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Purpose: Developing a computationally efficient automated method for the optimal choice of regu-
larization parameter in diffuse optical tomography.
Methods: The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known
to be computationally efficient in performing the reconstruction procedure in diffuse optical tomog-
raphy. The same is effectively deployed via an optimization procedure that uses the simplex method
to find the optimal regularization parameter. The proposed LSQR-type method is compared with
the traditional methods such as L-curve, generalized cross-validation (GCV), and recently proposed
minimal residual method (MRM)-based choice of regularization parameter using numerical and ex-
perimental phantom data.
Results: The results indicate that the proposed LSQR-type and MRM-based methods performance
in terms of reconstructed image quality is similar and superior compared to L-curve and GCV-based
methods. The proposed method computational complexity is at least five times lower compared to
MRM-based method, making it an optimal technique.
Conclusions: The LSQR-type method was able to overcome the inherent limitation of computation-
ally expensive nature of MRM-based automated way finding the optimal regularization parameter in
diffuse optical tomographic imaging, making this method more suitable to be deployed in real-time.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4792459]
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I. INTRODUCTION

Near infrared (NIR) diffuse optical tomography (DOT) uses
NIR light (600–1000 nm) as a probing media to obtain op-
tical absorption and scattering images of the tissue under
investigation.1–4 Typically light is collected/delivered on tis-
sue boundary through fiber optical bundles to increase the
maximum throughput of transmitted light. As the NIR light
is nonionizing and can penetrate thicker tissues, the main ap-
plications of NIR tomography are for soft tissue imaging, in-
cluding breast and brain imaging.2, 3

The NIR image reconstruction procedure, also called as
the inverse problem, is known to be a nonlinear, ill-posed, and
underdetermined problem, due to the dominance of scattering
in the light propagation and limited boundary data available.1

This procedure is iterative in nature, requiring regularization
to result in an unique solution. This regularization plays an
important role in determining the quality of reconstructed im-
ages. Typical selection of regularization parameter is either
through the empirical choice or prior experience of the user.
Recent works have shown that this regularization parame-
ter could be automatically estimated using techniques such
as generalized cross validation (GCV) and minimal residual
method (MRM) in diffuse optical tomography.5, 6

In diffuse optical tomography usage of MRM for auto-
mated selection of regularization parameter is shown to im-
prove the spatial resolution when compared to traditional
GCV-based method.6 The limitation of that work was MRM-

based algorithms are computationally expensive due to re-
peated solving of forward problem to estimate the optimal
regularization parameter.6 This makes the usage of the MRM-
based automated choice of regularization in real-time pro-
hibitive. It is highly desirable to develop a methodology, in
principle, that uses the MRM-based technique, which can
be deployed in real-time. The aim of this work is to show
that conjugate gradient type LSQR (Refs. 7–9) (least squares
QR) can provide the computational efficiency needed for
automated selection of regularization parameter. Usage of
LSQR method for image reconstruction has been widely
prevalent,9, 10 specifically it was used in electrical impedance
tomography to perform a computationally efficient recon-
struction procedure.9 In Ref. 9, the regularization param-
eter was estimated using L-curve based approach. In the
proposed work, keeping the computational efficiency of
LSQR-based reconstruction intact, we have also deployed it
to find the optimal regularization parameter. Note that in re-
construction problems, such as diffuse optical tomographic
imaging, another automated way of finding the regularization
parameter based on L-curve method was shown to provide
overly smooth solutions.11 As LSQR algorithms typically re-
quire only matrix-vector computations (as oppose to matrix–
matrix computations), it provides better computational ef-
ficiency as opposed to traditional methods that solve the
ill-conditioned inverse problems.7, 8

The LSQR method is analytically equivalent to conjugate-
gradient least squares (CGLS), requiring lesser number of
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operations compared to the traditional CGLS.7, 8 Moreover,
the LSQR method exhibits better numerical properties com-
pared to conjugate gradient type procedures when the prob-
lem is ill-conditioned (which is the case for diffuse opti-
cal tomographic image reconstruction).7, 8 The CGLS method
(or its variant) has been proven to be effective for solving
the inverse problem of NIR tomography in terms of work
required at every iteration.12, 13 These CGLS methods are
not as straightforward as the direct inversion (also known
as full-Newton methods) due to the ambiguity in choosing
the step size,13, 14 typically requiring an optimization pro-
cedure in choosing the same. For LSQR-type methods, the
choice of number of iterations becomes critical, as it is known
to have the same effect as regularization parameter in typical
ill-conditioned inverse problem.7 In this work, we have ob-
tained the required optimal number of iterations based on an
optimization procedure. The same optimal number of itera-
tions has been used for estimating the optimal regularization
parameter via a simplex method based optimization proce-
dure. Despite deploying two optimization procedures, one for
finding the optimal number of iterations and another for op-
timal regularization parameter, this method is computation-
ally efficient compared to the MRM method (shown later). It
will be shown that the obtained reconstructed images using
LSQR-method is similar to the one obtained using MRM in
both numerical and experimental cases.

