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Abstract | Magnetic Resonance Imaging (MRI) has been widely used in 
cancer treatment planning, which takes the advantage of high-resolution 
and high-contrast provided by it. The raw data collected in the MRI can 
also be used to obtain the temperature maps and has been explored for 
performing MR thermometry. This review article describes the methods 
that are used in performing MR thermometry, with an emphasis on recon-
struction methods that are useful to obtain these temperature maps in real-
time for large region of interest. This article also proposes a prior-image 
constrained reconstruction method for temperature reconstruction in MR 
thermometry, and a systematic comparison using ex-vivo tissue experi-
ments with state of the art reconstruction method is presented.
Keywords: HIFU, MRgHIFU, image reconstruction, temperature maps.

1 Introduction
Magnetic Resonance Imaging (MRI) provides 
invaluable visualization of anatomical structures 
and tumors for treatment planning.1 It has the 
capability of providing high-resolution images 
of soft tissues. In recent years, it has been shown 
that various MR parameters like T

1
-weighted, 

T
2
-weighted, proton density and Proton Resonant 

Frequency (PRF) can be used to obtain tempera-
ture maps distribution, which in turn could be 
used for thermotherapy. Note that T

1
-weighted 

and T
2
-weighted images are obtained due to the 

variation in the temperature in soft tissue, as a 
result direct reconstruction of temperature maps 
could be performed. Thus MRI can be used to 
obtain temperature distribution during thermal 
treatment (thermotherapy).2

Many thermal therapies are prelevant, the most 
famous ones use focused ultrasound (FUS) or laser 
inducer interstitial thermotherapy (LITT).3 In 
LITT, a laser light produced by Nd:YAG laser hav-
ing a wavelength of 1064 nm is used, the laser light 
is absorbed and converted to heat, which causes 
change in the optical properties of the tissue lead-
ing to coagulation (thermal damage to proteins). 
This culminates in killing of cancerous tissues.4 It 
is a minimally invasive technique, where a fiber 

optic cable carrying laser light is used with a diffu-
sive tip to deposit energy precisely at the region of 
interest.3 As the fiber optic tip is quite small, it can 
only be used for treating small tumors,3 making it 
not ideal for treating large tumors. Usage of laser 
does not interfere with MR measurements, hence 
MRI can be used to obtain the k-space (Fourier) 
measurements while preforming thermotherapy 
using LITT. These recorded MRI measurements 
can be used in turn to obtain the temperature 
distribution at the region of interest. MR guided 
LITT (MRgLITT) was successfully used for treat-
ment on various organs like brain, liver, bone and 
prostrate.5

Focused Ultrasound Surgery (FUS) or High- 
intensity Focused Ultrasound (HIFU) is an efficient 
noninvasive technique to treat patients having 
cancerous tumors.6,7 HIFU has been used exten-
sively for treating breast tumors, uterine fibroids 
and brain lesions.8 One of the major advantage 
of HIFU is its ability to focus on the tumor site 
(highly localized), which is not possible with radi-
ation therapy, hence making HIFU prone to lesser 
side effects. Note that both diagnostic ultrasound 
and therapeutic ultrasound uses sound waves in 
different frequency range to create the required 
effect (diagnose abnormality or treat tumor). 
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The frequency of sound waves used in diagnostic 
ultrasound depends on the depth you need to 
image (region of interest). The typical frequency 
range used is 3–10 MHz (  20 MHz for skin scan).9 
While in therapeutic ultrasound, i.e. in HIFU, the 
frequency range used is in the order of 1–2 MHz.10 
The most important aspect in HIFU treatment is 
that focusing of ultrasound beam at the tumor 
site leads to a temperature rise at the focal spot. 
This rise in temperature results in breakage of cell 
walls of tumor cells hence destroying the cells at 
the focal spot. The typical power output generated 
by diagnostic ultrasound is less than 5 mW/cm2, 
while it is greater than 100 mW/cm2 in therapeutic 
ultrasound.8,11

MR guided HIFU (MRgHIFU) and MRgLITT 
uses same MR physics to estimate the tempera-
ture distribution. The basic idea in obtaining the 
temperature distribution from T

1
-weighted and 

T
2
-weighted MR images is that the relaxation times 

used to obtain T
1
-weighted and T

2
-weighted MR 

images are affected by the temperature of the soft 
tissues.12 The change in relaxation time (used for 
T

1
- and T

2
-weighted images) is due to spin-lattice 

relaxation present in the biological tissues.13,14 This 
relaxation occurs due to the dipole interaction of 
macromolecules and water molecules, which is 
observed mainly due to rotational and transla-
tional motion.14,15 A rise in temperature will effect 
this motion leading to change in relaxation time, 
and hence changes will be reflected in the T

1
- and 

T
2
-weighted contrast.14,15 When Proton Resonance 

Frequency (PRF) is the MR parameter, the rise in 
temperature at resonant frequency has a direct 
correlation to the change in phase of the recorded 
MR data.

The PRF contrast can also be used for esti-
mating the temperature distribution.16 The MR 
signal frequency depends on the chemical envi-
ronment of water hydrogen, increase in temper-
ature changes this environment, which helps in 
measuring the temperature change.16 A hydro-
gen atom contains protons which is shielded 
by electron, leading to a reduction in the reso-
nant frequency.16,17 Hence in water molecule, the 
electron in the hydrogen atom is pulled by the 
bond between hydrogen and oxygen molecule 
resulting in increase in resonant frequency. An 
increase in temperature will twist, stretch and 
break the bond between hydrogen and oxygen 
atom.16,17 This leads to a modest increase in 
electron shielding of the hydrogen proton from 
the magnetic field, leading to a reduction in 
the net field observed by the proton and hence 
changes the overall resonant frequency. Using 

PRF parameter, it can be shown that a phase 
change will directly correspond to temperature 
change.16–18

Obtaining high spatial-, temporal resolu-
tion, and volume coverage at the region of inter-
est (hotspot) is a challenge in MR temperature 
imaging.8 Temperature rise of several degrees of 
centigrade per second over a volume of few mil-
limeter can be achieved by inducing a HIFU soni-
fication.8 High spatial and temporal resolution for 
monitoring these rapid temperature changes is 
essential, currently a 2-D imaging sequence with 
just a few slices covering the hotspot is used. Tran-
scranial MRgHIFU applications require optimal 
monitoring of three-dimensional (3D) tempera-
ture maps with large volume coverage and high 
spatio-temporal resolution for accurate tracking 
of rapid heating at the focus and monitoring the 
heating at the near- and far-fields of the ultra-
sound beam.19,20 The most critical part of obtain-
ing the temperature map using MRgHIFU is in 
reconstructing the temperature maps in real-time. 
Real-time imaging can be possible by reducing 
the MR scan time and performing faster tempera-
ture map reconstruction from the acquired MR 
data. To achieve real-time therapeutic imaging, 
advanced image reconstruction methods (based 
on compressive sensing) can be used, wherein the 
temperature maps estimation can be performed 
with lesser measurements, which inturn can lead 
to faster scan times.21

Current state of the art MR temperature map 
reconstruction techniques in MRgHIFU are using 
Model Predictive Filtering (MPF),22 Temporally 
Constrained Reconstruction (TCR),21 and paral-
lel imaging with UNFOLD.23 Model predictive 
filtering requires prior knowledge about tissue 
acoustic and thermal properties for accurate esti-
mation of temperature maps.22 This method uses 
Pennes bioheat equation as a model along with tis-
sue acoustic properties to obtain the temperature 
distribution.22 Both MPF and parallel imaging 
with UNFOLD methods are not able to monitor 
the entire 3D volume of interest. Currently, TCR 
is the only established method that has the ability 
to provide large coverage 3D temperature meas-
urements.24 TCR was able to achieve accurate tem-
perature measurements with 1.5  1.5  3.0 mm 
spatial resolution, 1.7 s temporal resolution, and 
288  162  78 mm volume coverage. A major lim-
itation of TCR method was its inability to perform 
real-time temperature map reconstruction and was 
therefore limited to retrospective applications.

