, and rare char-
acteristics, such as pericardial effusion and pleural effusion
[8]–[10], with GGO being a common feature among all
chest CT images. In a retrospective study, Chung et al. [9]
emphasized the identification of common features as men-
tioned above for better management of COVID-19. There are
ongoing attempts to utilize learning-based methods to triage
the patients based on chest CT. Li et al. [11] have proposed a
3-D deep learning model for using 2-D local and 3-D global
features to identify COVID-19 disease. Hierarchical attention
and spatial pyramid networks were introduced to capture the
abnormal features in the Lungs of COVID-19 patients [12].
Pan et al. [13] and Wang et al. [14] conducted a systematic
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Fig. 1. Key steps of the proposed approach for automated segmentation of abnormalities in chest CT images. The details of the Anam-Net architecture are
given in Fig. 2, and layerwise details are shown in Table I.

study on chest CT images for understanding the changes in
the lung during recovery from COVID-19. Caruso et al. [10]
investigated the chest CT features of patients with COVID-19
and compared the diagnostic performance of chest CT with
the gold-standard RT-PCR. They reported a sensitivity of 97%
while using chest CT. The work of Pan et al. [13] defined four
stages of disease progression of COVID-19 and its recovery.
The remission and recovery from COVID-19 had a strong
correlation with reducing the size of abnormalities in chest
CT [13]. Even attempts to use lung opacity (abnormality)
as a deep learning feature [15] to divide COVID-19 patients
into categories of mild, moderate, severe, and critical have
significantly been successful. It has also been suggested to use
lung opacification as an image feature to monitor COVID-19
progression to provide better clinical management [15].

Given that chest CT imaging has an essential role in
diagnosing, monitoring, and managing COVID-19, quantifying
anomalies in chest CT in an automated way is the need of the
hour. Current practice is semiquantitative and performed by
visual score. Manual segmentation of these abnormalities in
chest CT images is a tedious job. Automated methods, such
as the one proposed here, can run on embedded as well as
mobile (point-of-care) platforms with minimal hardware, such
as Raspberry Pi, NVIDIA Jetson Xavier, or an Android device,
and will immensely help the clinicians to manage COVID-19
better, specifically when the patient load is very high. Needless
to mention that performing annotations slice-by-slice is tedious
and expensive. Furthermore, chest CT imaging is not a stan-
dard clinical protocol for COVID-19 patients; these data sets’
availability in sufficiently large numbers, including annotations
to develop a deep learning-based methodology, will be a
challenge. Given the variability in the chest CT protocols [16]
and diversity in the patient population, a deep learning model
that is easy to train and deployable for quantifying the abnor-
malities in chest CT images is of utmost importance.

Automatic segmentation of ground-glass opacities (GGOs)
in lung CT images was investigated for diffuse parenchymal
lung diseases (DPLDs). Zhu et al. [17] have proposed an algo-
rithm based on a Markov random field for segmenting GGO.
Zhou et al. [18] have shown that the K-NN classifier, when
boosted with nonparametric density estimates, can segment
the GGO nodules more accurately. Jung et al. [19] proposed
an intensity-based segmentation followed by an asymmetric
multiphase deforming model for the segmentation of GGOs.

All these methods were based on statistical models to segment
the GGOs; however, lung infection in COVID-19 is a manifes-
tation of GGOs and consolidation. The abnormalities present
in the COVID-19 other than GGOs, such as consolidation,
can be as high as 45% of the total abnormality [14]. These
statistical methods may not be applicable for segmenting the
COVID-19 chest CT images as the imaging features differ
significantly. Recently, Fan et al. [20] proposed a pseudolabel
generating strategy within a deep semisupervised network
known as Inf-Net for segmenting abnormalities in COVID-19.
This work only focuses on lung infection segmentation of
COVID-19 patients, leading to a drop in accuracy when
considering noninfected slices. Even Ouyang et al. [21] pro-
posed a novel dual sampling attention strategy for effective
mitigation of the imbalanced learning in chest CT images with
3-D convolutional neural networks for automatic diagnosis of
COVID-19 from community-acquired pneumonia.

This work proposes the utility of supervised deep
learning-based fast and fully automated way of segment-
ing anomalies (primarily, GGO and consolidations) and also
normal lung tissue in chest CT images of patients having
COVID-19. The emphasis is also on this model being light-
weight such that it can be deployed in point-of-care platforms
to have better clinical utility. We call our approach anamor-
phic depth embedding-based lightweight convolutional neural
network, shortened as Anam-Net. The key steps involved in
segmenting COVID-19 anomalies have been outlined in Fig. 1.
The anamorphic depth of feature embeddings was obtained
by AD-block, as shown in Fig. 2. We also bring in a label-
based weighting strategy for the network’s cost function for
effective learning. In supervised learning, cost-sensitive net-
works penalize the classifier’s loss by a weighting factor found
from the prior information of annotated data. Several works
adapt cost-sensitive training for robust segmentation [22]–[24].
In short, the main contributions of this work are as follows.