For completeness, traditional methods such as L-curve15

and generalized cross validation,16 which are capable of find-
ing the optimal regularization parameter in an automated way,
were also discussed here. Similar to earlier work,6 the discus-
sion here is limited to two-dimensional (2D) continuous wave
(CW) diffuse optical tomography, where the unknown imag-
ing parameter is the optical absorption coefficient.

II. METHODS

II.A. CW diffuse optical tomographic imaging

Light propagation in thick soft biological tissues, such as
breast, in the NIR wavelengths can be described using a dif-
fusion equation (DE). For the CW case, the DE is given by17

−∇.[D(r)∇�(r)] + μa(r)�(r) = Qo(r), (1)

where Qo(r) and �(r) represent the isotropic light source and
photon density (real values), respectively, at position r. The
diffusion coefficient D(r) is represented as

D(r) = 1

3[μa(r) + μ′
s(r)]

, (2)

where μa(r) and μ′
s(r) represent the absorption coefficient and

reduced scattering coefficient, respectively. The � is found
by solving this partial differential equation [Eq. (1)] using fi-
nite element method (popular numerical method for model-
ing irregular geometries) representing the forward model.17–19

Modeled data (G(μa)) are found by sampling photon den-
sity (�(r)) at the measurements locations for each source
position.14 The experimental data y are considered to be the
natural logarithm of the amplitude (ln(A)).

II.B. Regularized minimal residual method (MRM)

Solving the inverse problem in diffuse optical tomogra-
phy is a process that matches the modeled data with the
experimentally measured boundary data in the least-square
sense.1, 14 Penalty term is added in the minimization scheme
for stabilizing the solution, as inverse problem is ill-posed,
underdetermined, and nonlinear in this modality.1 Hence the
objective function is given by,

� = ‖y − G(μa)‖2 + λ‖μa − μa0‖2, (3)

where λ is the regularization parameter, which affects the res-
olution characteristics of image reconstruction.18, 20 The ini-
tial guess of absorption coefficient is represented as μa0 (typ-
ically obtained using a calibration procedure21). One of the
methods for finding the minima for the objective function
[Eq. (3)] is by making the first order condition with respect
to μa equal to zero (full-Newton method14), this results in the
following update equation:

�μa = [J T J + λI ]−1J T (y − G(μa)), (4)

where J represents the Jacobian matrix [J = ∂G(μa )
∂μa

and of
dimension M × N with M representing the number of mea-
surement and N the number of finite element nodes], �μa

represents the update of μa, and I is the identity matrix.
The minimization problem given in Eq. (3) could be solved

using minimal residual method.6, 22 This method description
is given as Algorithm 1 of Ref. 23. This method is briefly
reviewed here. The MRM method is equivalent of regular-
ized steepest-descent method, which is an iterative method for
solving normal equations. This flow of the method is given
in Algorithm 1. The residual (ri) provides the search direc-
tion and the step length (ki

λ) is based on the positive defi-
nite operator defined by the regularization parameter (λ) here.
This process is repeated until the norm of residual reaches
a small value (εo), here, 10−6. As this requires only matrix-
vector multiplications, resulting in computational burden per
step as O(N2), making it suitable for deployment of finding
optimal regularization parameter. As �μa is dependent on
λ, the optimal λ should minimize the data-model misfit (‖y
− G(μa)‖2). This principle makes estimation of optimal λ as
an optimization problem where the minimization function is
given by ‖y − G(μa + �μλ

a)‖2 and �μλ
a is obtained using

MRM method (Algorithm 1).6 This optimization problem is
solved using simplex method, which offers a computationally

ALGORITHM I. Regularized Minimal Residual Method (MRM)