The usage of Graphics Processing Units (GPUs) 
was previously explored for performing back-
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projection type image reconstruction in cone-
beam CT (CBCT) in real-time.25 Iterative image 
reconstruction algorithms for CT (voxel driven), 
which requires scatter and gather operations are 
performed on GPU, similar kind of algorithms 
are proposed for PET and SPECT (line driven) 
and shown to provide good speedups.25 Similarly, 
GPU has also been used for acceleration of MRI 
image reconstruction, where the reconstruction 
is performed using a simple fast Fourier trans-
form (FFT) from the MRI pulse sequence. These 
MRI image reconstructions are performed using 
optimized GPU implementation of FFT known 
as CUFFT provided by CUDA26 to advance MRI 
reconstruction schemes like parallel imaging 
combined with reconstruction based on conjugate 
gradient solver.27 GPU has been explored even in 
non-linear image reconstruction schemes like dif-
fuse optical tomography,28 and bioluminescence 
tomography,29 which require matrix inversion 
operations, while fluorescence molecular tomog-
raphy imaging scheme was parallelized using an 
open-source software called AGILE.30 The TCR 
algorithm (later explained elaborately in this 
review) implementation in GPU hardware can 
provide the required acceleration to perform real-
time temperature map reconstruction.

The TCR algorithm gives reasonably accu-
rate reconstruction with 2 to 6 times (17–50 %) 
reduction factor in the k-space (acquired) data, 
but it does not provide the high level of opti-
mization that is required, especially if the desir-
able compressed data is around 12 times (8%). 
Recent works in dynamic Computed Tomogra-
phy (CT) has shown that better utility of prior 
image can result in better reconstruction with 
relatively less number of projection using a 
Prior Image Constrained Compressive Sensing 
(PICCS) image reconstruction.31,32 It is impor-
tant to note that in CT high under-sampling will 
help in reduced dosage, while in MRI it helps in 
faster scan times (desirable in real-time temper-
ature monitoring). Hence, usage of a variant of 
PICCS as Prior Image Constrained Image Recon-
struction (PICIR) algorithm is seen to provide 
accurate reconstruction with less number of MR 
measurements.

This review elaborates various MR methods 
that can be used in providing temperature maps. 
Further, it introduces various existing state-of-
art image reconstruction algorithms for MR 
thermometry and lists the advantages and dis-
advantages of each one. Later part of the review 
explains the PICIR-type image reconstruction and 
real-time TCR (RT-TCR) based temperature map 

reconstruction. The comparison with TCR algo-
rithm with these methods is also provided through 
numerical and ex-vivo tissue experiments. Lastly, 
a brief write-up on future directions in MR tem-
perature imaging is presented.

2 MR Temperature Imaging Methods
This section reviews various ways of estimat-
ing temperature distribution using different MR 
parameters like T

1
-weighted, T

2
-weighted, proton 

density, diffusion coefficient and proton resonant 
frequency.

2.1  Temperature imaging using 
T1-weighted MR images

Noninvasive temperature monitoring can be 
performed as relaxation times are function of 
time.12 The longitudinal relaxation time refers to 
the T

1
-weighted image. In the early 80’s Parker 

et al. investigated the relation between temperature 
and longitudinal relaxation rates, given using the 
following relation14,15

1

11

2 2
0

2 2T

H

o o
 (1)

where  is the gyromagnetic ratio, 
0
 the Larmor 

frequency, H the local magnetic field induced by 
local magnetic moments, and 

0
 is the molecular 

position correlation time. The molecular position 
correlation time is dependent on temperature via 
the following relationship,14,15

0
constant

T

K

T
 (2)

where K can be considered as a constant (since 
the viscosity ( ) of water changes very less with 
temperature) and T represents the temperature. 
A linear behavior between the T

1
 contrast and 

temperature T was observed experimentally, 
and hence heuristically linear relationship was 
assumed.14,15

More recent works indicate that an increase 
in temperature leads to a change in the transla-
tional and rotational motion.33 It is well known 
that the spin-lattice relaxation in biological tis-
sues is observed as a result of bipolar interaction 
of macromolecules and water molecules which in 
turn depends on their translational and rotational 
motion. Hence, an increase in temperature is 
reflected in longitudinal relaxation (T

1
) time. The 

mathematical model that describes this variation 
is given as,14
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T e
E T

kT
a

1

1( )

 (3)

where E
a
(T

1
) is the activation energy of the relaxa-

tion time, k is the Boltzmann constant and T the 
absolute temperature.33 Using the above model, 
Bottomley et al. showed that T

1
 contrast has a lin-

ear relationship with the temperature ( ),T T1
1  

the same was proved using the dependence on 
relaxation time. The temperature depends linearly 
with the longitudinal relaxation time (T

1
 con-

trast). But the contrast is also affected by the tissue 
type, given by39

T T T T m T Tref ref1 1( ) ( ) ( )  (4)

where T
ref

 is the reference temperature and 
m dT

dT
1 , which is estimated empirically for vari-

ous tissues.34 Typical values of T
1
(T) is 1.4%/°C 

for bovine muscle,35,36 0.97%/°C for fat,37 and 
1–2%/°C for liver.38,39

The relation between the repetition time 
(TR), reference temperature (T

ref
), flip angle 

( ), m, and T
1
 contrast is given by temperature 

sen sitivity ( )dS
SdT  as40

dS

SdT

m TR E

T T

( ( ))

( ) ( )( )

1 1

1

cos

E cos E Tref ref
2 1 1

1
 (5)

where S and E
1
 is given by39,40

S M sin
E

cos E0
11

( )
( )1 1  

(6)

E
TR

T T m T Tref ref
1

1

exp
( ) ( )

 (7)

with M
0
 representing the equilibrium magnetiza-

tion. Note that the accuracy of MR temperature 
imaging depends on the accuracy of measuring  
and estimating the T

1
-weighted contrast. Pres-

ence of lipids leads to artifacts in the T
1
-weighted 

images, and hence cannot be used for MR ther-
mometry; this can be overcome by using lipid 
suppression techniques.39 Obtaining accurate 
T

1
-weighted images can be done using inversion 

recovery methods, but these tend to be compu-
tationally expensive. Hence T

1
-weighted methods 

are always used with multiple readout pulses 
(multiple slices are acquired simultaneously), 
making it more suitable for hyperthermia applica-
tions.41 The above equations contain a coefficient 
(m, which is tissue dependent), typically this coef-
ficient is not known for individual tissue type, and 
hence T

1
-weighted measurements have a draw-

back of not providing quantitative temperature 

maps during heating. Most T
1
-weighted temper-

ature map imaging are used in situations where 
rapid qualitative imaging is sufficient.42

2.2  Temperature imaging using 
T2-weighted MR images

The transversal relaxation time (T
2
) follows a sim-

ilar trend of a T
1
 relaxation time. The variation 

of T
1
- and T

2
-weighted contrast with exponential 

time constant of autocorrelation function is given 
as43,44

1

5 1

4

1 21
2 2T

A c

L c

c

L c( ) ( )
 (8)

1

10
3

5

1

2

1 22
2 2T

A
c

c

L c

c

L c( ) ( )
 (9)

where A is a constant, 
c
 is approximately the aver-

age time required for a molecule to orient itself 
through solid angle of 1 degree, and 