1) Development of novel lightweight deep learning-based
robust feature learning algorithm designed for the
COVID-19 anomaly segmentation in chest CT images,
with the fully convolutional AD-block built within
symmetric encoder–decoder architecture. This AD-block
enabled efficient gradient flow in the network.

2) The adapted label weighting scheme during training
makes the model highly robust during the testing phase.
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Fig. 2. Anam-Net: network architecture utilized for segmenting abnormalities in COVID-19 chest CT images. Fully convolutional anamorphic depth blocks
(AD-blocks) with depthwise squeezing and stretching have been incorporated after downsampling operation in the encoder and also after upsampling operation
in the decoder. Each AD-block has 1 × 1 convolution for depthwise squeezing followed by 3 × 3 convolution and finally 1 × 1 convolution for depthwise
stretching. The layerwise details of encoder and decoder are shown in Table I and that of AD-block in Table II. Note that these AD-blocks are independent
of each other and do not share parameters.

3) The computational time required for training and testing
the proposed Anam-Net to segment abnormalities is low,
making it highly attractive in the clinic.

4) The proposed network has very few parameters, thereby
reducing the need for extensive annotated data for
training the network, and making it easy to train using
site-specific data or for a specific chest CT protocol. We
deployed the proposed Anam-Net on Raspberry pi 4
and NVIDIA Jetson Xavier Agx modules enabling
deep learning-based embedded systems that can provide
a quick initial assessment of COVID-19 lung infec-
tion. We have also developed an Android application
(CovSeg) that can run on mobile devices embedded with
Anam-Net for segmenting COVID-19 Anomalies. The
hardware setup has been shown in Fig. 3.

5) Finally, Anam-Net was evaluated on three data sets
under different experimental conditions and bench-
marked against state-of-the-art heavy and lightweight
deep learning models, including UNet [24], ENet [23],
UNet++ [25], SegNet [26], Attention UNet [27], LED-
Net [28], and DeepLabV3+ [29]. Also, to the best of our
knowledge, the proposed approach Anam-Net, which
involves an anamorphic transformation in the depth of
embeddings, has been introduced for image segmenta-
tion for the first time, resulting in a highly versatile
lightweight network to perform the segmentation.

The imaging data, along with ground truth annotations,
were made available as an open-source [30]. The source
code, trained models, and the mobile application for the

proposed segmentation scheme along with consolidated results
are available as open-source in [31]. The rest of this article
is arranged as follows. Section II provides the details of the
proposed method. This section is followed by Section III
describing the data set utilized along with implementation
details and figures of merit used for quantitatively assessing
the performance of the proposed approach. The hardware
deployment details are given in Section IV, and we provide the
results in Section V. We present a detailed discussion of the
results and the limitations of this study in Section VI. Finally,
the conclusions were provided in Section VII.

II. METHODS

The key steps involved in the proposed approach for seg-
menting the abnormalities in COVID-19 chest CT images
along with the proposed Anam-Net architecture are given
in Figs. 1 and 2, respectively. We discuss each of these steps
in detail in the following.

A. Lung Extraction

The first step for segmenting abnormalities in chest CT
images is to extract the lung region, the lung masks given in
the data sets I and II (refer to Table III) were extracted using
the method described in [32], and these masks were posted
for easy usage at link [30]. These lung masks were obtained
using a pretrained U-Net architecture [24] trained with batch
normalization [32] consisting of 231 training samples obtained
from a database of 5300 samples. Furthermore, the U-Net
(R231) method was found to be more accurate in terms of
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TABLE I

ARCHITECTURE DETAILS OF PROPOSED ANAM-NET, WHERE N IS THE MINIBATCH SIZE AND THE FLOW OF THE ARCHITECTURE IS FROM LEFT TO
RIGHT IN EACH ROW (TOP TO BOTTOM FOR SUCCESSIVE STEP). THE SCHEMATIC WAS PROVIDED IN FIG. 2. THE ARCHITECTURE

DETAILS OF ANAMORPHIC DEPTH (AD) BLOCK ARE GIVEN IN TABLE II

TABLE II

ARCHITECTURE DETAILS OF THE AD-BLOCK WITH N BEING THE MINIBATCH SIZE, Z THE DEPTH OF EMBEDDINGS

(FEATURE MAPS), AND M THE SPATIAL EXTENT OF EMBEDDINGS

lung segmentation compared to other trained models like chest
imaging platform (CIP) and progressive holistically nested
networks (P-HNNs) [32]. These 231 samples were obtained
using random sampling, sampling from image phenotype, and
manual selection of cases with different pathologies, such as
fibrosis, trauma, and other pathologies [32]. Since the training
samples used in U-Net (R231) were having a wide variety of
lung pathology and organization, the U-Net (R231) method
enabled accurate lung extraction on chest CT scans obtained
from COVID-19 patients. Note that any process (including
simple windowing) to extract the lung region is sufficient for
the proposed work.