Calculation of update (�μa)
INPUT: J and δ; OUTPUT: �μa.
Initialize �μ0

a (initial guess), λ.
for i = 0, 1, ··· (representing inner iteration number)

1. ri = J �μi
a − δ

2. liλ = lλ(�μi
a) = J T ri + λ�μi

a

3. ki
λ = ‖lλ(�μi

a )‖2

‖J lλ(�μi
a )‖2+λ‖lλ(�μi

a )‖2

4. Update equation: �μi+1
a = �μi

a − ki
λl

i
λ

5. The iterative process, steps: 1-4, is terminated when the misfit reaches the
given stopping criterion(εo):‖ri‖2 ≤ εo
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efficient gradient-free approach. The existence of optimal λ

has been shown in the Appendix of Ref. 6.
One of the bottlenecks of this algorithms in finding optimal

λ is the computational complexity associated with it, making
it less preferred in the real-time. The equivalence of this ap-
proach is achieved through via proposed LSQR-type method,
which is described in Sec. II.C.

II.C. LSQR-type method

Conjugate gradient type LSQR algorithm was previously
used in diffuse optical tomography with early photons10

for solving the linearized version of the objective function
[Eq. (3)]. The LSQR-type algorithm deployment for estimat-
ing the optimal regularization parameter in diffuse optical
tomography is the main contribution of this work. This is
achieved by using Lanczos bidiagonalization of J as given in
Ref. 7. The left and right Lanczos matrices and the bidiagonal
matrix related to Jacobian matrix (J) are shown below:9, 24

Uk+1(β0e1) = δ, (5)

JVk = Uk+1Bk, (6)

J T Uk+1 = VkB
T
k + αk+1vk+1e

T
k+1. (7)

Here B represents the lower bidiagonal matrix, U and V rep-
resent the left and right orthogonal Lanczos matrices, respec-
tively. The unit vector of dimension k × 1 is represented by
ek (=1 at the kth row and 0 elsewhere). The dimensions of
Uk and Vk are (M × k) and (N × k), with k representing the
number of iterations the bidiagonalization is performed. The
δ is the data-model misfit (=y − G(μa)) and ui, vi represent
the left and right Lanczos vectors. The structures of U, V are
given by9, 24

Uk = [u1, u2, . . . , uk]; Vk = [v1, v2, . . . , vk], (8)

and Bk is a bidiagonal matrix having α1, . . . αk in the main
diagonal and β1, . . . , βk is the lower subdiagonal of the matrix
having a dimension of ((k + 1) × k).

As the aim of the least square problem is to match y with
G(μa), one can Taylor expand the G(μa) around μa0 (which
could be a guess or approximation to original μa), leading to20

G(μa) = G(μa0) + J�μa + (�μa)T H�μa + · · · , (9)

where H and J are the Hessian and Jacobian evaluated at μa0,
respectively, and �μa = μa − μa0. Linearizing the above
equation and assuming δ = y − G(μa0) produces a new ob-
jective function (linearized inversion) (Ref. 20):

�̃ = ‖δ − J�μa‖2 (10)

using Eqs. (5)–(7) in the argument of Eq. (10), resulting in9, 24

δ − J�μa = Uk+1(β0e1 − Bkx
(k)), (11)

where �μa = Vkx
(k) . Substitution of Eq. (11) in Eq. (10) re-

sults in

�̃ = ‖β0e1 − Bkx
(k)‖2. (12)

Considering the first order condition of Eq. (12), we get a new
update equation as9, 24

x(k) = (
BT

k Bk + λI
)−1

β0B
T
k e1, (13)

where β0 is the L2-norm of the data-model misfit (δ).
Once x(k) is calculated, �μ(k)

a can be evaluated using �μ(k)
a

= Vkx
(k). Note that the number of operations for obtain-

ing �μ(k)
a in this approach is O(N2), whereas traditional one

[Eq. (4)] requires O(N3) operations. As stated earlier, the
number of iterations (k) plays an important role in determin-
ing the reconstructed image quality.

II.D. Estimation of optimal λ using a LSQR-type
method

The advantage of LSQR-type method in finding the update
(�μa) lies in its dimensionality reduction capability, which
makes the update as x(k) [Eq. (13)] with k � N. This kind of
evaluation of update turns out to be computationally more ef-
ficient when compared to traditional way of finding update
using Eq. (4). Here taking the advantage of computational
efficiency, we propose a new method of estimating the op-
timal regularization parameter (λ) using the simplex method
based optimization scheme.25 The objective function in
Eq. (10) is minimized with respect to the regularization pa-
rameter λ. This is feasible as the update �μa = Vkx

(k), where
x(k) is a function of λ as given in Eq. (13).

