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Abstract— Photoacoustic tomography involves recon-
structing the initial pressure rise distribution from the mea-
sured acoustic boundary data. The recovery of the initial
pressure rise distribution tends to be an ill-posed problem
in the presence of noise and when limited independent
data is available, necessitating regularization. The stan-
dard regularization schemes include Tikhonov, �1-norm,
and total-variation. These regularization schemes weigh
the singular values equally irrespective of the noise level
present in the data. This paper introduces a fractional
framework to weigh the singular values with respect to
a fractional power. This fractional framework was imple-
mented for Tikhonov, �1-norm, and total-variation regu-
larization schemes. Moreover, an automated method for
choosing the fractional power was also proposed. It was
shown theoretically and with numerical experiments that
the fractional power is inversely related to the data noise
level for fractional Tikhonov scheme. The fractional frame-
work outperforms the standard regularization schemes,
Tikhonov, �1-norm, and total-variation by 54% in numerical
simulations, experimental phantoms, and in vivo rat data
in terms of observed contrast/signal-to-noise-ratio of the
reconstructed images.

Index Terms— Photoacoustic tomography, image
reconstruction, regularization theory, fractional methods,
compressive sensing.

I. INTRODUCTION

PHOTOACOUSTIC tomography (PAT) also known as
optoacoustic tomography is a hybrid non-invasive imag-

ing technique which can provide optical absorption contrast at
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high ultrasonic resolution [1]–[5]. In PAT, a nanosecond pulsed
laser source operating in the near-infrared (NIR) window,
i.e., 600 − 1000 nm irradiates the biological tissue under
investigation, the delivered light gets absorbed by different
tissue chromophores causing an increase in the temperature (in
the order of milli Kelvin). This rise in temperature generates
pressure (photoacoustic (PA)) waves due to thermo-elastic
expansion in the tissue. The generated PA waves propagate
through the biological tissue and are detected by ultrasonic
transducers placed outside the biological tissue. The measured
acoustic data at the boundary of tissue becomes input to the
reconstruction method for estimating the initial pressure rise
distribution. This initial pressure rise map is proportional to
the product of light fluence and optical absorption coefficient.
The absorption coefficient is very sensitive to the tissue patho-
physiology, thus revealing the patho-physiological status of
the tissue under investigation at higher contrast compared to
other imaging methods. PA imaging has been used extensively
in the area of oncology and pathology [3] and also enables
deep tissue imaging as light penetration in the biological
tissue is higher in the NIR-window compared to other optical
ranges [6]. PA imaging has another advantage of being scalable
with an ability to reveal structural and functional informa-
tion for both pre-clinical and clinical applications [7]–[13].
It can also be used for noninvasive monitoring of traumatic
brain injury and post-traumatic rehabilitation with high-quality
reconstructed images [14]. With the help of targeted contrast
agents, PA imaging has been shown to be a strong contender
for molecular imaging [15]–[17].

An important aspect for translating PAT to clinical/pre-
clinical applications is to develop reconstruction methods
that can generate accurate PA images. The acoustic inverse
problem in PAT is to accurately determine the initial pressure
rise distribution from the acoustic measurements. Several
reconstruction algorithms exists to solve this inverse prob-
lem. Analytical algorithms including filtered backprojection
and Fourier transform based reconstructions were proposed
in the literature [15], [16]. Analytical algorithms are based
on the spherical Radon transform which is useful for solv-
ing three-dimensional PA reconstruction problem due to
low computational footprint of analytical methods. How-
ever analytical methods have a requirement of large number
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of data points around the target object. Large number of
data points require transducer arrays with more detector
elements or long data acquisition time (if single element
transducer is used). Most practical cases results in limited
data and in these cases, analytical reconstruction as well
as time-reversal methods often suffer from inferior spatial
resolution in the reconstructed image and lack desired quan-
titative accuracy [18], [19]. Recent emphasis has been on
model-based reconstruction techniques that are capable of
providing quantitatively accurate PA images in these limited
data cases [15], [16], [18]–[22], which can potentially reduce
data acquisition time and cost associated with transducer
arrays. It is also important to note that in limited data cases,
the inverse problem becomes ill-posed and requires regular-
ization to result in meaningful solutions [15], [16], [18]–[22].

The regularization used for solving the inverse prob-
lem in limited data cases provide a balance between
the residual and quantitative accuracy. Regularization con-
straints the solution space making model-based reconstruction
schemes more robust in noisy data cases [21], [23]–[25].
The standard regularization method in PA imaging is
based on Tikhonov minimization, which uses the �2-norm
of the expected solution, thus reconstructing a smoother
PA image [20], [23], [26]–[28]. The regularization parameter
(which balances the data-model misfit to the expected solution)
in the Tikhonov regularization scheme plays an important
role in determining the required resolution characteristics in
the reconstructed PA image. Several methods were proposed
for determination of regularization parameter in an automated
fashion, such as the Morozov discrepancy principle [31],
the Generalized Cross Validation (GCV) and the L-curve
method [18], [21], [25], [28]. The discrepancy principle
requires an estimation of noise in the experimental data for
automatically choosing the regularization parameter. Note that
in real experimental setting, the measurements are influenced
by electronic noise and estimation of the same is possible both
in the projection space and image space [29], [30]. The GCV
and L-curve methods doesn’t require any prior information
about noise statistics as required by discrepancy principle.
Further, basis pursuit deconvolution (BPD) in the framework
of least-squares QR (LSQR) has been used previously in PA
imaging, as the state-of-the-art technique, to perform efficient
reconstruction in these limited data cases [18].

Exponential filtering of singular values was proposed in
the framework of Tikhonov filtering for carrying out the
image reconstruction in PAT which provides superior PA
images with better quantitative accuracy and was observed
to be less biased towards the regularization parameter [19].
Singular value decomposition (SVD) enables us to study
how a particular filtering scheme effects the reconstructed
solution by analyzing the spectral (eigen) spread of the system
matrix [25]. Even the standard method (such as Tikhonov reg-
ularization) or recently proposed exponential filtering method
were formulated and studied in the framework of filtering
the singular values obtained from the system matrix used in
PAT. Further advanced reconstruction methods based on sparse
recovery (�1-norm and total-variation (TV)) has been pro-
posed to improve PAT reconstruction [32]–[35]. More recently,

sparse recovery methods was shown to have an advantage for
performing reconstruction with very less data, thereby allow-
ing rapid three-dimensional PA acquisitions to enable real-time
pre-clinical studies [32]. In this work, regularization parameter
was automatically chosen using discrepancy principle during
Tikhonov inversion, while empirically chosen (to result in best
possible figure of merit) in the case of �1-norm and TV based
reconstruction.