B. Deep Learning for Medical Image Segmentation

Recently, techniques, such as neural architectural search
(NAS), knowledge distillation, and cross-modality adaptation,
were utilized for robust segmentation. Yu et al. [34] proposed a
coarse to fine NAS strategy for 3-D biomedical segmentation
by performing an architectural search at the macrolevel and
systematic microlevel operations at each macrolevel topology.
In a similar study, Guo et al. [35] implemented the crucial
step of segmenting the organs at risk (head and neck) during
radiotherapy treatment planning by adapting the NAS strategy.
For the problem at hand related to COVID-19, the NAS
approach may not be suited due to high computational com-
plexity resulting in large training times. Li et al. [36] proposed
a semisupervised system to address the lack of labeled data.
This approach formulates the loss function as a weighted
combination of supervised component for the labeled data
and a regularized detail for the unlabelled data. In contrast
to this, Clough et al. [37] proposed an unsupervised strategy
based on topological loss derived from prior information of
the object to be segmented. The knowledge transfer from
heavy models for developing the lightweight models through
model pruning was explored by Zhou et al. [38]. However,

this kind of knowledge transfer requires a pretrained model.
Wang et al. [39] proposed a user in the loop strategy for
2-D segmentation of the placenta from fetal MRI and 3-D
segmentation of brain tumors from FLAIR images. In this
work, the authors deployed user interactions as a hard con-
straint into a back propagatable conditional random field for
end-to-end training. Gu et al. [40] proposed context encoding
networks consisting of atrous convolution operations for 2-D
medical image segmentation. Chen et al. [41] proposed a
cross-modality adaption strategy between MR and CT images
through a deep synergistic feature alignment module for robust
medical image segmentation.

UNet architecture [24] has a deep symmetric
encoder–decoder network with skip connections. Similarly,
SegNet [26] also has an encoder–decoder structure embedded
with a nonlinear upsampling mechanism for performing
semantic segmentation. Zhou et al. [25] proposed an advanced
version of UNet known as UNet++, which deploys nested
dense connections [42] within the symmetric encoder–decoder
framework. For enhancing the salience feature extraction,
Oktay et al. [27] incorporated an attention module within the
UNet framework. Chen et al. [29] introduced DeepLabV3+
formed with atrous separable convolutions for refining
the segmentation results across the object boundaries.
Jha et al. [43] proposed a deep residual UNet known as
ResUNet++ for colonoscopic image segmentation. This
architecture adds on a residual connection and attention
module to the existing bottleneck of UNet. A cascade of
UNet known as DoubleU-Net [44] was proposed, where
the second UNet refines the segmentation results from the
first UNet. However, these architectures, i.e., UNet, SegNet,
UNet++, Attention UNet, DeepLabV3+, ResUNet++,
and DoubleU-Net, involve many parameters resulting in
heavy models (memory intensive) and have specialized
compute requirements. On the other hand, an efficient neural
network (ENet [23]) was developed to work with less number

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on February 19,2024 at 07:12:53 UTC from IEEE Xplore.  Restrictions apply. 



936 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 3, MARCH 2021

of parameters and was designed as a robust asymmetric
encoder–decoder model for semantic segmentation in
computer vision. The engineered design of ENet includes
bottleneck layers similar to deep residual learning [45].
Furthermore, it has dilated convolutions [46] for avoiding
higher downsampling rates and asymmetric convolutions [47]
for achieving large speedups. Note that ENet architecture
consists of a large encoder and a small decoder [23]. A deep
encoder was deployed to operate on images with smaller
resolution and enable filtering operations, while a shallow
decoder was utilized to upsample the output [23]. In similar
lines, another lightweight architecture LEDNet [28] also
brings in an asymmetric encoder–decoder module having
ResNet [45] as backbone along with a channelwise split and
shuffle operation for fast and accurate segmentation.

C. Proposed Approach for Segmenting
COVID-19 Anomalies

The proposed Anam-Net brings the best of UNet (symmetric
encoder–decoder architecture) and ENet (fewer number of
parameters), with a shallow symmetric network along with
bottleneck layers. Primarily, the presented work proposed
an AD-block (motivated from [45]) within a minisymmetric
encoder–decoder segmentation module, as shown in Fig. 2.
The AD-block consists of 1 × 1 convolution for depthwise
squeezing followed by 3 × 3 convolution and finally 1 × 1
convolution for depthwise stretching (refer to Table II). The
AD-block’s key idea is to squeeze (equivalent to the project)
the feature space dimension (depthwise) before performing
expensive 3 × 3 convolutions. Such a 1 × 1 projection-based
low-dimensional embeddings possess information about a rel-
atively large input patch [48]. Following this low-dimensional
projection, local feature extraction by 3 × 3 convolutions
was performed without reducing the depthwise feature space
dimension. Finally, the depthwise feature space dimension was
stretched to the initial stage by another 1 × 1 projection. The
final output of AD-block denoted by h(x) is obtained by
adding the feature maps x at the input of AD-block to the
output of sequence of convolution operations f (x) parameter-
ized by θh performing depth squeezing, feature extraction, and
depth stretching. In short

h(x) = f (x; θh) + x (1)