The major role in this entire optimization scheme is played
by k (number of iterations of the Lanczos bidiagonalization).
This determines the size of the bidiagonal matrix [Bk having
dimension of (k + 1) × k] and is an important factor in es-
timation of optimal regularization parameter. Increasing the
number of Lanczos iterations is inversely proportional to the
estimated optimal regularization parameter. The higher the k,
the more is the ill-posedness of the problem, the lower λ will
become more optimal (similar to L-curve15). The algorithm
for determining the optimal number of iterations is given in
Algorithm 2. The first 50 iterations of Lanczos iterations are
only considered as for k = 50 the value of λ turns out to be

ALGORITHM II. Algorithm for determining the optimal number of Lanczos
Iterations (kopt) and optimal regularization parameter λopt

Input: Lanczos Bidiagonal Matrix Bk; Vk (k = 1,2, ..., 50); δ, β0; J, μa,
λlim.

Output: Optimal number of Lanczos iterations: kopt and Optimal
regularization parameter: λopt

Initialize e1.
for k = 1,2, ..., 50

1. Estimate the optimal λ for the given k (λopt

k ).
–Use simplex method to find λ

opt

k in the range of [0 λlim.] which
minimizes Eq. (10) with �μa = Vk ∗ x(k), where x(k) is found using
Eq. (13).

2. Compute �μa with λ = λ
opt

k via Eq. (13).
3. Make μk

a = μa+�μa and compute G(μk
a) (modeled data).

4. Estimate �k = ‖y − G(μk
a)‖2.

end
kopt = index of minimal value of �k and λopt = λ

opt

kopt
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O(10−6), which is in the single precision limit. It is impor-
tant to note that the optimal regularization parameter (λopt)
is estimated at every Gauss–Newton iteration in both MRM-
and LSQR-based methods, wherein the optimal λ is searched
within the bound of 0 and previous Gauss–Newton iterations
optimal λ (similar to the procedure adapted in Ref. 6). For the
first iteration the bound (λlim) for the optimal λ estimation is
1000. The optimal regularization parameter estimated in both
these methods reduces with each iteration.

The LSQR method based estimation of optimal regu-
larization parameter is computationally more efficient than
MRM-based estimation of regularization parameter, because
it performs repeated computation of update using a sparse
bidiagonal matrix [Eq. (13)]. MRM kind of estimation re-
quires O(P×N2) (where P is the number of inner itera-
tions) computation while LSQR type of estimation of op-
timal regularization parameter requires O(2×Q×k2) (where
Q is the number of function evaluations). Since the value
of k is very small, it can be intuitively seen that LSQR
kind of approach is more efficient compared to MRM.
The same has been verified using numerical experiments
and experimental phantom data. Moreover, the LSQR-type
method is equivalent of traditional direct method of solv-
ing the minimization problem via Tikhonov regularization
scheme and the equivalence is shown in the Appendix for a
given λ.

In Secs. II.E and II.F, established methods for finding an
optimal regularization parameter in cases where there is no
prior information is available about the data noise level or the
parameter distribution is discussed.

II.E. L-curve method

The L-curve method is one of the popular schemes for esti-
mation of optimal regularization parameter for a linear inverse
problem15, 16 and the same was used previously in diffuse op-
tical tomography and was found to result in overly smooth
solutions.11 In adoption of this method to the diffuse optical
tomographic inverse problem, it is applied at every linear step
of the reconstruction problem. At every iteration (global) of
the image reconstruction scheme, a graph is plotted between
the residual norms of the misfit (||J�μa − δ||2) and the so-
lution norm ||�μa||2 as function of regularization parameter
(λ), as �μa is a function of λ. This curve is suppose to be in
L-shape, where the corner of L-curve will represent the opti-
mal choice.16 Note that this corner point will be at least dis-
tance from the origin.