However Tikhonov, TV or �1-norm based methods assume
equal weight to all singular values (in the data fidelity term)
irrespective of the amount of noise in the data. But ideally,
in noisy environments the lower singular values needs to be
weighed lesser. This work introduces a weighting matrix to
a fractional power (which can vary with noise) to result in
more accurate reconstructions compared to standard methods
based on Tikhonov, sparse recovery or TV. To this end,
a fractional filtering framework was utilized with the help
of semi-norm in the residual error during the Tikhonov
regularization, �1 and total-variation based optimization. The
developed fractional filtering framework was compared with
standard Tikhonov, �1-norm and total-variation based recon-
struction. Here the fractional term is applied via a weighting
matrix to a fractional power. The fractional power controls
the amount of damping or smoothness in the reconstructed
solution. Fractional Tikhonov was proven earlier to be effec-
tive for solving linear discrete ill-posed problem using closed
form expression [36], [37], however the fractional power was
chosen empirically. The earlier works have restricted them-
selves to implementing Fractional filtering in Tikhonov frame-
work [36], [37], in this work we have extended the same
to other standard state-of-the-art methods like �1-norm and
TV regularization. Further an automated way of choosing the
fractional power by maximizing a figure of merit has been
proposed in this work.

Specifically, the contributions of the presented work is (a)
A new methodology for automatically choosing the fractional
power using a simplex method (by maximizing the signal to
noise (SNR)/contrast to noise (CNR) of the reconstruction)
in the fractional Tikhonov scheme for PAT. Specifically the
fractional power was chosen automatically using simplex
method and regularization parameter was chosen automati-
cally using discrepancy principle in the fractional Tikhonov
scheme. (b) Further, it was shown mathematically that the
fractional power is inversely related to the noise in the data,
i.e., the fractional power reduces as the noise in the data
increases in the context of fractional Tikhonov scheme, same
was established with numerical simulations. (c) Implemen-
tation of the fractional TV and fractional �1-norm schemes
within the split augmented Lagrangian shrinkage algorithm
(SALSA) framework. A systematic approach was developed
to automatically estimate the fractional power using a simplex
method in fractional TV and fractional �1-norm based scheme.
However, the alternating direction majorization minimization
(ADMM) parameters within the SALSA framework was cho-
sen empirically to result in best possible figure of merit as
automatically optimizing for all the parameters is not compu-
tationally feasible. (d) Lastly, by using numerical simulations,
experimental phantom and in vivo data, the proposed fractional
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filtering framework was shown to provide better performance
in terms of standard figures of merit compared to state-of-the
art reconstruction methods (i.e., Tikhonov, �1-norm and total-
variation) in PAT.

II. METHODS AND MATERIALS

A. Forward Problem

The PAT forward problem computes the acoustic field
given spatially varying PA source H (�r, t) (ultrasonic energy
deposited in the medium per unit volume and per unit time).
The physical process leading to the generation of H (�r, t) can
be found in [15], [38].

Assuming that the medium is acoustically homogeneous and
under the condition of thermal and stress confinements, the PA
pressure wave P(�r , t) at a point �r and time t can be written
as [15],

∇2 P(�r , t) − 1

c2

∂2 P(�r , t)

∂ t2 = −β
Cp

∂H (�r, t)

∂ t
, (1)

where c is the speed of sound in the medium, β is the thermal
expansion coefficient, and Cp is the specific heat. The solution
can be obtained by Green’s function approach [38, eq. (1)] and
other approaches such as finite-difference, finite element, and
pseudo-spectral methods.

In this work, k-space pseudo-spectral method is utilized to
solve the PA wave equation. The imaging grid and measured
wave field on the boundary (sensor points) can be simulated
with the help of open-source k-Wave toolbox [39]. The
forward problem solution (to estimate the acoustic data at
sensor locations) given the initial pressure rise distribution,
was obtained with the help of k-wave tool box [39]. This
limited boundary measurements were then used to obtain
initial pressure rise (P(�r , 0)) inside the imaging domain.

B. System Matrix Based Approach

The process of collecting the PA data at the sensor location
can be represented as a time varying causal system [24].
The impulse response of the imaging grid is stored pixel by
pixel in the system matrix as columns for geometry under
consideration as described in [18], [28].

The imaging grid (containing initial pressure in a discretized
form) of size n×n pixels is converted into a tall column vector
of size n2×1 by stacking all columns one below another. The
initial pressure rise at these pixels (which is unknown) can
be represented as x . The system matrix A having a dimension
of m×n2, i.e., each column of the system matrix is the impulse
response of corresponding pixel of the image in a vectorized
form [28]. The time varying columns of measured data at the
sensor locations (detectors) are also stacked as long column
vector of dimension m × 1, this is represented by b.

While generating the system matrix for numerical sim-
ulations, it was assumed that the medium has homoge-
neous ultrasound properties and the speed of sound is
constant (1500 m/s). The computational grid having size
of 501×501 pixels (50.1 mm×50.1 mm) with a resolu-
tion of 0.1 mm/pixel was used while generating the system
matrix and 60 detectors were placed equidistantly on a circle

of 22 mm radius (to represent limited data case). Although in
practice, large area detectors are used, for simplicity, the detec-
tors were assumed to be point detectors having a center
frequency of 2.25 MHz and 70% bandwidth. The imaging
region was restricted to 201×201 pixels located at the center,
resulting in n2 = 40401. A perfectly matched layer (PML)
was used to satisfy the boundary condition. The time step for
data collection was 50 ns, with a total of 512 steps (m =
512× 60 = 30720). The size of the matrix A (m × n2) thus
becomes 30720×40401. The forward model for the generation
of acoustic data utilized a fine grid having an imaging region as
402×402 (within the computational grid of size 1002×1002).
The inverse problem utilized a grid size of 201×201 (within
the computational grid of size 501 × 501) imaging region
in order to avoid inverse crime, as typically the object is in
continuous domain and during PA image reconstruction the
domain gets discretized to enable computations. In this work,
the signals coming from outside the imaging region were not
considered as water (coupling medium) absorbs very weakly
in the near infrared region and the tissue under investigation
is completely contained within the imaging domain.