L
 is the 

resonant frequency. The above equations can be 
rewritten as43

T
c

L c c1 T exp
E

kT
a

2 01&;  (10)

where 
o
  T

1
ln(2). Hence, the temperature 

depends linearly with both T
1
 and T

2
-weighted 

contrast until some condition (
L c

  1) holds, 
a decrease in temperature (from a very high tem-
perature value) will result in a decrease in con-
trast in this region. When 

L c
  1, then T

1
  

L c
2 , leading to further decrease in temperature 

(increase in the T
1
-contrast).43 Therefore, this 

variation looks like a parabola having a minimum 
T

1
 contrast at 

L c
  0.612, while a decrease in 

temperature will result in increase in the value of 

c
. In case of T

2
-weighted temperature imaging, 

the T
2
-contrast increases with an increase in the 

temperature until 
c
  T

2.
43 But when 

c
  T

2
 con-

dition is not satisfied (at very low temperatures), 
T

2
-contrast tends to remain a constant as this  

situation resembles a solid body in the Nuclear 
Magnetic Resonance (NMR) spectrum, the change 
in T

2
-contrast with temperature follows a sigmoi-

dal increase.45 A more elaborate discussion and 
derivation can be found in Freude’s lectures.43

Previous works have reported that T
2
 con-

trast increases with increase in temperature in 
aqueous solution. The T

2
 contrast for the water 

in the tissue is lower by a significant factor when 
compared to pure water. But as already discussed, 
a reduction in temperature will cause increase in 
T

2
 signal, and an increase results in lower T

2
 

signal value,45 this observation has been used 
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for identifying irreversible tissue damage during 
thermal coagulation.

The relationship between the Signal to Noise 
Ration (SNR) and MR parameter is given as43

SNR B T I I
T

T
tmeas

5
2

0

2
3

3
2 2

1

1( )  (11)

where N is the density of nuclei, B
0
 the external 

magnetic field, T represents the absolute tempera-
ture, I the nuclear spin, and t

meas
 the measurement 

time. It can be observed that the SNR depends on 
the absolute temperature and the contrast (T

1
- or 

T
2
-relaxation times). The measurable power in 

the Radio-Frequency (RF) coil is proportional 
to the resonant frequency (

L
  B

0
), hence the 

power of RF coils can be related to the SNR.43 The 
electronic noise is observed due to the frequency 
and the temperature which is given by T ,  
this is also called as white noise.43 Note that the 
SNR definition is the same for both T

1
- and 

T
2
-weighted temperature imaging. T

2
-weighted 

temperature measurements in case adipose tissues 
are shown in Ref. 46. As with the T

1
-weighted, the 

temperature maps obtained through T
2
-weighted 

are qualitative in nature, making them not ideal 
for MR thermometry.

2.3  Proton density based temperature 
imaging

MR signal in proton density weighted imaging is 
proportional to the number of spinning protons 
present in the region of interest. The is achieved 
by having a very long Repetition Time (TR) and 
Echo Time (TE) being very short, leading to mini-
mal weighting of the relaxation time, thus obtain-
ing a proton density contrast. The temperature 
can also be measured by measuring the proton 
density (PD). The proton density linearly depends 
on the equilibrium magnetization (M

0
)47

PD
h

M
N I I B

kT
B0

2 2
0

0
0 0

( )1

3
 (12)

where N represents the spins per volume and h 
is the Planck’s constant. The susceptibility (

0
) is 

related to the absolute temperature (T) as,

0
1

T
 (13)

Hence, proton density can be used to esti-
mate the temperature changes, for example the 
equilibrium magnetization change by a factor 
of 0.30  0.01%/°C between 37°C to 80°C.48 

It is important to note that tracking a change 
of 0.3%/°C necessiates high SNR, typically a 
temperature sensitivity of 3°C can be achieved 
by having an SNR of 100.49 As already seen, the 
T

1
-weight effects the temperature measurements, 

to avoid the effect of T
1
 on temperature meas-

urement the repetition time of pulse sequence 
has to be increased in the order of 10 seconds. 
This restricts the usage of this method for retro-
spective applications.50

Proton density (PD) MR parameter was used 
in many clinical scenarios, for instance PD was 
used for performing follow up scan after perform-
ing MR guided therapy.51 Proton density based 
temperature imaging was used for measuring 
temperature changes in ex-vivo tissue samples like 
fat49 Variation of proton density with temperature 
was studied for adipose and muscle tissues.52 
A decrease in PD was observed in the muscle 
tissue as temperature increased, but in adipose tis-
sue the PD was found to increase initially as the 
temperature rose to 50°C, and then decrease as the 
temperature further increased.52

2.4 Diffusion based temperature imaging
In here, the MR parameter that is being used for 
measuring temperature is the diffusion coefficient 
via spin-echo sequence. The diffusion coefficient 
explains the thermal Brownian motion of the 
ensemble of molecules in the tissue, this motion 
occurs due to temperature variations in the tissue. 
The temperature is related to diffusion coefficient 
using the following relation53

D e
E D

kT
a ( )

 (14)

where E
a
(D) indicates the activation energy of 

molecular diffusion of water. The variation of 
temperature with diffusion coefficient is given by

dD

DdT

E D

kT
a( )

2  (15)

This MR parameter can estimate a tempera-
ture change of about 2%/°C. The change in tem-
perature can be derived as54

T T T
kT

E D

D D

Dref
ref

a

ref

ref

2

( )
( )  (16)

where D and D
ref

 indicates the value of diffusion 
coefficient at temperature T and T

ref
 (reference 

temperature) respectively, this result assumes that 
T  T

ref
 and that E

a
 is independent of T.
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Note that the above equation shows that 
measuring temperature using diffusion coef-
ficient does not depend on the magnetic field 
strength. This kind of measuring temperature 
was used for non-invasively measuring tempera-
ture in-vivo.55 One of the major advantages of this 
method is its high temperature sensitivity, but 
this scheme suffers to provide real-time imaging 
as the acquisition time is very long (longer echo 
time required), and hence tends to be extremely 
sensitive to motion.55,56 Methods like single-shot 
Echo Planar Imaging (EPI)55 and line-scanning56 
techniques have been used to overcome the limi-
tations of long acquisition time and motion arti-
facts. Another major disadvantage of this method 
is that temperature dependence on diffusion coef-
ficient becomes non-linear when the tissue con-
ditions change. The diffusion coefficient depends 
on the amount of water content, the movement 
of water is affected by proteins, membranes etc. 
Thermal heating may lead to protein coagula-
tion, and hence avoid movement of water result-
ing in different diffusion coefficient estimates. 
The lipid suppression in tissue containing fat has 
to be incorporated for using diffusion coefficient 
for estimating temperature maps, as variation 
in fat results in variation in diffusion coefficient 
with an increase in temperature.39 Previous works 
have used diffusion weighted MRI for early detec-
tion of regional cerebral ischemia in cats,57 and 
later works have used EPI-diffusion coefficient 
weighted MR (lesser sensitive to motion) for 
non-invasive temperature monitoring in acryla-
mide gel materials, and in-vivo in canine brain 
tissue.58

2.5  Proton resonance frequency based 
temperature imaging

Proton Resonant Frequency (PRF) was seen to be 
sensitive to temperature during the late 1960’s,13,59 
and it was used for spectroscopy and then for MR 
temperature imaging. Water molecules contain 
two hydrogen atoms and an oxygen atom, the elec-
tron in the hydrogen atom is pulled by the bond 
between hydrogen and oxygen molecule, resulting 
in increase in resonant frequency.16–18 This bond 
will twist, stretch and break with the increase in 
temperature.13,16,60 Increase in temperature will 
lead to electron shielding of the hydrogen atom 
from the magnetic field, thereby reducing the net 
field observed by the proton. This will change the 
overall resonant frequency, which can act as a sig-
nal for MR temperature imaging.