In diffuse optical imaging, the L-curve does not exhibit a
clear corner,11 making the choice of optimal λ purely based
on the least distance from the origin. Note also that, for non-
linear inverse problems the L-curve method results only an
suboptimal regularization parameter.14, 16

II.F. Generalized cross-validation

Another popular method for estimation of optimal regular-
ization parameter is GCV.5, 26, 27 The regularization parameter

in case of GCV is estimated by minimizing a function G(λ),
where G(λ) is defined as

G(λ) = ||(JJ T + λI )−1δ||2
(trace(JJ T + λI )−1)2

. (14)

This method works on the principle that an omitted data point
could be easily estimated using the regularized solution ob-
tained with reduced data set. The regularized solution needs
to be the optimal for such an estimation.

Both L-curve and GCV methods require repeated estima-
tion of �μa (or its equivalent), efficient way of achieving
the same is using singular value decomposition (SVD) of
Jacobian6 and the same is utilized here.

All computations were carried out using open-source
MATLAB-based NIRFAST package,28 which uses finite ele-
ment based numerical model for light propagation in tissue.
The algorithm along with necessary MATLAB code is pro-
vided as an open-source for enthusiastic users to use this
algorithm.29 The Lanczos bidiagonalization was performed
using the MATLAB-based regularization tools, which is also
an open source.16 A Linux workstation with dual six-core In-
tel Xeon processor 2.66 GHz with 64 GB RAM has been used
to perform the computations in this work.

II.G. Quantitative analysis of algorithms

The estimation of optimal regularization parameter is
linked with the optimal solution of the inverse problem. To
better assess these solutions (reconstructed images) using the
regularization parameters estimated through the above pro-
posed method, quantitative metrics are necessary. Moreover,
it will be highly desirable that these metrics do not require the
expected/target absorption coefficient values, which are not
feasible to obtain in the clinical case. In this work, two such
metrics were used, namely, contrast-to-noise ratio (CNR) and
contrast resolution.30

The CNR indicates how well the region of interest has been
reconstructed and is given by30, 31

CNR = μaroi − μaback

(
wroiσ 2

aroi
+ wbackσ 2

aback

) 1
2

, (15)

where μaroi and μaback represent the mean of the reconstructed
absorption coefficient, respectively, in the region of interest
(ROI) and the background. The σaroi and σaback represent the
standard deviation of the reconstructed absorption coefficient
in the ROI and background, respectively. Here the weights
wback = Aback

Atot
and wroi = Aroi

Atot
represent the ratio of areas be-

tween the background and total area as well as ROI and total
area, respectively. Note that the theoretical limit on CNR for
the detection of ROI by the human eye is 4 and above.31 The
higher the CNR value, the higher is the detectability of the
ROI.

The contrast resolution C is a figure of merit that gives
the distinguishability of the ROI with the background and is
defined as

C = μaroi − μaback

μaroi + μaback

. (16)
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FIG. 1. The target μa distribution is shown on the top-left corner. The
method that was used to find the optimal regularization parameter along with
the data noise level is given on top of each reconstructed μa distribution. The
one-dimensional cross-sectional plot of target and reconstructed μa distribu-
tions along the line shown in the target image are given in the bottom-right
corner.

The higher the C, better is the algorithm performance.

III. NUMERICAL AND EXPERIMENTAL
EVALUATIONS

III.A. Numerical experiments

To asses the effectiveness of optimal estimation of the
regularization parameter of LSQR-based proposed method,
a circular mesh with background optical properties as μa

= 0.01 mm−1, μ′
s = 1 mm−1, and uniform refractive index

of 1.33 is considered. The diameter of the circular mesh is
86 mm. It had two regions mimicking fatty (with background
optical properties) and tumor regions. The tumor (target) is
a circular region of radius 7.5 mm centered at (15,0) having
optical properties as μa = 0.02 mm−1 and μ′

s = 1 mm−1.
The target μa distribution is given in the Fig. 1 (top-left cor-
ner). To generate numerical experimental data, a fine mesh
having 10 249 nodes (corresponding to 20 160 linear trian-
gular elements) is used. These data are added with 1% and
3% normally distributed Gaussian noise to test the robust-
ness of the method with increasing noise levels. The recon-
structions were carried on a coarser mesh consisting of 1933
nodes (corresponding to 3726 linear triangular elements) af-
ter calibration of the data.21 The data-collection system had
16 fibers arranged on the boundary of the circular domain,
where when one fiber acts as a source, rest act as detectors.
This set up results in 16×15 = 240 number of measurements
(M). Each source was modeled as Gaussian source having full
width at half maximum of 3 mm to mimic the experimental
case32 and is placed at one mean transport length inside the
boundary. The calibrated data were reconstructed using the λ

obtained by MRM and the proposed LSQR methods to show
their equivalence.