The forward model of PA imaging can be summarized as,

Ax = b (2)

where A is the system matrix containing impulse responses of
all pixels in the imaging region as columns, x is initial value
of pressure at each pixel in the imaging domain, and b is the
measured acoustic data on the boundary (detector locations).
The singular value decomposition (SVD) of the system matrix
can be represented as,

A = USVT

A =
k∑

i=1

uiσivi (3)

where k is min(m, n2), U and V are left and right orthogonal
matrices (UUT = UT U = Im ,VVT = VT V = In2)
with ui and vi representing the columns of U and V, respec-
tively. S is a (m × n2) diagonal matrix with non-negative
diagonal elements called as singular values arranged as,

σ1 ≥ σ2 ≥ . . . ≥ σk

Note that the simplest method of obtaining x will be to use
back-projection, which simply becomes xbp = AT b [40], [41].
The quality of the reconstructed image (xbp) using this method
is often limited especially when limited data is available.

C. Standard Model-Based Reconstruction Methods

1) �2-Norm Based Tikhonov Regularization: The Tikhonov
regularization method is the most common method for solving
discrete ill-posed inverse problems in limited-data settings.
As it uses �2-norm based regularization of the solution, it pro-
motes the smoothness in the desired solution. The Tikhonov
minimization function can be written as,

�T ikh = min
x
(�Ax − b�22 + λ�x�22) (4)

where, λ is a regularization parameter providing the balance
between residue of the linear equations (first term on the
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right-hand side) and expected initial pressure distribution (x).
Higher regularization tends to oversmooth the image, while
a smaller value of λ amplifies the noise in the image. The
function �T ikh is minimized with respect to x , resulting
in [18] and [20],

xT ikh = (AT A+ λI)−1ATb (5)

Using SVD of A (Eq. (3)), Eq. (5) can be reduced to,

xT ikh = (VST SVT + λI)−1VSTUTb

= V(ST S+ λI)−1ST UT b

=
k∑

i=1

σi (uT
i b)

σ 2
i + λ

vi

=
k∑

i=1

φ(σi )(u
T
i b)vi (6)

where, φ(σi ) are the filter factors [36], [37] that can be written
as,

φ(σi ) = σi

σ 2
i + λ

(7)

The regularization parameter λ can be found using
algorithms such as GCV, L-curve, or minimal residual
method (MRM) [42]. Numerical experiments found that GCV
and L-curve algorithms do not converge for ill-posed prob-
lems, as also observed in [28]. In this work, the discrepancy
principle [25], [31] has been utilized for computing the reg-
ularization parameter. The discrepancy principle is the most
widespread ||e||2-based parameter choice method. If the ill-
posed problem is consistent in the sense that Axtrue = btrue

then the amount of noise in b can be expressed as,

b = btrue + e

= Axtrue + e (8)

The idea is to choose the regularization parameter λ such
that the residual norm (also known as discrepancy) is equal
to a-priori upper bound δ for ||e||2, i.e.,

||b − Axλ||2 = δ (9)

where, �e�2 ≤ δ and xλ is the computed regularized
solution [25], [36]. Alternatively,

F(λ) = �b − Axλ�22 − δ2 = 0 (10)

In case of Tikhonov regularization, the Eq. (10) will be
reduced using singular value decomposition as follows,

FT ikh (λ) =
k∑

i=1

(
λ(uT

i b)

σ 2
i + λ

)2

+
m∑

j=k+1

(uT
j b)2 − δ2 = 0 (11)

Eq. (11) can then be solved by Newton’s Method [31] and it
is implemented using open-source regularization toolbox [43].
The generalized inverse solution can be interpreted as follows:
in case of sufficient noiseless independent data (k = m = n2)
the solution obtained during inversion is unique and exact.
When k = m < n2, the least norm solution will be obtained,
where the noiseless data can be fitted exactly, but the solution
is non-unique. Considering k = n2 < m, a least square

solution which is unique will be recovered, but may not fit the
generic noisy data. When k < m < n2 the generalized inverse
solution encapsulates the behavior of both least norm and least
squares, also known as truncated singular value solution [21].

2) �1-Norm Based Regularization: The Tikhonov method is
known to generate smooth PA image, the typical PA image can
be assumed to be a sparse image as it represents vasculature.
Thus utilization of non-smooth regularizers, like the �1-norm
based scheme will result in better accurate solution. There are
many approaches for performing �1-norm based reconstruction
in PAT [18], [33], [44], [45]. The �1-norm based minimization
can be written as,

��1 = min
x
(�Ax − b�22 + λ�x�1) (12)

where, ||.||1 represents the �1-norm. In this work, the previ-
ously developed split augmented Lagrangian shrinkage algo-
rithm (SALSA) was utilized for solving the �1-norm based
minimization in PAT, the same is explained in [45] and [46].
The reconstruction parameters in the SALSA framework were
chosen heuristically to result in best possible figure of merit,
i.e., contrast to noise ratio.

3) Total-Variation (TV) Based Regularization: Another state
of the art approach for performing reconstructions in PAT
is based on total-variation (TV), wherein a constraint is
applied on the edges in the PA image. Similar to �1-norm
based ones, there are many approaches for performing TV
based reconstruction in PAT [34], [47]–[49]. The TV based
minimization can be written as,

�T V = min
x
(�Ax − b�22 + λ�x�T V ) (13)

where, ||.||T V represents an isotropic total-variation function.
Here, the SALSA framework was utilized for solving the
isotropic TV based minimization in PAT and Chambolle-Pock
iteration was used for minimizing the TV function, the same
is explained in [34], [46], [50]. The reconstruction parameters
for performing the TV minimization in the SALSA framework
is heuristically chosen to result in best possible figure of merit,
i.e., contrast to noise ratio.

D. Proposed Fractional Regularization Methods

1) Fractional Tikhonov Method: The Tikhonov regularization
method with �2-penalty over-smooths the solution, i.e., loss
of sharp or fine features of the reconstructed solution.
Reference [36] proposes a scheme for measuring the residual
error in Tikhonov regularization with a seminorm that uses a
fractional power of the Moore-Penrose pseudoinverse of AAT

as weighting matrix. As a result, the data fidelity term in
Eq. (4) penalized by fractional Tikhonov method can be
rewritten as,

� f rac = min
x
(�Ax − b�2W + λ�x�22) (14)

where, �x�W = (x T Wx)
1
2 and W is symmetric positive

semidefinite matrix given as,

W = (AAT )
(α−1)

2 (15)
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Fig. 1. Flow diagram illustrating the procedure for automatically choosing fractional power and regularization parameter in fractional Tikhonov
method (Sec. II-D.1).