and it is easier to optimize f (x; θh) than to learn the under-
lying mapping h(x) directly from x [45]. To summarize,
for a given spatial resolution, the encoding operation in the
proposed Anam-Net is

ye = φe
(
he(xe); θe

)
(2)

where ye is the output of encoding operation, φe is the
convolution operation parameterized by θe, xe is the input to be
encoded, and he is the output of the AD-block in the encoder.
Furthermore, he can be written as

he(xe) = fe(xe; θhe) + xe (3)

where fe is the output of sequence of convolution operations
parameterized by θhe performing depth squeezing, feature
extraction, and depth stretching. In similar lines, the decoding

operation at same resolution, as mentioned earlier, in the
encoding operation of the proposed Anam-Net is

yd = φd(C[hd(xd), ye]; θd) (4)

where yd is the output of decoding operation, φd is the
convolution operation parameterized by θd , C is the feature
concatenation operation, xd is the input to be decoded, and hd

is the output of the AD-block in the decoder. As mentioned
earlier, hd can be expressed as

hd(xd) = fd(xd; θhd ) + xd (5)

where fd is the output of sequence of convolution operations
parameterized by θhd performing depth squeezing, feature
extraction, and depth stretching. Note that the UNet embed-
dings can be seen as a special case of our proposed Anam-Net
embeddings when he(xe) = xe and hd(xd) = xd .

Overall, the proposed Anam-Net architecture consists of
six such AD-blocks (three in the encoder and three in the
decoder) to provide salience and robust feature learning.
Each convolution layer in the proposed Anam-Net consists of
convolution operation followed by batch normalization [49]
and ReLU [50]. We provide the layerwise details of the
encoder–decoder module in Table I and that of the AD-block
in Table II. Given a minibatch of size n, we compute the loss as

L = − 1

N �

n∑

k=1

rows∑

i=1

cols∑

j=1

(wki j )

2∑

t=0

yki j t log
(
y �

ki j t

)
(6)

where y is the one hot encoded label (3×1), y � is the predicted
softmax probabilities (3 × 1), w is the weight associated with
label t ∈ {0, 1, 2}, and N � is n × rows × cols. The weight
associated with each label in t was given as

w(t) = 1

p(t)
(7)

where p(t) is the fraction of samples with label t in the train-
ing set. After performing end to end training, the architecture
was subjected to segment each pixel of the unseen test sample
into three categories: background, abnormal-lung region, and
normal-lung region. The model’s output is a probabilistic map
(three maps, one each for background, abnormal, and normal)
having the same spatial dimension as input. Depending on
the maximal probabilistic score across these three categories,
each pixel was assigned a label. It is important to note that
the background (nonlung region) was identified, as outlined in
Section II-A.

III. EXPERIMENTS AND IMPLEMENTATION

The summary of the data sets utilized in this study is
shown in Table III. We have conducted three experiments
for evaluating the performance of all discussed models. The
details of the experiments performed on these data sets are as
follows.

Experiment 1: The chest CT images that were utilized in this
experiment had 929 axial chest CT images from approximately
49 patients with COVID-19 that were converted from openly
accessible images provided by the Italian Society of Medical
and Interventional Radiology [51] and radiopedia [52]. These
images were made available in two sets. The data set I consist
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TABLE III

DETAILS OF THE DATA SETS UTILIZED IN THIS WORK

of 100 slices from >40 patients. From this set, we have
selected 90 slices for training. To enhance robust learning,
we performed data augmentation, such as horizontal flip and
vertical flip on each training sample that resulted in a training
set consisting of 270 samples. The Data set II consists of
829 slices from nine patient CT volumes. Out of these,
we sampled 704 slices for testing. The remaining 125 slices
were blank or had very minimal lung information. Note that
Data set II was exclusively utilized for testing (none of the
data was utilized in training). The testing performed on all
models was with test data that the network has never seen
at the patient level. All these images were annotated for
abnormalities and have masks for GGO, consolidations, and
pleural effusion. The detailed procedure for the annotations
and data preparation can be found at this link [53]. These
annotations masks were combined together to form a single
abnormal mask. The annotations along with original chest CT
slices and lung masks as NIFTI files can be found here [30].
These annotations (original input slice and ground truth), for
sample test cases, have been presented in Fig. 4, the inference
analysis of a sample test case on resource constraint platforms
has been provided in Table V, and dice similarity scores for the
abnormal region of sample test cases (Fig. 4) have been shown
in Table VI. Finally, the averaged figures of merit over all 704
chest CT images (test cases) considered in this experiment
were provided in Table VII.

Experiment 2: The chest CT images that were utilized in
this experiment consists of 3410 axial chest CT images from
20 patients with COVID-19 (refer to Data set III in Table III).
As mentioned earlier, we excluded the chest CT slices that did
not have any visible lung region (either completely collapsed
or near the end slices) from testing and training. We split this
data set at the patient level into four equal folds F1, F2, F3,
and F4. The fold F4 with 545 CT images was explicitly used
for testing, and we trained the deep models using threefold
cross-validation on the folds F1, F2, and F3. The averaged
figures of merit across three cross folds over all the 545 chest
CT images (test cases) considered in this experiment were
shown in Table VIII.