The proposed method is also evaluated for multiple tar-
get case. The same meshes that were used as in the earlier
case for generating the data and performing the reconstruc-
tion were used for this experiment also. The anomalies having

FIG. 2. Similar effort as Fig. 1 except the target μa distribution has two
anomalies and the noise level in the data is kept at 1% and the estimation of
optimal regularization parameter was found using L-curve, GCV, MRM, and
the proposed LSQR methods.

a radius of 7.5 mm were placed at (10,0) and (−10,0) (hence
the anomalies are separated by a distance of 5 mm, which
is the typical resolution limit of diffuse optical tomography).
The mesh had the optical properties for the two regions sim-
ilar as explained for circular mesh (whose target distribution
is given in the top-left most corner of Fig. 2). The images
were reconstructed using the synthetic data with 1% Gaus-
sian distributed noise. The data collection strategy was same
as earlier case. Here, the λ is obtained in an automated fashion
using each method discussed in this work and corresponding
reconstruction was performed to compare the results.

III.B. Gelatin phantom experiment

The proposed scheme was also evaluated with experimen-
tal gelatin phantom data.6 This gelatin phantom, having a ra-
dius 43 mm and height 25 mm, was made using a mixture
of India ink for producing absorption effect and titanium ox-
ide (TiO2) for scattering. Layers of gelatin were fabricated by
hardening heated gelatin solution (having a concentration of
20% of gelatin [G2625, Sigma Inc] and 80% of deionized wa-
ter) successively to produce a breast mimicking phantom. The
outer layer mimicking the adipose region has a thickness of
10 mm, and having μa = 0.0065 mm−1 and μ′

s = 0.65 mm−1.
The middle layer has a 76 mm diameter, which mimics
the fibroglandular layer, having the optical properties at μa

= 0.01 mm−1 and μ′
s = 1.0 mm−1. A cylindrical hole ex-

tending in Z direction was filled with intralipid mixed with
India ink acting as a tumor having optical properties of μa

= 0.02 mm−1 and μ′
s = 1.2 mm−1 with a radius of 8 mm and

height of 24 mm. The target laser diode with 785 nm wave-
length was used as source for validation of individual layers
optical properties from the data obtained using large cylindri-
cal samples of each layer. The data are collected using a single
layer of fibers (at z = 0 mm) leading to 240 data points. The
collected data were calibrated using the coarser mesh with
1933 FEM nodes (corresponding to 3726 linear triangular el-
ements). Similar to earlier multitarget cases, all methods that
were discussed in this work were deployed for finding λ at
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TABLE I. Comparison of total computational time (in seconds) including the
overhead time using the methods discussed in this work for the results pre-
sented in Figs. 2 and 4. The total number of iterations taken to converge are
given in the parentheses. The corresponding regularization parameter values
are given in Table II.

Multiple targets Experimental
Method (Fig. 2.) phantom (Fig. 4.)

L-curve (Sec. II.E) 16.34 (5) 8.94 (2)
GCV (Sec. II.F) 7.19 (3) 9.19 (4)
MRM (Sec. II.B) 133.42 (3) 179.98 (3)
LSQR (Sec. II.D) 25.92 (7) 15.17 (4)

every iteration and the corresponding reconstruction results
were compiled for comparison.

IV. RESULTS

The reconstruction results using MRM and LSQR-type
methods for the case of numerical experiment with single tar-
get and varying noise levels are shown in Fig. 1 along with
the one-dimensional profile along the line of the target im-
age. The method along with percentage of noise level in the
data (in parentheses) is given on top of corresponding re-
constructed μa distribution in Fig. 1. The total computation
time for the L-curve, GCV, MRM, and the proposed method
to converge has been reported in first and second columns
of Table I, respectively. The results show that the proposed
method performance is similar to MRM method, leading to
conclusion that the proposed methods are in spirit similar to
the MRM method. Figure 2 shows the reconstructed results
obtained using the multiple target data with the regulariza-
tion parameter obtained using L-curve, GCV, MRM, and the
proposed LSQR methods. The method used for obtaining the
regularization parameter is given correspondingly on top of
each reconstructed μa distribution. These results also indicate
that the LSQR type of optimal regularization estimation may
be better than the traditional L-curve, GCV, and MRM-based
estimation of optimal λ. For the results presented here, an ex-
ample L-curve is plotted in Fig. 3 to show that typical diffuse
optical image reconstruction scheme does not exhibit a clear
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FIG. 3. An example L-curve for the last iteration of the result is presented
in Fig. 2, which is a function of regularization parameter (given as text on
the curve). The optimal regularization parameter is the corner of the curve
(0.0043629), indicated by the dotted line.