The resonant frequency of the hydrogen atom 
is due to the presence of the local magnetic field. 
The field at the nucleus is given by16

B B B s Blocal s0 0 01( )  (17)

where B
local

 is the local magnetic field, B
0
 is the 

applied magnetic field, and s is the shielding con-
stant or screening constant (dependent on the 
chemical environment). The resonant frequency 
now becomes,

B B slocal 0 1( )   (18)

this shielding constant depends on the tempera-
ture, hence proton resonant frequency can be used 
to estimate the temperature maps. The relation-
ship between shielding constant s and tempera-
ture T is given as,

s T T( )  (19)

where  indicates some constant, hence the 
variation of temperature leads to linear varia-
tion in shielding constant. Temperature map 
estimation using PRF shift can be done in two 
ways, spectroscopic imaging and phase mapping 
methods.

2.5.1 Spectroscopic imaging using PRF shift: 
Proton spectroscopic imaging used for tempera-
ture imaging utilizes temperature induced water 
proton chemical shift. The frequency shift is com-
puted using MR spectra, the shift is measured 
between water peak and reference peak (this peak 
remains constant with temperature), the model 
given in Eq. 18 is used to obtain the temperature 
map. Absolute temperature imaging is possible as 
the reference temperature does not get affected by 
field drift and motion during scan,61 hence abso-
lute temperature imaging has been demonstrated 
in human brain.62

A spatial resolution of 3–4 mm was achieved 
by spectroscopic imaging, also the reconstruction 
of absolute temperature was performed within 
1 minute. Various kinds of data acquisition meth-
ods have been proposed for spectroscopic imaging, 
mainly used ones are Echo Planar Spectroscopic 
Imaging (EPSI), MR Spectroscopic Imaging 
(MRSI) and Line Scan Echo Planar Spectroscopic 
Imaging (LSEPSI).63 This method is used only for 
retrospective application due to its limitations to 
achieve high spatial and temporal resolution.63,64 
A thorough study of the effect of MRSI with 
shimming, eddy currents, spatial localization 
and post-processing methods has been given by 
Drost et al.65 MRSI was used for measuring brain 
temperature, this helped in studying a variety of 
clinical conditions such as stroke, traumatic brain 
injury, and schizophrenia.66
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2.5.2 Phase mapping using PRF shift: Phase 
mapping using PRF shift is a widely used imaging 
technique for obtaining the temperature maps. In 
this kind of temperature imaging, the phase image 
of the tissue before the heating is subtracted with 
the current on (after heating starts) to obtain the 
temperature distribution. As already described, 
the phase difference is proportional to the temper-
ature-dependent PRF change and the echo time, 
the change in temperature is given as,16

T
T T

B TE

( ) ( )0

0

 (20)

where (T) indicates phase of the current image 
(data obtained after heating starts), (T

0
) is the 

phase before the heating has started, B
0
 is the mag-

netic field strength and echo time is indicated as 
TE.

The Gradient Echo (GRE) signal intensity 
decreases exponentially with increase in TE having a 
time constant T2

* . The signal to noise ratio depends 
on the echo time and can be derived to be39

SNR TEe

TE
T2  (21)

Here an optimal TE can be estimated to obtain 
a maximum SNR. Hence, differentiating the above 
equation with respect to TE and equating it to 0 
results in obtaining optimal TE as TE T2 .63,67 
A variety of effects like tissue type, electrical con-
ductivity, external field shift and susceptibility 
which influence temperature measurements using 
proton resonant frequency shift is explain in greater 
detail by Rieke et al.39 This scheme is widely used 
in MRgHIFU for treating brain and breast tumors. 
The phase mapping using PRF shift is utilized in all 
discussed image reconstruction algorithms in this 
review.

3  Image Reconstruction 
in MR Thermometry

High spatial and temporal resolution of tem-
perature maps is one of the key requirement in 
in MRgHIFU. High spatial resolution is required 
while treating organs like breast to avoid tempera-
ture measurement errors due to partial volume 
effect.68 Increase in spatial resolution accommo-
dates small and non-uniform shaped structures 
at the focal zone. Typical focal zone using HIFU 
is 13 mm  2 mm, the power deposited by using 
the ultrasound beams follows a Gaussian profile, 
and working with voxel size larger than 1–2 mm3 
induces errors in temperature measurements due 
the averaging effects of the Gaussian.68

High temporal resolution is another essential 
aspect in MR thermometry, which enables mini-
mizing the treatment time and better control of 
HIFU heating. Most important aspect is to know 
the end point of temperature heating (15–20°C 
above the body temperature), at which the tis-
sue becomes necrosed.68 Not exceeding this target 
temperature is essential, as exceeding this temper-
ature will lead to excessive heating in the near field 
of ultrasound beam.68 Excessive heating typically 
requires more time for cooling, hence an increase 
in total time of MRgHIFU therapy.68,69 Fast scan 
time is also essential as the temperature in the 
region of interest can rise at a rate of 3°C/sec and 
the thermal dose is known to double for every 
1°C.68,70 Hence to obtain accurate temperature 
maps, the reconstruction algorithms should be 
able to provide high spatial and temporal resolu-
tion with less number of measurements (k-space 
lines) alongwith imaging the entire Field of View 
(FOV) covering the full anatomy that is being 
treated.68 There are many reconstruction meth-
ods available for performing temperature map 
reconstruction in MR thermometry, like solving 
the Pennes bioheat equation by Model Predictive 
Filtering (MPF), using parallel imaging with Una-
liasing by Fourier-encoding the overlaps using the 
temporal dimension (UNFOLD), and Temporally 
Constrained Reconstruction (TCR). These are 
described in details in the subsequent sections.

3.1 Model predictive !ltering (MPF)
MPF uses a thermal model (Pennes bioheat equa-
tion), which is identified before the therapy begins. 
The temperature at next time points are predicted 
based on this temperature model, and this is used 
to create an estimate of the current k-space data.68 
The temperature at the current time point is esti-
mated using the updated k-space data and a com-
bination of the estimated current k-space data 
and the acquired undersampled k-space data. The 
thermal model is based on Pennes bioheat equa-
tion given by22

C
T

t
k T WC T T Qblood

2 ( )  (22)

where T is the temperature of the tissue,  the 
tissue density, k the thermal conductivity of 
the tissue, C the specific heat of the tissue, Q the 
deposited power density, and W is the Pennes per-
fusion parameter. Assuming that the specific heat 
of the blood and tissue is the same, the values for 

 and C can be considered as 1000 kg/m3 and 4186 
J/kg/°C.68 The other parameter in the model like k, 
W, and Q are estimated before therapy using low 
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power continuous pulse and fully sampled k-space 
data during the heating and cooling phase. Note 
that the dimensionality of W and Q is same as that 
of the obtained MR data.