Experiment 3: In this experiment, we performed cross data
set examination, wherein the models trained in Experiment 2
were tested on the test cases in Experiment 1. This kind
of cross-examination enabled us to study the generalizabil-
ity of the deep models for practical application scenarios.
The averaged figures of merit over all the 704 chest CT
images (test cases) considered in this experiment were given
in Table IX.

Implementation: The proposed Anam-Net was trained using
PyTorch [54] with a minibatch of size 5. The cost function
was optimized using Adam optimizer [55] with an initial

TABLE IV

COMPARISON OF DEEP LEARNING MODELS UTILIZED IN THIS WORK
IN TERMS OF NUMBER OF TRAINING PARAMETERS, MODEL SIZE,

TRAINING TIME (FOR 100 EPOCHS IN EXPERIMENT 1),
AND INFERENCE TIME

learning rate of 5e−4 and gradually decayed by a factor
of 0.1 once after every 33rd epoch. All computations per-
formed in this work, including training of CNN, utilized
a Linux workstation having i9 9900X (CPU) with 128-GB
RAM and NVIDIA Quadro RTX 8000 GPU card. For fair
comparison, the state-of-the-art methods, such as UNet [24],
ENet [23], UNet++ [25], SegNet [26], Attention UNet [27],
LEDNet [28], and DeepLabV3+ [29], were also trained with
the same training data and tested on the same test data in
all experiments. For testing, the Anam-Net in the Fig. 1 was
replaced by these trained models. The number of parameters,
model size, and typical training time along with the inference
time were presented in Table IV for quick comparison. To
quantitatively evaluate the performance of obtained segmenta-
tion results from all the models, we calculated the figures of
merit, specificity, sensitivity, accuracy, and the Dice similarity
score for both abnormal and normal classes. The computed
value of figures of merit will be between 0 to 1, and in all
cases, the higher value (close to 1) indicates better perfor-
mance of a model.

IV. HARDWARE DEPLOYMENT

Raspberry Pi 4 Model B is the latest version among the
various raspberry pi tiny dual-display computers released
to date. It is a low-cost embedded system with increased
connectivity, memory capacity, and processor speed compared
to its predecessor Raspberry Pi 3 Model B+. The total cost
of the Raspberry Pi 4 Model B embedded platform is $50.
To embed the Anam-net on Raspberry Pi 4, we converted the
trained Anam-Net model from PyTorch into the Tensorflow
Lite version. Tensorflow Lite is a variant of TensorFlow,
which helps to run a deep learning model on the mobile,
the Internet of Things (IoT), and embedded devices. It acts
as an accelerator to reduce the inference time of models
deployed on the embedded systems. The inference time of the
TensorFlow Lite version of the Anam-net model on Raspberry
Pi was 23.3 s, whereas the inference time of the TensorFlow
Lite version of the UNet model on Raspberry Pi was 43.3 s.
We currently have the PyTorch Lite versions for Android, and
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Fig. 3. Hardware devices used for deploying the proposed Anam-Net to segment the COVID-19 anomalies in point-of-care platforms. The abnormalities in
the lung region are indicated in red, and the normal lung region is in green. The Raspberry Pi 4 and the sample segmented slice #676 from the test cases
(Experiment 1) are shown in (a). NVIDIA Jetson Xavier along with the sample segmented slice #676 from the test cases (Experiment 1) is shown in (b). One
Euro coin was placed in these photographs to provide a form factor comparison. The snapshot of the developed Android application (CovSeg) showing the
sample segmented slice #676 from test cases (Experiment 1) was provided in (c). The inference analysis was given in Table V.

TABLE V

COMPARISON BETWEEN THE HARDWARE DEVICES USED FOR DEPLOYING

THE PROPOSED ANAM-NET IN TERMS OF COST, AVAILABLE MEMORY,
AND INFERENCE TIME (IN SECONDS)

PyTorch does not have any official support for Raspberry Pi.
We see that this high inference time in tens of seconds is
due to the model conversion from PyTorch to Tensorflow
using third-party tools. The hardware setup and the inference
analysis are given Fig. 3 and Table V, respectively.

The Anam-Net model was also deployed on the NVIDIA
Jetson AGX Xavier developer kit. NVIDIA Jetson AGX
Xavier is the latest version among all the Jetson platforms
released by NVIDIA. Jetson AGX Xavier is a deep learning
model accelerator with 20 times more performance and ten
times more energy efficiency than its predecessor Jetson
TX2. Jetson AGX Xavier consists of an eight-core ARM
processor CPU and 512-core Volta GPU with Tensor cores.
The Anam-Net model deployed on Jetson AGX Xavier was

able to perform inference within 2.9 s. In contrast, the UNet
model, when deployed on the same, gave an inference time
of 5.2 s. The hardware setup and the inference analysis are
given Fig. 3 and Table V, respectively. The Anam-Net model
and the UNet model were also trained on the Jetson AGX
Xavier platform. The training time for an epoch with a batch
size of 5 for the Anam-Net model was 1.49 min, whereas, for
UNet, it was 3.19 min.