FIG. 4. Performance comparison of the proposed LSQR scheme with the
existing techniques L-curve, GCV, and MRM for selection of optimal regu-
larization parameter (λ) using the experimental gelatin phantom data, where
the technique used for finding the optimal λ is given correspondingly on top
of each distribution. The one-dimensional cross-sectional plot along the solid
line indicated on the target image for the reconstructed images is given at the
bottom right-hand corner of the figure.

corner, making the L-curve based automated estimation of op-
timal λ not effective.

The experimental results that were obtained using gelatin
phantom data are given in Fig. 4 along with one-dimensional
cross-sectional profiles on the right hand side of the same fig-
ure. Even here, the LSQR method performs better compared
to other traditional methods. The total computational time and
estimated λ’s were given in Tables I and II correspondingly
for the results presented in this work. The result in Fig. 4 also
indicates that the contrast recovery of the proposed method
was found to be higher than the standard methods resulting
in quantitatively better reconstruction distributions using the
proposed method. For an objective comparison of the results,
the figures of merits that were discussed in this work, namely,
CNR and C were compiled in Table III. This quantitative re-
sults affirm that performance of the proposed method is at
least 16% higher in contrast resolution, with an added advan-
tage of the proposed method being more computationally ef-
ficient to MRM method.

TABLE II. Comparison of regularization parameters obtained using the L-
curve, GCV, MRM, and LSQR methods for the results presented in this work.
The λ values are decreasing with increasing number of iterations for L-curve,
MRM, and LSQR methods.

Multiple targets Experimental
Method (Fig. 2.) phantom (Fig. 4.)

L-curve (Sec. II.E) λ = 0.0148, 0.0126, λ = 0.0034, 0.0035
0.0067, 0.0062, 0.0044

GCV (Sec. II.F) λ = 0.0181, 0.00696, λ = 0.00325, 0.377,
999.9 0.888, 999.9

MRM (Sec. II.B) λ = 0.0139, 0.0010, λ = 0.0126, 0.0029,
5.6 × 10−5 4.7× 10−4

LSQR (Sec. II.D) λ = 0.0048, 5.7× 10−4, λ = 0.0188, 0.0042,
2.99× 10−4, 2.93× 10−4, 0.0014, 4.4× 10−4

2.02× 10−4,
1.91× 10−4, 1.91× 10−4
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TABLE III. Comparison of figures of merit CNR and contrast resolution (C)
obtained for the reconstruction results using the methods discussed in this
work.

Experimental
Method Target (Fig. 1.) Target (Fig. 2.) phantom (Fig. 4.)

L-curve (Sec. II.E) . . . CNR = 2.37 CNR = 5.41
C = 0.1459 C = 0.4816

GCV (Sec. II.F) . . . CNR = 2.46 CNR = 4.69
C = 0.1385 C = 0.4470

MRM (Sec. II.B) CNR = 5.30 CNR = 2.62 CNR = 5.49
C = 0.1536 C = 0.2175 C = 0.4507

LSQR (Sec. II.D) CNR = 5.27 CNR = 2.67 CNR = 5.87
C = 0.1639 C = 0.2279 C = 0.5803

In all these methods the value of optimal regularization pa-
rameter was estimated at each iteration, it is observed that the
optimally chosen regularization parameter reduces with each
Gauss–Newton iteration (refer to Table II). The computation
time reported in Table I is the total time taken for performing
reconstruction (including estimation of optimal λ and solv-
ing the inverse problem using this optimal λ). Even though
the computational time for the proposed LSQR method is
two times higher than that of the L-curve and GCV methods,
the reconstruction results (Table III) prove that the proposed
method indeed provides the optimal λ.