where, α represents the fractional power with α > 0. Eq. (14)
has a unique solution for all positive values of regularization
parameter λ. The semi-norm �.�W allows the parameter α to
be chosen such that the reconstruction solution from Eq. (14)
is of improved image quality. Differentiating Eq. (14) with
respect to x and equating to zero results in,

(
(AT A)(α+1)/2 + λI

)
x = (AT A)(α−1)/2AT b (16)

Eq. (16) can be rewritten as,

(ATWA+ λI)x = ATWb (17)

Using the SVD of A in Eq. (17) results in,

(VSUT USα−1UT USVT + λI)x = VSUT U Sα−1UTb (18)

(VSα+1VT + λI)x = VSαUTb (19)

The solution is given by [36],

x f rac =
k∑

i=1

σαi

σα+1
i + λ(u

T
i b)vi

=
k∑

i=1

φ f rac(σi )(u
T
i b)vi (20)

The filter function of fractional Tikhonov method for α > 0
is given by [36],

φ f rac(σ ) = σα

σα+1 + λ (21)

The hypothesis is that applying the above scaling on singular
values will result in improved reconstruction compared to
Tikhonov regularization method. In this work, the fractional
power (α) was chosen automatically based on maximizing the
SNR/CNR of the reconstructed image (note that by SNR/CNR,
we mean that SNR was maximized for experimental cases
and CNR was maximized for numerical simulations for auto-
matically choosing the fractional power) using a simplex
approach. The same has been detailed in the flow-chart given

in Fig. 1. Further relationship between the fractional power
and smoothness of the reconstructed image is established in
Appendix-I.

2) Fractional-�1 Method: Fractional-�1 based reconstruction
relies on minimizing the residual error to the fractional-power
of the Moore-Penrose pseudoinverse of AAT along with using
a sparsity constraint. The objective function to be minimized
in the case of fractional-�1 scheme will be,

� f racl1 = min
x
(�Ax − b�2W + λ�x�1) (22)

The fractional-�1 objective function can now be minimized in
the SALSA framework, wherein two new objective function
will be minimized that are given as,

� f racl1−obj1 = min
x
(�Ax − b�2W + μ�x − vk − dk�2) (23)

� f racl1−obj2 = min
v
(λ||v||1 + μ2 �xk+1 − v − dk�2) (24)

where, λ is the regularization parameter, μ is the ADMM
parameter and dk, vk are the iterating vectors. Specifically the
difference in implementing the fractional schemes inside the
SALSA frameworks comes in Eq. (23), which is minimized
similar to fractional Tikhonov case explained in Sec. II-D.1.
Further we have automatically chosen the fractional power
(α) within each iterations of fractional-�1 framework. The
other reconstruction parameters like λ and μ were empirically
chosen to result in best possible figure of merit i.e. SNR/CNR.
The implementation details are presented in Algorithm-1.

3) Fractional-TV Method: Fractional-TV method incorpo-
rates variational penalty function as regularization, and min-
imizes weighted least square norm. Total variation is used
to obtain a non-smooth reconstructed solution. The objective
function to be minimized in fractional-TV approach is given
as,

� f raclT V = min
x
(�Ax − b�2W + λ�x�T V ) (25)

Again the SALSA framework is used to solve the minimization
problem. The �2-norm regularization step (i.e., Eq. (23))
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Algorithm 1 Fractional-TV/�1

Input: SVD of A : U,�,V, data b, ADMM parameter
μ, d0, v0

Output: fractional-TV/�1 solution x
1 xk+1 = min

x
(�Ax − b�2W + μ�x − vk − dk�2)

Simplex method is used to determine the parameter α
by maximizing SNR/CNR as explained in flow chart of
Fig.1 ;

2 vk+1 = min
v
(λψ(v) + μ

2 �xk+1 − v − dk�2) ;

(ψ(v) = ||v||1 for �1-norm minimization, and
ψ(v) = ||v||T V for TV minimization)

3 dk+1 = dk − (xk+1 − vk+1);
4 k ← k + 1 ;
5 until �Axk+1 − b�22 < δ

in the original SALSA framework is replaced by fractional
Tikhonov-type regularization to provide solutions that are not
as smooth as Tikhonov scheme. Even here the fractional
power (α) is chosen automatically to result in maximum
SNR/CNR values. Other reconstruction parameters are chosen
heuristically to result in best possible figure of merit. The algo-
rithmic details of fractional-TV/�1 are given in Algorithm-1.

The first step of the algorithm consists of minimizing strictly
convex quadratic function (i.e., Eq. (23)). The solution for
(i.e., Eq. (23)) is given by fractional Tikhonov method as,

xk+1 =
k∑

i=1

σαi
σα+1 + μ(u

T
i b)vi+

k∑

i=1

1

σα+1
i +λ [v

T
i (vk + dk)]vi

(26)

The solution for the second objective function in the SALSA
framework for TV based minimization is given by Moreau
proximity mapping of ψ applied to (xk+1 − dk), and the
solution is given as,

vk+1 = λ,μ(xk+1 − dk) (27)

Whereas minimum for the second objective function in the
fractional-�1 case (Eq. (24)), λ,μ is computed exactly which
is a soft thresholding operator. But in the case of TV, λ,μ
doesn’t have a closed form and λ,μ is approximated by fixed
number of Chambolle iteration [50]. The convergence of both
fractional-�1 and fractional-TV is same as SALSA algorithm
given in [46].

E. Figures of Merit

The efficacy of the different methods described above were
quantified using the following figures of merit on numerical
simulations and experimental datasets.

1) The Pearson correlation (PC) coefficient is a quantitative
metric that measures the degree of correlation between
the target and the reconstructed image [18], [19]. It is
defined by:

PC(xtarget , xrecon) = cov(xtarget , xrecon)

s(xtarget)s(xrecon)
(28)

where, xtarget is the expected initial pressure distribution
and xrecon is the reconstructed initial pressure distrib-
ution. cov denotes the covariance, and s denotes the
standard deviation. PC ranges between −1 to 1. Higher
value of PC indicates better detectability of the targets
in the reconstructed image.

2) Contrast-to-Noise Ratio (CNR) was also used to eval-
uate performance of different algorithms in numerical
simulations. The contrast-to-noise ratio is a measure of
the image quality based on the contrast, typically used
to compare the reconstructed images [51]. The CNR is
defined as [19]:

C N R = μroi − μback

(s2
roi aroi + s2

backaback)1/2
(29)

where, μ denotes the mean and s represents the standard
deviation. The subscript roi and back represent the
region of interest and the background correspondingly
in the reconstructed image. The area ratio is represented
as aroi = Aroi

Atotal
and aback = Aback

Atotal
.