We have also developed an Android Application for
the mobile platforms, called CovSeg, for segmenting the
COVID-19 Anomalies. The PyTorch trained model was con-
verted to its lite version as given here [56]. We developed
the front end and the back end of the CovSeg application
in Android Studio [57]. The Android application snapshot on
Nokia 5.1 Plus mobile phone and the inference analysis are
given Fig. 3 and Table V, respectively.

V. RESULTS

As mentioned earlier, the segmentation results from all
test cases of the three experiments were obtained and com-
pared with the ground truth labels. The proposed method
was effective in segmenting the abnormalities across all
COVID-19 chest CT images. It is even useful when there is
no abnormality; the proposed method provided a null result
as expected. The example results, including the ground truth
labels, were presented in Fig. 4, and the corresponding Dice
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Fig. 4. Representative segmentation results of Experiment 1 (key steps were given in Fig. 1). Randomly selected input slices (test cases) were shown in the
top row. The annotations (ground truth) are shown in the second row. The abnormalities in the lung region are indicated in red, and the normal lung region
is in green. Dice similarity scores of the abnormal lung regions for these test cases have been shown in Table VI.

score for the abnormal class is presented in Table VI. The
proposed Anam-Net’s performance in terms of sensitivity,
specificity, accuracy, and Dice score was superior. However,
the performance of UNet++ was also on par with the pro-
posed approach because of extensive dense connections in its
design that result in hierarchical encoder–decoder modules
enabling efficient feature propagation for accurate segmen-
tation. The averaged results from Experiment 1 were pre-
sented in Table VII, and that of Experiments 2 and 3 are
in Tables VIII and IX, respectively. Furthermore, higher speci-
ficity and higher accuracy for both the classes (abnormal and

normal) are desirable in disease monitoring, especially in the
remission of COVID-19. As it can be seen from Tables VII
and VIII, the proposed Anam-Net with fewer parameters was
able to provide accurate segmentation results compared to
already existing models. As shown in Table IX, even in the
cross data set examination (Experiment 3), the performance
of Anam-Net was reasonably good (second-best) and was
comparable with the best performing method Attention UNet.

As it can be seen from results in Fig. 4 and Tables VI
and VII, the proposed Anam-Net provides superior perfor-
mance with the utilization of anamorphic depth embeddings,
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TABLE VI

DICE SIMILARITY SCORES FOR THE ABNORMAL LUNG REGION FOR TEST CASES SHOWN IN FIG. 4. THE LAST
ROW REPRESENTS THE AVERAGE OF THESE RESULTS. THE BEST RESULTS ARE SHOWN IN BOLD

TABLE VII

AVERAGED FIGURES OF MERIT OVER ALL 704 CHEST CT IMAGES (TEST CASES) CONSIDERED

IN THE EXPERIMENT 1. THE BEST RESULTS ARE SHOWN IN BOLD

TABLE VIII

AVERAGED FIGURES OF MERIT ACROSS THREE CROSS FOLDS OVER ALL 545 CHEST CT IMAGES (TEST CASES) CONSIDERED
IN EXPERIMENT 2. THE BEST RESULTS ARE SHOWN IN BOLD

which enabled the network to be lightweight. The patient-level
(a sample test case from Experiment 2) segmentation results
are shown in Fig. 5, wherein the average Dice score of
the normal lung region was 0.95, and that of the abnormal

region was 0.68. In most cases, while processing the initial
slices of the lung, we observed that the Dice score for the
abnormal region was minimal (<0.5). However, on average,
the accuracy of segmenting the anomalies was as high as
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Fig. 5. Representative segmentation results on a patient volume (test cases) from Experiment 2 (key steps were given in Fig. 1). The input slices (test cases)
were shown in the first and fourth columns. The respective annotations (ground truth) are shown in the second and fifth columns. The predictions of the
Anam-Net are in given the third and sixth columns. The abnormalities in the lung region are indicated in red, and the normal lung region is in green. Dice
similarity scores of the abnormal (in red) and normal (in green) lung regions are given below the corresponding slices.

0.98 in all the experiments (refer to Tables VII–IX). Overall,
the next best performing network was Attention UNet, which
has at least 7.8 times more parameters (refer to Table IV) and
required 2.3 times more training time compared to Anam-Net.
Also, these heavy models (sizes being in hundreds of MB)
may not be well suited for the point-of-care platforms for
providing quick inference. Despite the proposed model having
only 4.47 million parameters (third lightest), it was able
to outperform the rest of the networks in all figures of

merit (see Table VII). The lightweight networks performance
was much inferior compared to heavy networks and among
all networks DeepLabV3+ providing the lowest Dice score
(see Tables VII–IX).