The volume is assumed to be homogeneous 
and thermal properties are assumed to be iso-
tropic while estimating the parameters (W and 
Q). The parameter Q is estimated using pixel by 
pixel linear fit to the first two or three points of 
the temperature-time curves,22,68 this parameter 
estimation assumes that the perfusion and dif-
fusion is negligible for small duration at the start 
of ultrasound heating. The scalar k (thermal con-
ductivity) is estimated based on measured rate at 
which the Gaussian-shaped temperature profile of 
the sample spreads in the direction perpendicular 
to the ultrasound beam during cooling.22,68 Using 
this k, the W can be estimated numerically, at the 
beginning of cooling period, where Q is zero, via 
the relation22

W
T

k

C
T

T

t

1 2

 
(23)

The temperature at n 1 time frame can now 
be estimated using the Pennes bioheat equation,22

T T
k

C
T

W
T

u

C
Q tn n n n

n
rel1

2 .  (24)

where Q
rel

 is the normalized power distribution, u
n
 

is the ultrasound power applied at nth time frame, 
and t is the time step. The spatial derivative ( 2) 
can be calculated numerically for each pixel. The 
first time frame of the acquired k-space data must 
be fully sampled.68 The next time frames can be 
sampled by a undersampling factor of S. The 
important steps in recursive model predictive fil-
tering algorithm are22,68

1. With the current temperature estimate at time 
n as T

n
, acquire the undersampled k-space data 

at time frame n  1.
2. Use the thermal model given by the bioheat 

equation, estimate the new temperature T
n 1

 
at n  1 time frame using Eq. 24.

3. Create a complex image at time frame n  1 using 
the magnitude of image at nth time frame and 
calculate the phase (n  1) as, (n  1)  (n) 

 B
0

TE(T
n 1

  T
n
);   0.01ppm/°C.

4. This complex image is projected to k-space by 
taking a Fourier Transform.

5. The acquired undersampled data at time n 1, 
is filled with the corresponding predicted 
lines.

6. This updated k-space data is transformed 
to image space using inverse Fourier Trans-
form and a new temperature distribution is 
estimated.

It can be seen that the above algorithm pro-
vides a very good resolution, but has an inherent 
drawback of requiring to estimate many param-
eters like , W, Q, k, and C.22 These parameters 
are generally tissue dependent, making this proc-
ess computationally intensive task. But MPF based 
algorithm was shown to work well in presence of 
motion, due to inclusion of motion detection and 
correction steps into the algorithm.68 More details 
about MPF can be found in Ref. 22.

3.2 Parallel imaging with UNFOLD
This reconstruction technique assumes that ther-
mal therapy takes place on much smaller Field of 
View (FOV) than the entire organ, thereby pro-
viding faster temperature imaging. Fast imaging 
strategies like two-dimensional spatially-selec-
tive RF (2DRF) excitation, unaliasing by Fourier 
encoding of the overlaps using the temporal 
dimension (UNFOLD), and parallel imaging are 
combined. The assumption is that 2DRF excita-
tion approach is well-suited for temperature mon-
itoring, as larger FOV is required to avoid aliasing, 
which is often substantially larger than the heated 
volume. The UNFOLD and parallel imaging tech-
niques can be used to remove the aliasing artifacts 
introduced by 2DRF excitations, and enable use of 
shorter 2DRF pulse durations (thereby providing 
real-time imaging capability).

This algorithm assumes that the only a small 
part of the FOV is to be imaged and the Signal to 
Noise Ratio (SNR) is not a limiting factor.71 With 
these assumptions, the data is collected pertaining 
to this small FOV by acquiring fewer k-space lines, 
leading to faster acquisition time.71 This kind of 
data collection leads to aliasing artifacts from sig-
nal outside the FOV, this could be overcome by 
using a 2DRF pulse to limit the excitation of the 
desired region of interest in the phase encoding 
direction.23 A RF field is a composition of mul-
tiple sub pulses weighted with k-space weighting 
function, magnetic field gradient and the excita-
tion profile. The excitation profile M(r) can be 
expressed as,23

M r i k S exp ir k dk( ) ( ) ( ) ( . )M W k0  (25)

where r and k are vectors. Here M
0
 indicates the 

original longitudinal magnetization, S(k) is the 
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sampling function of the excitation k-space, W(k) 
is the weighting function, and k(t) is given as23

k t G d
t

T
( ) ( )  (26)

where G represents the gradient field. The weight-
ing function W(k) is given as23

W k t
B t

G t
l( ( ))
( )

| ( )|
 (27)

where B
l
(t) is the RF field. The excitation profile can 

be viewed as the Fourier transform of the product 
of k-space weighting function and k-space sam-
pling function. In order to avoid aliasing artifacts, 
a RF pulse is required to create one excitation lobe 
within the FOV, but this leads to increase in mini-
mum Repetition Time (TR) and hence scan time. 
On the other hand, short RF pulse leads to excita-
tion profile becoming wider or the excitation pro-
file repeating itself.23 To overcome this, one can use 
a shorter RF pulse and in the next step can include 
removal of the introduced aliasing artifacts using 
UNFOLD and parallel imaging methods.23

UNFOLD is a reconstruction scheme that 
takes into account the temporal evolution of the 
signal of every pixel of the image.72 The idea of 
UNFOLD technique is that in a dynamic imaging 
scenario, every pixel in an image has a correlated 
change observed in the temporal dimension.72,73 
In the dynamic case, maximum signal content 
tends to appear in the DC component of the fre-
quency domain of the temporal signal. UNFOLD 
algorithm tries to isolate the DC component from 
the aliased signal, thereby obtaining the unaliased 
version of the frequency domain data.72 Once 
the filtering operation is done, the image can be 
obtained by taking the inverse Fourier transform 
of the unaliased version of the signal.73

Parallel imaging involves using multi-
ple receiver coils to collect the data in parallel, 
thereby reducing the scan time. The reconstruc-
tion algorithms involving parallel imaging are 
SMASH (SiMultaneous Acquisition of Spatial 
Harmonics)74 and SENSE (Sensitivity Encoding),75 
with SENSE being widely used due to its fast recon-
struction time. In SENSE reconstruction, the dis-
tance between the sampling position in k-space is 
increased while retaining the maximum k-value 
leading to reduction in scan time.75 This leads to 
aliasing due to reduction of sampling density, this 
aliased image is then used to create the full-FOV 
image from the set of intermediate images. This is 
achieved by estimating the signal contribution to 

each pixel by its neighboring pixels.75 This kind of 
signal separation is possible due to the fact that in 
each single-coil image superposition occurs with 
different weights according to coil sensitivity.75 
A sensitivity matrix is estimated based on this idea, 
and this is encoded into the reconstruction proce-
dure. More details about the SENSE algorithm can 
be found in Preusmann et al.75

Above explained schemes can be combined 
in full/in part to obtain an accurate tempera-
ture distribution for MR thermometry. Reduced 
FOV (rFOV) is imaged and corresponding data is 
obtained, this results in an aliased signal.23 The ali-
ased signal can be corrected using parallel imag-
ing and UNFOLD methods.23,76 Parallel imaging 
method can be used on aliased signals where there 
exist a large separation between the main lobe and 
the smaller side lobes.23 While UNFOLD can be 
used to separate regions that are present in close 
proximity, i.e. can be used to reduced the FWHM 
of the given Gaussian signal. Usage of these two 
schemes on the aliased signal results in an unali-
ased signal.23 Later, temperature maps can be esti-
mated using this unaliased signal.

3.3  Temporally Constrained 
Reconstruction (TCR)

Another widely used reconstruction method 
in MR thermometry is by applying a temporal 
regularization constraint. This method provides 
acceleration when k-space under sampling pat-
tern is alternated in time. This induces some 
aliasing artifacts, but those are filtered out by 
usage of the penalty term (regularization). Tem-
porally Constrained Reconstruction (TCR) is 
one of the currently available schemes, which has 
the capability to provide high spatial and tempo-
ral resolution along with full three-dimensional 
coverage, which is essential for performing tem-
perature imaging in MR thermometry. The only 
drawback of this scheme is that usage of alternat-
ing k-space sampling patterns leads to eddy cur-
rent distortion, and hence limits the acquisition 
design setup.