3) In case of experimental data, the signal to noise ratio
(SNR) was used to evaluate the performance of different
reconstruction scheme as the expected distribution is
unknown, the SNR is given as,

SN R = 20log10(
xsignal

xnoise
) (30)

where, xsignal are the pixels corresponding to the recon-
structed region of interest in the PA image and xnoise

are the pixels corresponding to the background noise in
the reconstructed PAT image.

4) For quantitatively comparing the performance of differ-
ent reconstruction methods in case of numerical simu-
lations, root mean square error (RMSE) figure of merit
was utilized. RMSE can be defined as,

RM SE =
√∑4n2

i (xi
truth − xi

recon)
2

4n2 (31)

where xtruth indicates the ground truth and xrecon rep-
resent the reconstructed image.

F. Numerical Simulations and Experimental Data

1) Numerical Simulations: Two numerical phantoms (shown
in Fig. 2) were considered for comparing the quantitative
accuracy of the different reconstruction algorithms. A numer-
ical blood vessel phantom (uni-polar in nature) with initial
pressure rise of 1 kPa was used to evaluate the performance of
different methods. Secondly a realistic numerical breast phan-
tom (multi-polar in nature) created from contrast-enhanced
magnetic resonance (MR) imaging data was also used for the
evaluation [52].

A K-wave based forward model [39] was used for generat-
ing the acoustic data (i.e. b), a fine computational grid having a
size of 50.1×50.1 mm (discretized to 1002×1002 pixels) was
utilized and the imaging region used for numerical phantoms
was 20.1×20.1 mm, this imaging region had a grid size
of 402 × 402 pixels [39]. In order to avoid inverse crime,
the collected data was reconstructed on a 201×201 grid.



PRAKASH et al.: FRACTIONAL REGULARIZATION TO IMPROVE PHOTOACOUSTIC TOMOGRAPHIC IMAGE RECONSTRUCTION 1941

Fig. 2. Numerical phantoms used in this work. a) Blood vessel phantom,
b) Realistic Breast phantom.

For obtaining the numerically simulated data, sixty detectors
having 70% bandwidth and a center frequency of 2.25 MHz,
are placed equi-distantly on a circle of radius 22 mm from the
center of the imaging region. The data was sampled at 50 ns
with the total time samples being 512. Gaussian noise was
added to the in-silico forward data to result in SNR’s of 20 dB,
40 dB, and 60 dB. A Linux workstation with dual six-core
Intel Xeon processor having a speed of 2.66 GHz with 64 GB
RAM was used to perform the described reconstructions.

2) Experimental Data: The experimental setup used for
PAT is shown in Fig. 2 of [40]. A Q-switched Nd:YAG
laser operating at 532 nm was used to deliver laser pulses
having pulse width of 5 ns with 10 Hz repetition rate. The
laser pulses were delivered on the sample with the help of
Four right-angle uncoated prisms (PS911, Thorlabs) and one
uncoated Plano-concave lens (LC1715, Thorlabs). The light
fluence on the phantom was measured to be about 9 mJ/cm2

(< 20 mJ/cm2 : ANSI safety limit [53]). A triangular shaped
horse hair phantom was utilized for imaging. The side-length
and diameter of hair are 10 and 0.15 mm, respectively.
The hair phantom was glued to the pipette tips adhered on
acrylic slab [54]. A 2.25 MHz flat ultrasound transducer
(Olympus-NDT, V306-SU) of 13 mm diameter active area
and ∼70% nominal bandwidth was rotated over 360◦ around
the sample for recording the PA signals. The acquired PA
signals were first amplified and filtered using a pulse amplifier
(Olympus-NDT, 5072PR) and then recorded using a data
acquisition (DAQ) card (GaGe, compuscope 4227) having
a sampling frequency of 25 MHz. Synchronization of data
acquisition with laser illumination was achieved using a sync
signal from laser. The reconstructed PA imaging region has
a size of 40 mm×40 mm containing 200×200 pixels. For
the experimental data, a system matrix having a dimension
of 51200×40000 (51200: 512 time samples for 100 detector
positions and 40000: 200×200 reconstruction grid) was used.
The same setup was used to acquire the experimental in−vivo
rat brain data.

III. RESULTS

Figure 3 shows the reconstruction results with simulated
blood vasculature phantom. Figs. 3(a), (b), and (c) shows
the results using the Tikhonov reconstruction scheme with
simulated data having an SNR of 60 dB, 40 dB, and 20 dB
respectively. Figs. 3(d), (e), and (f) indicates the PAT images
generated using the proposed fractional Tikhonov frame-
work (Sec. II-D.1) with the simulated data having an SNR
of 60 dB, 40 dB, and 20 dB respectively. Figs. 3(a)-(f)

Fig. 3. Reconstruction results with simulated blood vasculature phantom
(target is shown in Fig. 2(a)). a-c) shows the results using the Tikhonov
reconstruction scheme with simulated data having an SNR of 60 dB,
40 dB and 20 dB, respectively. d-f) shows the results using the frac-
tional Tikhonov reconstruction scheme with simulated data having an
SNR of 60 dB, 40 dB and 20 dB, respectively. g-i) shows the results
using the �1-regularization scheme with simulated data having an SNR
of 60 dB, 40 dB and 20 dB, respectively. j-l) shows the results using the
fractional-�1 reconstruction scheme with simulated data having an SNR
of 60 dB, 40 dB and 20 dB, respectively. m-o) shows the results using
TV reconstruction scheme with simulated data having an SNR of 60 dB,
40 dB and 20 dB, respectively. p-r) shows the results using the fractional-
TV scheme with simulated data having an SNR of 60 dB, 40 dB and 20 dB,
respectively.

illustrates that the fractional Tikhonov method outperforms the
standard Tikhonov reconstruction in highly noisy environment
(indicated by red arrow in Fig. 3f) with an advantage of
converging to similar solution in low-noise cases. Note that
automatically chosen α’s in fractional Tikhonov scheme for
the 60 dB, 40 dB, and 20 dB cases are 0.7611, 0.5893, and
0.1305, respectively, this indicates that the fractional power
is inversely proportional to data noise level for fractional
Tikhonov reconstruction. Figs. 3(g), (h), and (i) are recon-
structions obtained using the �1-norm based reconstruction
scheme with simulated data having an SNR of 60 dB, 40 dB,
and 20 dB respectively. Figs. 3(j), (k), and (l) are the initial
pressure rise distributions obtained using the fractional-�1
framework (Sec. II-D.2) with the in-silico data having an
SNR of 60 dB, 40 dB, and 20 dB, respectively. Figs. 3(g)-(l)
illustrates that fractional framework results in better recon-
struction than standard �1-norm based method and is superior
in terms of suppressing the noise, as shown by red arrow in
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Fig. 4. Same effort as Fig. 3 with simulated Breast phantom shown
in Fig. 2(b).