VI. DISCUSSION

As can be seen from Table VII, the Dice similarity score
of the proposed method (Anam-Net) was the highest com-
pared to existing state-of-the-art architectures. Specifically,
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TABLE IX

AVERAGED FIGURES OF MERIT OVER ALL 704 CHEST CT IMAGES (TEST CASES) CONSIDERED
IN EXPERIMENT 3. THE BEST RESULTS ARE SHOWN IN BOLD

TABLE X

ABLATION STUDY FOR ALL AD-BLOCKS AND THE LABEL WEIGHTING
STRATEGY DURING THE TRAINING OF ANAM-NET. THE BEST

RESULTS ARE SHOWN IN BOLD. NOTE THAT THESE RESULTS ARE

AVERAGED OVER 704 CHEST CT IMAGES (ALL TEST CASES)
FROM EXPERIMENT 1

we observed that except for Attention UNet and the pro-
posed Anam-Net, rest networks failed in identifying healthy
individuals (slice 292 shown in Fig. 4). The Anam-Net
successfully generated the null result; the same is evident
when comparing the sensitivity values of the normal class
indicated in Table VII. In essence, the training times required
for Anam-Net is lesser (roughly about 43%) compared to
Attention UNet (since the number of parameters being fewer;
see Table IV), and Anam-Net was able to generate more
accurate results compared to others. The improved accuracy
of Anam-Net compared to the UNet model can be attributed
to the AD-block, which was confirmed by the ablation study
(refer to Table X). Without the AD-block, the performance in
terms of the Dice score was comparable with UNet results
(compare the second row in Table X with UNet results
in Table VII).

Obtaining accurate labels is important while developing
deep learning models for the automatic segmentation of abnor-
malities. The labels can be classified into two major categories,
namely strong annotations [wherein the radiologist has per-
formed a proper segmentation of the region of interest (ROI)]

and weak annotations (which can simply be scribbles, sparse
dots, or noisy annotated labels) for pictorial representation
(please check [58, Fig. 5]). Zheng et al. [59] have used weak
annotations in the form of patient-level labels, i.e., whether
the patient is COVID-positive or COVID-negative to train
the network for automatically detecting COVID-19 cases.
Zheng et al. [59] have used weakly supervised learning for
COVID-19 detection, wherein a spatial global pooling layer
and a temporal global pooling layer were introduced into the
DeCovNet. Xu et al. [60] have developed a model that can
handle multiple classes with patient-level labels. Xu et al. [60]
included patient-level labels belonging to different classes,
such as Influenza, COVID, and pneumonia, while training the
deep learning model; however, these studies did not consider
annotations (i.e., segmenting the abnormality in the CT image)
for training the model. Obtaining these strong annotations
to train a traditional CNN is time-consuming and expensive.
The proposed Anam-Net can be seen as Mini-CNN with
the number of trainable parameters being seven times less
compared to UNet (or its variants) architecture. Anam-Net will
also have a universal appeal to deploy for a site/protocol spe-
cific accurate segmentation network within adequate training
time (see Table IV). We have also compared the proposed
Anam-Net and UNet in terms of parameter sensitivity. The
parameters (θ ) of the trained models (from Experiment 1) were
perturbed by η (%), and the perturbed models were tested on
704 chest CT images (all the test cases) from Experiment 1.
The averaged results of the parameter sensitivity analysis are
shown in Table XI. These results indicate that the proposed
Anam-Net has the same stability (if not better) as UNet and
is suitable for a critical application, such as the prognosis of
COVID-19.

Shan et al. [61] have proposed a human-in-the-loop (HITL)
strategy to improve the annotations (i.e., using image seg-
mentation) required for training the network to quantify
COVID-19 infection; this work initially used a small batch
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TABLE XI

COMPARISON BETWEEN THE PROPOSED ANAM-NET AND UNET IN TERMS
OF PARAMETER SENSITIVITY. THE PARAMETERS (θ ) OF THE TRAINED

MODELS (FROM EXPERIMENT 1) WERE PERTURBED BY η (%).
NOTE THAT THESE RESULTS ARE AVERAGED OVER 704 CHEST

CT IMAGES (ALL TEST CASES) FROM EXPERIMENT 1

of segmentations (obtained from a radiologist) to train the
VB-network. This approach utilized the trained network to
generate a rough segmentation, which was then corrected
by the radiologists, and the fixed segmentation improved
the network performance in an iterative fashion [61]. The
HITL strategy requires intervention from the radiologists for
accurately training the deep learning model. Furthermore,
this strategy is computationally expensive as opposed to the
proposed Anam-Net, which takes about 27 min for an end to
end training. Note that the number of parameters involved in
the UNet model is 31.07 million as opposed to 4.47 million
in the case of Anam-Net (see Table IV), making the proposed
approach computationally efficient with an added advantage of
being trainable with a smaller data set without compromising
performance (see Table VII). The performance of other state-
of-the-art lightweight or heavy models is subpar compared
to the proposed Anam-Net, and the observed improvement
was at least 1.24 times among lightweight networks and twice
compared to other massive networks.