V. DISCUSSION AND CONCLUSIONS

The main advantage of the LSQR-based optimal esti-
mation of regularization parameter is that it eliminates any
heuristic (empirical) choice of reconstruction parameters,
such as regularization parameter (λ). The proposed algorithm
is compared with existing methods of automated estimation
of optimal regularization parameter, such as L-curve, GCV,
and MRM, it could be seen that the performance of the pro-
posed method is better than the existing methods (Table III).
The proposed algorithm is also efficient in terms of perform-
ing the reconstruction, compared to traditional matrix inver-
sion. For the results presented here, the total time taken by
traditional reconstruction [Eq. (4)] is 62.29 s for two anoma-
lies case, 28.13 s for single target case, and 14.55 s for ex-
perimental case. The corresponding computation time taken
by LSQR method is reported in Table I. The number of iter-
ations taken for convergence in traditional reconstruction for
two anomalies target case is 35, single anomaly target case is
16, and for experimental case is 7. For LSQR-type method the
corresponding number of iterations were 7, 2, and 4, leading
to a computationally efficient reconstruction procedure.

The proposed algorithm is also compared with traditional
schemes such as L-curve and GCV scheme of optimal regu-
larization parameter estimation. It could be seen from Fig. 3
that estimation of L-curve corner for obtaining a optimal reg-
ularization parameter is difficult as the plot of residual norm
against solution norm does not result in an exact L-shape and
the obtained solutions are not optimal as shown in Fig. 2.
The inability of GCV-based scheme of estimation of optimal

regularization parameter is explained briefly in Ref. 11, this
may be mainly because the function may have multiple min-
ima or the minimization function being too flat. The quanti-
tative comparison of the results (Table III) also indicate that
the proposed method performance is superior compared to its
counter parts.

Even though it is possible for obtaining a optimal regu-
larization parameter using generalized objective function in
which the regularization term is explicit (rather than being
identity as in this work), the proposed algorithm will loose
its computational efficiency. If the explicit regularization term
and Jacobian are not bidiagonalizable by the same orthogonal
Lacozs matrices (may not be the case for all regularization
matrices), the dimensionality reduction may not be explicitly
possible for the update equation.

The proposed method requires solving of the forward
model for estimating the optimal number of Lanczos itera-
tions required, but the solving of forward model is performed
only for fixed number of times (k = 1, 2, . . . , 50) which is not
the case with the MRM-based scheme (as it is solved repeat-
edly in a simplex based method6). Here, taking the advantage
of computational efficiency of LSQR method, we have esti-
mated the optimal regularization parameter using a simplex
method. Among the existing methods for automated choice
of regularization parameter, the LSQR-type method yielded
optimal reconstructions compared to other existing methods.
Even though, in principle, LSQR method is similar to MRM
method, the better performance of the LSQR method in the re-
sults presented here is primarily due to the additional penalty
in terms of Lanczos iterations, which reduces the dimension-
ality as well as ill-posedness of the problem. Development of
these type of methods will remove the unwanted bias induced
by the heuristic choice of regularization parameter, making
diffuse optical tomographic image quality more objective in
nature.
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APPENDIX: EQUIVALENCE OF TIKHONOV-TYPE
AND LSQR-TYPE UPDATE EQUATIONS

For proving the equivalence, let the update from
Tikhonov-type method be �μa [Eq. (4)], which is obtained
by solving

[J T J + λIn]�μa = J T δ, (A1)

where In is the identity matrix of dimensions N × N. Let us
consider the update from LSQR-type method to be �μ̃a with
�μ̃a = Vkx

(k), the update equation [Eq. (13)] is given by
[
BT

k Bk + λIk

]
x(k) = β0B

T
k e1, (A2)
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where Ik represents the identity matrix having a dimension
k × k. Using Eq. (6), we get Bk = UT

k+1JVk , which makes
Eq. (A2) as

[
V T

k J T Uk+1U
T
k+1JVk + λIk

]
x(k) = β0V

T
k J T Uk+1e1. (A3)

Now, from Lanczos algorithm, using Eq. (5), Uk+1U
T
k+1 = Im

and V T
k Vk = Ik in the above equation results in

V T
k [J T J + λIn]Vkx

(k) = V T
k J T δ. (A4)

Substituting �μ̃a = Vkx
(k) in Eq. (A4) and left multiplying

both side by Vk result in

[J T J + λIn]�μ̃a = J T δ. (A5)

Comparing Eq. (A5) with Eq. (A1) proves that �μa = �μ̃a .
Hence both these update equations result in same solution for
a given regularization parameter (λ).
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