Fig. 3(k). The reconstruction results using TV based algo-
rithm on simulated data having an SNR of 60 dB, 40 dB,
and 20 dB is given in Figs. 3(m), (n), and (o), respectively.
Lastly, Figs. 3(p), (q), and (r) shows the PA images with the
fractional-TV method (Sec. II-D.3) on simulated data having
an SNR of 60 dB, 40 dB, and 20 dB, respectively. Overall,
Fig. 3 demonstrates that fractional framework converges to
more accurate solution with superior image quality when com-
pared to standard methods (Sec. II-C). Specifically fractional-
TV based methods showed greater superiority in low-noise
cases and fractional Tikhonov method performed well in high
noise environments.

Figure 4 shows the reconstruction results with a realistic
numerical breast phantom case having multi-polar charac-
teristics. Figs. 4(a), (b), and (c) indicates the reconstruction
results corresponding to Tikhonov method with simulated data
having an SNR of 60 dB, 40 dB, and 20 dB, respectively.
Figs. 4(d), (e), and (f) are PAT images generated using the
proposed fractional Tikhonov framework with the numeri-
cal data having an SNR of 60 dB, 40 dB, and 20 dB,
respectively. Figs. 4(a)-(f) shows the potential of fractional
Tikhonov method over the standard Tikhonov scheme in
accurately reconstructing the structures even in an highly
noisy environment (indicated by red arrows in Fig. 4(f)).
Figs. 4(g), (h), and (i) are reconstructions obtained using the
�1-norm based algorithm on data generated from breast
phantom having a SNR of 60 dB, 40 dB, and 20 dB,

Fig. 5. Figures of merit for numerical phantom case results shown
in Figs. 3 and 4. a) CNR comparison with numerical blood vessel.
b) CNR comparison with numerical breast phantom case. c) PC compar-
ison with numerical blood vessel shown in Fig. 2(a). d) PC comparison
with numerical breast phantom shown in Fig. 2(b).

respectively. Figs. 4(j), (k), and (l) are the initial pressure rise
distributions corresponding to the fractional-�1 framework
with the numerical data having an SNR of 60 dB, 40 dB,
and 20 dB, respectively. As can be seen, the fractional-�1
framework provides higher contrast compared to standard
�1-norm based method. The reconstructions corresponding to
numerical breast phantom with TV based method on simulated
data having an SNR of 60 dB, 40 dB, and 20 dB, are given in
Figs. 4(m), (n), and (o), respectively. Figs. 4(p), (q), and (r)
shows the PA images with the fractional-TV method on
simulated data having a SNR of 60 dB, 40 dB, and 20 dB
respectively. Overall, Fig. 4 reveals that fractional framework
converges to more accurate solution having superior image
quality when compared to standard often used state-of-the-art
reconstruction method. For the breast phantom case, the α’s in
fractional Tikhonov scheme for the 60 dB, 40 dB, and 20 dB,
cases are 0.5784, 0.2151, and 0.1759, respectively, again the
fractional power reduced by increasing the data noise level.

Even in case of breast phantom case fractional-TV based
methods showed greater superiority in low-noise cases and
fractional Tikhonov method performed well in high noise
environments as indicated by red arrows in Fig. 4. From
Fig. 4, it is apparent that fractional methods are able to recover
the varying contrast levels accurately compared to standard
reconstruction schemes (Fig. 4(p) vs Fig. 4(m)). Moreover,
the automatically chosen fractional power values were lower
in the case of breast phantom in comparison with the blood
vessel phantom indicating that the fractional power depends on
the target image to be reconstructed. Fig. 5 indicates the CNR
and PC comparison of the different reconstruction methods
with the numerical blood vasculature (Fig. 3) and simulated
breast phantom case (Fig. 4), the CNR values demonstrates
that the proposed fractional power based framework is on-
par/outperform the standard Tikhonov, TV and �1-norm based
reconstruction framework. Similarly, the PC values indicate
that fractional-TV is performing better in low-noise cases
while fractional-Tikhonov show superior results in high-noise
case. Further, quantitative comparison of the performance of
different reconstruction methods via utilization of RMSE as
metric was performed. The RMSE values were plotted in
Fig. 6. As expected the fractional Tikhonov method converged
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Fig. 6. Root mean square error (RMSE) comparison for a) numerical
blood vessel case (reconstruction results are shown in Fig. 3) b) numer-
ical breast phantom case (reconstruction results are shown in Fig. 4).

Fig. 7. Eigen modes comparison for Tikhonov and fractional Tikhonov
scheme. Eigenmode pertaining to 1st singular value for a) Tikhonov
and d) fractional Tikhonov method. Eigenmode corresponding to 5000th

singular for b) Tikhonov and e) fractional Tikhonov method. Eigenmode
for 8000th singular for c) Tikhonov and f) fractional Tikhonov method.

to Tikhonov scheme in low-noise environment. However a
similar trend was not observed for �1-norm and TV based
reconstructions, as these methods are non-linear, do not have
closed form solutions and relies on iterative methods. Notable
in high-noise cases, the fractional framework outperformed the
standard reconstruction methods.

Figure 7 indicates the eigen modes for Tikhonov and
fractional Tikhonov based reconstruction. The i th eigen mode
is calculated as, E Mi = σi V ui . As can be seen from
Figs. 7(a), and (d), both fractional Tikhonov and Tikhonov
method shows similar distribution while weighting the solu-
tion corresponding to larger singular values. But as we
move to lower singular values in the Tikhonov framework,
i.e., Figs. 7(b), and (c), the contribution from lower singular
values are smoothed out, therefore in a noisy environment the
high frequency content (edges) tends to get suppressed and
even the contrast will be defined by only the higher singular
values. In contrary with the fractional Tikhonov framework,
i.e., Figs. 7(e), and (f), there is sufficient contribution from the
lower singular values as indicated by cyan arrows in Fig. 7,
which allows us to reconstruct high frequency information
having higher contrast even in noisy environments.