The temperature maps are obtained using a 
temporally constrained reconstruction (TCR), 
which is based on compressive sensing like 
approach enforcing the data fidelity and con-
straining the rapid temporal change. This algo-
rithm draws a parallel to the regularization theory 
for solving ill-posed inverse problems. The stand-
ard discrete inverse Fourier transform reconstruc-
tion from the full k-space data can be written as,21

d mF  (28)
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with d representing the 4-dimensional full data 
acquired in k-space for various time frames and 
m (having dimension M  N  L  P, where 
M  N  L represents the spatial dimensions cor-
responding to x, y, and z axis respectively and P 
represents the temporal dimension) representing 
the complex image data. Here, F represents the 
Fourier Transform (FT) of each time frame in 
dynamic sequence taken along the y-dimension. 
This is considered as the truth and used for com-
parison with TCR and PICIR algorithm, since full 
k-space data (without under sampling) is used for 
reconstruction.

The full k-space data (d) is under sampled, and 
only sparse data ( d ) is acquired (and the unac-
quired data points are 0), then the reconstruction 
can be performed by minimizing the cost func-
tional represented as,21,24,77

min{ ||( )|| || || }
m

m m d2 2
2WF  (29)

where F is the Fourier transform matrix hav-
ing a dimension of N  N (considering along y 
dimension of the four dimensional data), W (of 
dimension N  N, representation only) is the 
4-dimensional binary sparsifying pattern (which 

represents the phase-encoded lines that are sam-
pled) to obtain d  (of dimension M  N  L  P) 
from d (of dimension M  N  L  P). The  is 
the spatially varying free parameter, and  rep-
resenting the temporal Laplacian. This objective 
function can now be minimized using a gradient 
descent approach combined with finite forward 
difference scheme, leading to a series of image 
frames updated iteratively as21

m m C m nn n
s

n1 0 1 2( ); , , ,  (30)

where 
s
 represents the step size corresponding to 

the gradient descent approach, and C m( )  repre-
sents the Euler-Lagrange derivative of the objec-
tive function given as,21

C m WFm d mt( ) * ( ( ) ( ) )2 1 1 2F F  (31)

where t
2 represents the temporal Laplacian and 

operates on the complex data. It can be seen that 
the TCR algorithm takes advantage of Laplacian 
across frames (previous time point) for perform-
ing the temperature map reconstruction. The 
major steps in the TCR algorithm are given in 
Algorithm-1. In this review the TCR algorithm 
with PRF temperature imaging is considered as 

Algorithm 1: Temporally Constrained Reconstruction (TCR).
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standard benchmark to compare the recently 
developed algorithms.

3.3.1 Advantages of temporally constrained 
reconstruction algorithm: TCR algorithm pro-
vide high spatial resolution and temporal reso-
lution while performing the temperature map 
reconstruction. TCR algorithm also has the ability 
to provide reconstruction for large Field of View 
(FOV). Even though Model Predictive Filtering 
(MPF) has the ability to provide high spatial and 
temporal resolution, MPF requires estimation of 
many parameters like W, Q, , k, and C (all these 
are tissue dependent). On the other hand, parallel 
imaging with UNFOLD has good spatial and 
temporal resolution, but has a limitation of not 
spanning larger Field of View (FOV), must be 
restricted to reduced FOV (rFOV) due to usage 
of 2DRF. Major drawbacks of TCR reconstruc-
tion scheme is the eddy currents distortion and 
lacks the ability to perform real-time temperature 
imaging. Next section will explain the utility of 
graphics processing units (GPU) to eliminate the 
drawback of real-time imaging for TCR method. 
A real-time TCR (RT-TCR) algorithm that runs 
on the GPU, having a capability to provide high 
spatio-temporal resolution with large coverage 
along with real-time reconstruction (reconstruc-
tion is faster than data collection time, making it 
ideal for MR thermometry). Since TCR is the only 
method to provide high spatial, temporal and vol-
ume coverage, TCR is used for comparison with 
the PICIR algorithm (discussed later).

4  Real-Time Reconstruction 
in MR Thermometry

4.1  Real-Time Temporally Constrained 
Reconstruction (RT-TCR)

The original TCR algorithm can be used for per-
forming dynamic three dimensional imaging. In 
here, the reconstructed image m can be obtained 
from k-space data, d , by iteratively minimizing 
the cost function:

m arg F d mmin 2
2

m
i
N

t iW m|| ( ) || || ||2
2

 
 (32)

where F indicates the Fourier Transform, W 
indicates which phase encoding lines have to be 
acquired, m  is the image sequence estimate, and 

 is a regularization parameter. Real-time avail-
ability of the temperature maps can be achieved 
using RT-TCR algorithm, for doing this the TCR 
algorithm is modified in two ways: the TCR code 
is implemented on Graphics Processing Units 

(GPU) to reduce the computation time and the 
algorithm is applied to only a small section of 
the image matrix around the region of hotspot. 
Moreover, the estimates for the current tempera-
ture map is obtained using only the current and 
past time frames.78

The original TCR algorithm is written in 
Matlab environment, hence this algorithm was 
rewritten on the GPU using open-source pack-
ages namely CUFFT79 and CUBLAS80 provided 
by CUDA, and are wrapped to make them Mat-
lab executable (mex) files, enabling running of 
the TCR algorithm on a GPU machine.78 The RT-
TCR algorithm was implemented on a NVIDIA 
Quadro 6000 GPU machine having 448 cores 
and 6 GB memory. The data matrix is truncated 
in x- and z-directions in image space, such that 
only small ROI around hotspot is reconstructed 
using RT-TCR algorithm.78 The remaining region 
where temperature is static or changes very slowly 
is reconstructed using sliding window approach to 
enable faster reconstruction.78 The most recently 
acquired k-space data is added to the previous 
k-space frames in a sliding window fashion, hence 
enabling data truncation; this data is transformed 
to image space, truncating the x- and z-directions, 
and transforming back to k-space.78 Note that 
doing truncation in the y-direction is not possible 
as the undersampling is performed in the phase-
encoding direction. This truncated, sliding win-
dow k-space is used as the input for the RT-TCR 
algorithm.

The current time frame in the RT-TCR algo-
rithm is reconstructed based on the current and 
past information, but also updates that time frame 
later as and when the future information becomes 
available.78 The location of the hotspot and the 
time frames at which the ultrasound is turned on/
off is the only prior information given to the RT-
TCR algorithm. To reconstruct the current time 
frame, t, the RT-TCR algorithm only uses frames 
[t  P, t], where P is twice the data reduction fac-
tor, more detailed illustration is given in Ref. 78. 
The performance of the RT-TCR algorithm can 
be seen as the original TCR algorithm to recon-
struct a data set with 192  108  30 image matrix 
and all 77 time frames, it takes 236 seconds on a 
12-core computer with Dual Intel Xeon Processor 
X5650, 2.66 GHz processing speed, and 64 GB of 
RAM.78 The truncated data having a matrix size of 
10  108  13 using the 13 most recent time frame 
takes around 0.25 seconds using the RT-TCR GPU 
implementation on an NVIDIA Quadro 6000 
with 448 cores. The data transfer from scanner to 
the computer having GPU card took 0.35 seconds, 
0.02 seconds to do the necessary pre-processing 
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steps, and 0.10 seconds for the post-processing. 
Note that the total reconstruction time (0.72 sec-
onds) is less than the data acquisition time for 
one undersampled time frame, thus removing 
the reconstruction bottleneck.78 The data reduc-
tion along with GPU implementation produced a 
temperature map reconstruction in 0.72 seconds 
(including data transfer, running TCR algorithm 
on GPU, pre- and post-processing steps). Note 
that RT-TCR it is not faster than Fourier recon-
struction, but is faster than one acquisition step, 
and therefore making it sufficient for the needed 
temperature feedback.78

The implementation of RT-TCR algorithm 
uses information from previous time frames to 
improve the image of the current time frame, 
but if the previous time frames are noisy then the 
noise will propagate making the estimate inac-
curate.78 Another drawback of RT-TCR is with 
its inability to handle motion inside the FOV 
(which is also true for the TCR algorithm), but 
motion outside the FOV can be handled using the 
RT-TCR scheme.78 Despite these drawbacks, the 
advantage of RT-TCR lies with its ability to pro-
vide increased volume coverage without sacrific-
ing spatial or temporal resolution and real-time 

Algorithm 2: Prior Image Constrained Image Reconstruction (PICIR).
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reconstruction, making it suitable for monitoring 
temperature changes.