Even radiologist’s performance for differentiating
COVID-19 pneumonia from non-COVID-19 pneumonia
could be as low as 60% [62], and stand-alone chest CT
images without any feature engineering might not reveal
distinct patterns of COVID-19. The proposed method can
quickly provide the most affected region in chest CT for a
radiologist to enable faster diagnosis. Current evaluation of
the COVID-19 or otherwise other pneumonia severity by the
radiologist at best is semiquantitative and typically performed
by visual scoring [15]. Any automated methods will always
provide unbiased estimates, which is desirable in clinical
practice. Techniques such as the proposed one will pave the
way for effective and better management of COVID-19 and
associated morbidity. As there is a push for low-dose chest
CT [16], the variation in protocols demands to the retraining
of CNNs; thus, the proposed method will be able to meet
this need and provide the versatility without compromising
the accuracy of the outcome.

The number of CT scans utilized for training a deep learning
model to quantify the lung infection, as provided in [61], was

249, while Zheng et al. [59] and Xu et al. [60] utilized 499 CT
scans and 618 CT slices, respectively. The proposed Anam-Net
utilized only 90 chest CT images in Experiment 1 and resulted
in an average Dice score of 0.87 averaged over 704 test images
(which is almost eight times larger than the training set).
Note that, in this experiment, we intentionally had a smaller
training set and a larger test set, as, in the current pandemic
situation, it is challenging to obtain accurate annotations from
radiologists, which have increased clinical load. This work
aimed to propose a novel network specifically designed for
the task at hand and benchmark it among already existing
state-of-the-art networks on large test data with a constrain of
available training data being limited. In Experiment 3, we con-
ducted a cross data set examination to further analyze the
generalizability of Anam-Net, and even in this case, Anam-Net
gave good Dice scores for abnormal and normal lung regions
(refer to Table IX). The lightweight CNNs based on attentive
hierarchical spatial pyramid modules were recently proposed
to segment the abnormal regions in COVID-19 chest CT
images [12]; the network had about 472.44k parameters. Even
with ImageNet pretraining, this model gave only 0.84 sensitiv-
ity. Its performance was inferior to the standard UNet approach
when test data were limited to only 40 chest CT images [12].
Note that Qiu et al. [12] utilize the same training data as
that of Experiment 1 in this work. The proposed method in
this work, Anam-Net, was stand-alone and did not require any
pretraining; furthermore, Anam-Net was validated with larger
test data (i.e., with 704 chest CT images in Experiment 1,
545 chest CT images in Experiment 2, and 704 chest CT
images in Experiment 3). The Anam-Net showed improved
specificity, accuracy, and Dice similarity score compared to
standard UNet (see Tables VII–IX) and other state-of-the-art
deep learning models.

The study presented here has few limitations, the first one
being the dimensionality of chest CT images being restricted
to 2-D. The operations performed here can be applied in three-
dimensions, and a detailed study in this respect will be taken
up as future work. The analysis of the results on the chest
CT images (test cases) indicate that the proposed Anam-Net
is inherently biased to the peripheral part of the lung (can be
observed in Fig. 4), and most COVID-19 chest CT images
have the manifestation of peripheral abnormalities [8]–[10],
but these peripheral abnormalities might be absent in few
cases especially in asymptomatic and pediatric patients, which
brings down the Dice similarity score. Low Dice scores can
be further improved by incorporating spatial-semantic context
into the Anam-Net; this will also be explored in the future.
As there is an increased variation in chest CT protocols to
reduce the effective dose to the patients without compromising
the diagnostic accuracy [16], the amount of fully annotated
chest CT data acquired under the same protocol is still a
challenge. The work presented here provides a solution to
this challenge explicitly by requiring significantly less training
data without compromising the accuracy of the segmentation,
making them attractive and easy to deploy in the clinic. These
novel methods are critical for making deep learning methods
more appealing for real-time COVID-19 imaging studies.
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VII. CONCLUSION

This work presented an anamorphic depth embedding-based
lightweight CNN, called Anam-Net, to segment anomalies
in COVID-19 chest CT images. As chest CT imaging is
becoming the main workhorse for staging and managing
COVID-19, the methodology proposed here is the need of
the hour. The results from the chest CT images (test cases)
across the three experiments showed that the proposed method
could provide good Dice similarity scores for abnormal and
normal regions. Furthermore, the Anam-Net was benchmarked
against other state-of-the-art lightweight and heavy networks,
such as ENet, UNet++, SegNet, Attention UNet, LEDNet,
and DeepLabV3+, and found to provide higher specificity,
accuracy, and Dice score averaged over all the chest CT test
images across three different experiments. The advantage of
Anam-Net compared to other models is low computational
complexity (requiring 50% of the training time compared
to the next best performing network and the number of
parameters being seven times fewer), making it attractive to
be deployed in a clinical setting. Anam-Net’s model size is in
the order of tens of megabytes (to be specific, 17.2 MB) and
makes it easily deployable in mobile platforms to provide a
quick assessment of the abnormalities in COVID-19 chest CT
images. The deployment in mobile and embedded hardware
platforms confirmed that the proposed Anam-Net is well suited
for the point of care settings.
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