Next, fractional framework utilization in experimental set-
ting was tested. Fig. 8 indicates the reconstruction results
with different methods (Sec. II-C and II-D) using the
horse hair phantom. Figs. 8(a), (b), and (c) illustrate the
reconstruction results corresponding to Tikhonov, �1-norm
and TV based methods using horse hair phantom. The
SNR’s for each of these methods are indicated below
each image. Figs. 8(d), (e), and (f) shows the initial pressure

Fig. 8. Reconstructed PA images using experimental horse hair phantom
data with a) Tikhonov, b) �1-regularization, c) TV, d) fractional Tikhonov,
e) fractional-�1, and f) fractional-TV. The SNR of these reconstructed
images is indicated below. Scalebar shown in Fig. 8(a) is 5 mm.

Fig. 9. Reconstructed initial pressure rise distribution using experimental
in vivo rat brain data with a) Tikhonov, b) �1-regularization, c) TV,
d) fractional Tikhonov, e) fractional-�1, and f) fractional-TV. The SNR
of these reconstructed images is indicated below. Scalebar shown in
Fig. 9(a) is 5 mm.

rise distribution corresponding to the developed fractional
Tikhonov, fractional-�1 and fractional-TV based algorithms
along with the SNR’s indicated below the image. Tikhonov
reconstruction produces artifacts indicated by red arrow in
Fig. 8(a), which seems to have reduced using the fractional
Tikhonov based reconstruction (indicated by red arrow in
Fig. 8(d)). Moreover the �1-norm and TV based methods
were able to generate reconstructions devoid of these artifacts,
with �1-norm reconstructions being more discontinuous (and
having speckle pattern) compared to TV based reconstruction.
However the fractional counterparts of �1-norm and TV based
algorithms seems to produced much better reconstruction
devoid of artifacts as in Tikhonov scheme and more continuous
distribution (indicated by red arrow in Fig. 8(f)). Importantly
SNRs of reconstruction results using the fractional framework
were much higher compared to standard reconstruction meth-
ods, improving more than 33.2%.

Lastly, the fractional regularization methods were evaluated
using in vivo rat brain imaging to verify if the proposed
framework could add value for performing real biological
studies. Figure 9 illustrates the reconstruction results using
different algorithms for in vivo brain PA imaging. The
reconstruction results pertaining to Tikhonov and �1-norm
based methods are very noisy as indicated by red arrow
in Figs. 9(a), and (b). However, the fractional Tikhonov and
fractional-�1 based methods were able to generate reconstruc-
tion results that have lesser noise (compared to Tikhonov
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and �1-norm reconstructions), the same can be seen in
Figs. 9(d), and (e). On the other hand, Fig. 9(c) show the TV
based reconstruction with in vivo brain data, which seems
to be more blurry due to the piece-wise constraint applied
in TV based minimization. Finally the fractional-TV based
reconstruction is demonstrated in Fig. 9(f), the inferior cere-
bral vein, superior sagittal sinus and transverse sinus can be
inferred clearly using the fractional-TV method as indicated
by red arrows in Fig. 9(f). The SNR using each of the methods
is given below each image. The SNR values indicate that
the fractional framework seems to generate PA images with
greater image quality compared to standard reconstruction
methods.

IV. DISCUSSION

Quantitative PAT involves solving two inverse problems:
one acoustical and one optical. Acoustic inversion problem
involves retrieving the absorbed optical energy distribution
in the tissue by measuring the tomographic acoustic waves.
As the deposited energy is proportional to the optical absorp-
tion coefficient, the optical inverse problem involves turning
the acoustic reconstruction into a quantified image of the
optical absorption coefficient. In order to solve the acoustic
inverse problem associated with PAT numerous inversion tech-
niques have been developed: time-domain (back-projection)
algorithms, frequency-domain algorithms, time-reversal algo-
rithms, and model-based algorithms. Model-based algorithms
represent the most general category of algorithms which
has a better performance over analytical and time-reversal
solutions especially in limited data cases [15], [19], [20].
The requirement of model based reconstruction techniques
is a existence of a linear relation between the optoacoustic
source and the measured acoustic wave fields. Thus any linear
effect which is related to the pressure wave propagation or to
the acoustic detection can be included in the system matrix
of the model-based algorithm. This helps us to take into
account the finite detection apertures or more generally, any
spatio-temporal detection response in the inversion technique,
as long as it can be modeled or measured. The model plays an
important role in improving the reconstruction performance,
which accurately accounts for the physics of the PA wave
generation, propagation, and detection. Post-processing of
model-based reconstructed images are performed in order to
improve the reconstruction performance. This post-processing
can be performed by applying deconvolution or other image
enhancement schemes. Additional computational burden in
performing the deconvolution step is justified as they provide
much desired quantification in the reconstructed PA images.

Furthermore standard model-based reconstruction methods,
i.e., Tikhonov, �1-norm, and TV are widely used to perform
reconstruction in PAT [18], [19], [34]. These standard methods
are known to generate accurate reconstructions in low noise
environment, as both larger and smaller singular values are
treated similarly irrespective of data noise levels. Generalized
regularization schemes, which weigh the data-fidelity or prior
information also manipulate the singular values to obtain
accurate solution [55], however these generalized schemes
are a different class from fractional methods and the same

is explained in Appendix-III. In this work, an effective way of
performing PA image reconstruction with the help of fractional
regularization scheme was presented, which can parameter-
ize the singular value filtering by taking fractional powers of
the spectrum during the inversion. Importantly in this work,
the fractional power was chosen automatically using a simplex
method based on maximizing figure of merit like SNR/CNR.
It was demonstrated with numerical experiments that the frac-
tional power varies by varying the SNR of the acquired PA data
in fractional Tikhonov scheme. Specifically, it was observed
that the fractional power reduces by increasing the noise in the
data and the same was theoretically established as explained in
Appendix-II. More importantly, with α = 1, this method will
yield results same as standard Tikhonov filtering, assuring that
the proposed framework is more generic. However establishing
similar trend with fractional-�1/TV methods would be difficult
as analytical closed form solution does not exist for these
framework and minimization in these frameworks rely on
iteratively converging to a solution. Within each iteration the
value of α changes based on the SALSA alternating direc-
tion maximization-minimization (ADMM) parameter, making
it difficult to establish a relationship between α and data
noise level with fractional-�1/fraction-TV cases, however as
explained in Algorithm-1 the fractional power was chosen
automatically with fractional-�1/fraction-TV algorithms. Note
that the ADMM reconstruction parameters were chosen empir-
ically to result in best SNR/CNR, with standard �1-norm,
TV based reconstruction and in the proposed fractional �1-
norm/TV based reconstruction.