4.2  Prior Image Constrained Image 
Reconstruction (PICIR)

Another approach for achieving real-time recon-
struction is by reducing the scan time, i.e. acquir-
ing less number of measurements, without 
compromising the quality of the reconstructed 
temperature maps. At present, the TCR algorithm 
provides reasonably accurate reconstruction with 
2–8 reduction factor in the data, higher reduction 
factor is desirable (resulting in faster scan time). 
TCR applied a temporal constrain to perform the 
image reconstruction, while in PICIR algorithm 
an extra term is added as a constraint involving 
the previous or the next time frame. The accuracy 
of the temperature map reconstruction can be 
improved by using the PICIR framework, where 
the minimization of the unconstrained variant is 
considered, namely31,32

min{ [ ||( )|| ( )||( )|| ]

|| || }
m

prm m m

m dr

2
2

2
2

2
2

1

F
 (33)

with  representing the non-negative regulariza-
tion parameter and mpr being the prior informa-
tion obtained as the previous or the next time 
frame. The prior image is defined as,
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,

.
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where P represents the total number of time 
frames.

Here when the temperature is rising the pre-
vious time frame should act as prior reference 
and for the falling temperatures the next time 
frame should act as prior reference. It is impor-
tant to note that the first time point reconstruc-
tion is performed by having fully sampled k-space 
data, the next time points have sampled version 
of the k-space data, which is similar to the TCR 
algorithm. The weight factor is represented by 

 (   1 indicates full weight for the prior and 
  0 indicates reconstruction performed using 

the TCR approach).
Solving of Eq. (33) can be done using a gra-

dient descent approach with finite forward differ-
ence, leading to a series of image frames updated 
iteratively as

m m C m nn n
s

n1 ( ); 0, 1, 2,  (35)

where 
s
 represents the step size corresponding to 

the gradient descent approach, and C m( ) repre-
sents the Euler-Lagrange derivative of the objec-
tive function given as,21

C( ) ( ( ) ( )
(( ) ) ( ( )))

m m d
m m mt pr

2 *
* *

F WF F1 1

21  (36)

The major steps of PICIR algorithm for the 4-D 
temperature map reconstruction are indicated in 
Algorithm-2. The inclusion of this prior term into 
the minimization helps in performing the recon-
struction with very less measurements compared 
to the standard TCR algorithm. It is important to 
note that in both the TCR and PICIR algorithms, 
the sliding window reconstruction is used as the 
initial image estimate (current TCR works in this 
fashion). The comparison of this scheme (PICIR 
algorithm) is performed using ex vivo pork mus-
cle experiments, which will discussed in the next 
section.

5 Simulations and Results
5.1 Simulation and experiments
The PICIR method was evaluated using MRgHIFU 
data sets. The HIFU heating were performed in a 
Siemens TIM Trio MRI scanner (Siemens Medi-
cal Solutions, Erlangen, Germany) using an MRI-
compatible phased array transducer (13 cm radius 
of curvature, 256 elements, 1 MHz frequency, 
Imasonic, Besancon, France and Image Guided 
Therapy, Pessac, France). Imaging for all experi-
ments was done with a 3D segmented EPI gradi-
ent echo sequence.78

In the first set of experiments, HIFU heat-
ing experiments were performed on an ex vivo 
pork muscle sample at 36 Acoustic watts for 
30 seconds. The rate of change in temperature 
at this power level was 2.2°C/s.78 At this power 
level, the heating was repeated twice under 
identical circumstances. In the first instance, 
imaging parameters were chosen such that the 
3D volume could be fully sampled at adequate 
temporal resolution. These fully sampled data 
sets were reconstructed with the standard Fou-
rier Transform approach and used to compute 
temperature maps that was considered as truth. 
Imaging parameters for the fully sampled data 
were: 128  72  12 imaging matrix (10 slices 
plus 20% slice oversampling), 1.5  1.5  3.0 mm 
resolution, TE  10 ms, TR  25 ms, EPI Fac-
tor  9, flip angle  20°, bandwidth  738 Hz/
pixel, 2.4 seconds per scan. Then the PICIR and 
TCR reconstruction methods were run by under 
sampling the acquired fully sampled data, the 
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reconstruction was performed by sampling only 
33% and 16% of fully-sampled data acquired 
from the MRI scanner.

The TCR and PICIR temperature map esti-
mation was done for larger 3D volumes that 
were acquired at an under sampling factor of 
6X.78 Each pair of identical heating runs was per-
formed at the same location in the sample. Imag-
ing parameters for the under sampled data were: 
1.5  1.5  3.0 mm resolution, 128  108  24 
imaging matrix (22 slices plus 9% slice oversam-
pling), TR  25 ms, TE  10 ms, EPI Factor  9, 
flip angle  20°, bandwidth  738 Hz/pixel, 6X 
under sampling, 1.2 seconds per under sampled 
time frame.78 This under sampled data was used to 
obtain the temperature maps with TCR and PICIR 
algorithms, and then compared with the standard 
Fourier transform reconstruction performed with 
full data. The obtained 6X undersampled data-
set was further undersampled by 50% and the 
reconstruction was performed using this highly 
undersampled data. The undersampled data was 
used to show the efficacy of the PICIR approach 
to reconstruct the temperature maps more accu-
rately compared to the traditional TCR approach 
at higher reduction rates.

The PICIR scheme was also evaluated with 
noise levels using the 6X data. Hence, a zero-
mean Gaussian random noise was added to the 
undersampled k-space data such that the slid-
ing window reconstruction of the noisy k-space 

produced a temperature maps with temperature 
standard deviations of 1.02°C as measured over 
the region of interest (ROI). This noisy data was 
used to perform the reconstruction using the TCR 
and the PICIR approach. The obtained noisy data 
was further undersampled by 50% and the recon-
struction was performed to show the effectiveness 
of the PICIR scheme with less measurements. The 
image reconstruction procedure was carried out 
on an machine having Intel Xeon dual six core 
processor with a processor speed of 2.66 GHz and 
memory of 64 GB.

5.2 Results
The fully sampled data obtained from the MRI 
scanner was undersampled to have only 33% and 
16% of the data. This data was used for estimat-
ing the temperature maps using TCR and PICIR 
method. The temperature map reconstruction, and 
difference between the reconstructed temperature 
maps with the truth (reconstructed with Fourier 
transform approach having full data) is shown in 
Fig. 1. It can be clearly seen that the PICIR scheme 
performs better at estimation of the temperature 
when compared to the TCR algorithm when the 
available data is very less. The weight parameter  
was kept as 0.3 in all cases. The computational time 
along with the Root Mean Square Error (RMSE) is 
reported in Table 1. The RMSE was calculated for 
5  5  7 voxel in the region of interest over all 
the time points as used in Ref. 24. The gradient 

Figure 1: Comparison of temperature map reconstruction of the standard Temporally Constrained Recon-
struction (TCR) with Prior Image Constrained Image Reconstruction (PICIR) method. The reconstruction 
was performed using 33% and 16% of the acquired Fully-sampled data. Difference image is also shown 
for better comparison of reconstructed temperature distribution. Sliding Window (SW) reconstruction is also 
incuded for completion.
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descent algorithm was run for 100 iterations in all 
the cases. The reconstruction parameter  was set 
to 0.05 for all the noiseless cases considered here 
and 0.001 for higher noise case.

The reconstructed temperature maps using the 
6X under sampled data obtained from the MRI 
scanner for the TCR and PICIR algorithms are 
shown in Fig. 2. This data was further undersam-
pled by 50%, and the reconstruction results per-
taining to this data set along with the difference 
between the reconstructed temperature maps and 
the truth is shown in Fig. 2. The temperature map 
distribution in Fig. 2 shows that both TCR and 
PICIR results in a similar reconstruction when the 
6X undersampled data was used, while PICIR out-
performs TCR with lesser measurements (12X). 
Hence, it can be clearly concluded that PICIR 
algorithm works well with highly undersampled 
data cases, the same was observed from the RMSE 
values given in Table 1.

To show the effectiveness of the PICIR scheme 
in noisy environment with less measurements, the 
obtained under sampled MRI data (6X undersam-
pling) was added with noise. The resultant noisy 
data was undersampled by 50%, and then tem-
perature map was reconstructed using TCR and 
PICIR method using this highly under sampled 
data. The reconstruction distribution using 17% 
and 8.5% measurements is shown in Fig. 3. The 
reconstruction indicates that the PICIR scheme 
being robust with noise, is able to reconstruct the 
temperature distribution more accurately com-
pared to the TCR algorithm with fairly less meas-
urements, leading to faster data collection. In all 
the above cases, the sliding window reconstruc-
tion is also included for the sake of completion.

5.3 Discussion
The performance of the PICIR method for 
the obtained sampled MRgHIFU dataset was 

Table 1: Comparison of computational time and root mean square error for the results presented in this work.

Fully Sampled Data (Fig. 1) Undersampled Data (Fig. 2)

Method
TCR  
(33%)

TCR  
(16%)

PICIR  
(33%)

PICIR  
(16%)

TCR  
(17%)

TCR  
(8.5%)

PICIR 
(17%)

PICIR 
(8.5%)

Data Acquisition Time 1 0.5 1 0.5 1 0.5 1 0.5

Reconstruction Time 
(time in seconds)

1  
(6.67)

1  
(7.39)

1.66 
(11.104)

1.57 
(11.65)

1  
(55.62)

1  
(54.32)

1.61 
(89.86)

1.63 
(88.48)

Total Time 2 1.5 2.66 2.07 2 1.5 2.61 2.13

RMSE 0.235 2.815 0.242 0.784 0.42 1.24 0.43 0.56

Figure 2: Comparison of temperature map reconstruction of the standard Temporally Constrained Recon-
struction (TCR) with Prior Image Constrained Image Reconstruction (PICIR) method. The sampling used is 
shown in the parenthesis. Difference image is also shown for better comparison of reconstructed tempera-
ture distribution. Sliding Window reconstruction is also included for completion.
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observed to be superior compared to the stand-
ard TCR approach (see Figs 1, 2 and 3). It is 
important to note that the TCR performance is 
similar to the PICIR algorithm for cases where 
number of measurements available is high (fac-
tor of reduction below 12). Since the number 
of measurements required are less for PICIR, 
the data-collection time is be faster. It is impor-
tant to note that the same data sets were used 
for obtaining the temperature maps for both 
TCR and PICIR algorithms. PICIR method was 
also evaluated using noisy measurements (noise 
introduced by the coil) and was observed that 
even at higher noise levels PICIR method was 
able to reconstruct the temperature maps more 
accurately compared to the TCR algorithm with 
less number of measurements. As prior image 
provides a robust support for the reconstruc-
tion in case of sparse data, the temperature maps 
obtained through PICIR were more accurate 
compare to the TCR results.

Table 1 indicates the time taken for the recon-
struction of temperature maps using the TCR 
approach and the proposed method. The reported 
time in Table 1 indicates that the PICIR method is 
computationally expensive when compared to the 
TCR algorithm. But, since PICIR was able to give 
reasonable RMSE values (less than 1°C at the ROI) 
when less measurements are acquired as shown in 
Table 1. Hence assuming that the data-collection 
time is within the same scale as the reconstruction 
time, it can be concluded that PICIR algorithm 
can be used as a alternative to the TCR algorithm 
when the number of measurement available 

are fairly low, the same has been emphasized in 
Table 1. As a part of future work, the PICIR algo-
rithm would be rewritten for achieving massive 
parallelism using GPUs.

One limitation of the PICIR algorithm is that 
it has two reconstruction parameters (  and ) 
compared to the TCR algorithm (which has only 

) to be chosen. Choice of these reconstruction 
parameters will largely influence the accuracy of 
the reconstructed temperature distribution, which 
is well studied in the inverse problems literature. 
Even though PICIR algorithm requires multiple 
parameters, it was observed that the PICIR algo-
rithm was fairly stable for the choice of the recon-
struction parameters in similar lines as that of 
TCR.24 It is important to note that PICIR kind of 
algorithm is widely used in the tomography litera-
ture, where it was also shown to stable in terms of 
reconstruction parameters.

The discussed methods are able to handle 
motion outside the region of interest, but these 
algorithms are not poised to handle motion in 
the region of interest. A recent study showed a 
real-time in-plane motion correction to permit 
both temperature and thermal-dose calcula-
tions on the fly, the same was evaluated to handle 
motion in abdominal organs.81 Recent work has 
also tried to evaluate a real-time Proton Resonant 
Frequency (PRF) based MR thermometry with a 
novel motion compensation technique, using lin-
ear phase model and active tracking coils.82 Hence, 
incorporating motion estimation and correction 
into the reconstruction procedure with the help of 
inverse problems needs to be addressed.

Figure 3: Similar effort as the previous case, here testing of the performance of reconstruction was done 
with noisy data. The percentage of sampling and noise (in °C) used is indicated in parenthesis.
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6 Conclusion and Future Work
In conclusion, this paper aimed at reviewing the 
available temperature reconstruction methods 
for performing MR thermometry. As the recent 
focus in MR thermometry has been on obtaining 
real-time temperature reconstruction for large 
volume of interest, two such methods TCR and 
PICIR are discussed here. Through ex-vivo stud-
ies, it was established that PICIR approach, which 
uses prior image as a constrain was able to pro-
vide more accurate temperature map distribution 
with fewer measurements when compared to the 
existing TCR approach. Also the PICIR method 
was able to provide high spatio-temporal resolu-
tion and volume coverage with relatively lesser 
measurements (thereby reducing the scan time). 
RT-TCR algorithm was able to provide increased 
volume coverage without sacrificing spatial or 
temporal resolution, and real-time reconstruc-
tion making it suitable for monitoring tempera-
ture changes.

Further, recent works on dynamic MRI imag-
ing introduced an algorithm called MotionTV,85 
was shown to perform better than the traditional 
total variation and l

1
-norm based image recon-

struction. Therefore, a future study focussing 
on comparing all the algorithms including TCR, 
PICIR and MotionTV85 based reconstruction of 
temperature maps in MRgHIFU, which can pro-
vide better understanding with the utility of these 
reconstruction schemes is necessary. The usage of 
prior information in the l

1
-norm and l

0
-norm83,84 

based framework will be taken up in the future. 
In general, the future work could be pursued in 
combining the various MR parameters for esti-
mating the temperature distribution in MR 
thermometry.
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