The fractional framework developed for �2-norm, �1-norm
and TV minimization was superior to the state-of-the-art
reconstruction methods. For high noise cases, the traditional
model based algorithms seems to over-smooth the solution by
decreasing the norm of the solution. The problem of over-
smoothing can be mitigated by automatically choosing the
fractional power in the developed fractional framework. The
results presented in this work were unbiased as all reconstruc-
tion parameters in standard and proposed scheme were chosen
to result in highest figure of merit value, i.e., SNR/CNR.
Having the SVD matrix precomputed, the fractional Tikhonov,
�1-norm and TV based methods take about 101, 249, and
150 seconds to converge to the solution (including automatic
fractional factor estimation) as opposed to 7.33, 184.89, and
185.25 seconds for standard Tikhonov, �1-norm and TV
schemes. Also, as it requires computation of the SVD of
the model matrix, any change in the detection geometry
requires recomputation of SVD, which is an computationally
expensive procedure therefore implementing the same on
graphics processing units will enable real-time PAT. It can
be seen that automated choice of the fractional power requires
about 100 seconds, while performing the reconstruction using
Tikhonov method takes about 7 seconds, the process of auto-
matically choosing the fractional power with simplex method
can be parallelized using GPUs [56].

Recent emphasis in PAT is to develop handheld systems in
two- [57], [58] and three-dimensions (3D) [33], these systems
acquire data from one side of the sample and therefore will
have limited coverage of the sample. Moreover these systems
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are found to add greater value in clinical and pre-clinical
scenarios [59], [60]. The presented work has demonstrated
the potential of fractional methods using a single element
transducer with full 360 degree coverage (limited sensor posi-
tions) spanning the entire sample being imaged. The problem
becomes more complex with handheld systems due to very less
independent measurements in comparison to the experimental
setting used in our study, therefore future work will involve
studying the utility of the developed fractional framework
with handheld configuration. Further, it is well known that
using �1-norm based framework could potentially accelerate
PA image acquisition (along with data sampling methods) [32]
enabling 3D imaging with frame-rates reaching few kilohertz.
Hence performing data sampling studies in the context of
fractional algorithms will add tremendous potential in realizing
real-time 3D PAT imaging.

V. CONCLUSION

Model-based reconstruction algorithms improve the quanti-
tative accuracy of PA images. This work introduced fractional
regularization framework implemented for Tikhonov, �1-norm
and TV based algorithms to improve the reconstructed image
quality in PAT. The fractional method is identical to stan-
dard Tikhonov, �1-norm and TV regularization schemes when
fractional parameter is taken as one making it more generic
and appealing. The performance of the proposed fractional
methods has been superior compared to standard state-of-the-
art methods like Tikhonov, �1-norm, and TV based recon-
struction. The superior performance can be attributed to the
inclusion of fractional power which controls the level of
smoothness by increasing the norm of the reconstructed solu-
tion. Further the fractional power was chosen automatically
using a simplex method by maximizing the SNR/CNR of the
reconstructed PA image. The results indicate that the fractional
power was inversely proportional to the data noise level in
the case of fractional Tikhonov scheme, same was proven
both theoretically and found in numerical simulations. It was
found that the fractional framework is superior to standard
reconstruction methods (with improvement being as high as
54%) in numerical simulations, experimental phantom and
in vivo rat data.

APPENDIX I
CONTROLLING THE SMOOTHNESS WITH

FRACTIONAL PARAMETER α

The singular vectors associated with small singular values
usually contain high frequency oscillations. Analyzing the
filter factors of fractional Tikhonov method (given in Eq. 21)
for smaller singular values i.e., σ << 1 and expanding Eq. 21
using Taylor series and neglecting higher order term leads to,

φ(σ) = σα

λ
− σ

2α+1

λ2 (32)

Considering φt (α) = σα in Eq. 32 as a function of α and
differentiating with respect to α results in,

φ
t (α) = σα ln(σ ) (33)

For this analysis, one can consider σ << 1 for which
φt (α) is a decreasing function as φ
t (α) < 0 for σ << 1.
Following this, each term in Eq. 32 is decreasing function of
α. Thus, reducing the fraction power from α = 1 (Tikhonov)
increases φ(σ), implying increased high frequency contents in
the fractional Tikhonov reconstructed solution (in other words,
reducing the smoothness in the image).

APPENDIX II
RELATIONSHIP OF α WITH NOISE

λ is a function of δ and can be derived from discrepancy
principle given in Eq. 9. Substituting Eq. 20 in Eq. 9 and
taking F as an n×m matrix with its diagonal elements being
filter factors of fractional Tikhonov scheme, i.e., diag(F) =
φ f rac(σi ) results in,

�UUT b − U�FUT b�22 = δ2

�U(I −�F)UT b�22 = δ2

�
m∑

i=1

(1− σiφ f rac(σi ))(u
T
i b)ui�22 = δ2 (34)

Rewriting the above equation (considering k = min(m, n2)),

k∑

i=1

(1− σiφ f rac(σi ))
2(uT

i b)2 +
m∑

j=k+1

(uT
j b)2 = δ2

k∑

i=1

λ2σα+1
i

(σα+1
i + λ)2 (u

T
i b)2 +

m∑

j=k+1

(uT
j b)2 = δ2 (35)

Differentiating Eq. 35 w.r.t . λ, i.e. taking δ(λ) as an inverse
function of λ(δ) results in,

2δ(λ)δ
(λ) =
k∑

i=1

2λσ 2α+2
i

(σα+1
i + λ)3 (u

T
i b)2 (36)

It follows that δ
(λ) > 0, i.e., δ(λ) is a monotonically
increasing function, which implies the existence of its inverse
λ(δ) being monotonically decreasing.

Hence the regularization parameter decreases with increas-
ing noise. Now taking two different noise cases δ1 > δ2,
one has λ1 < λ2. Considering two different filter factors
corresponding to each of the regularization parameters λ1 and
λ2 in the fractional Tikhonov case results in,

φ1(σ ) = σα1

λ1
− σ

2α1+1

λ2
1

φ2(σ ) = σα2

λ2
− σ

2α2+1

λ2
2

(37)

Note that these filter factors are associated with lower singular
values for the noise levels δ1 and δ2 correspondingly. From
Eq. 37, one can establish that the filter factors are decreasing
functions of λ. For the case of λ1 < λ2, the corresponding
filter factors will be related as φ1 > φ2. This means that
the high frequency contents are suppressed while performing
reconstructions with noisy data (as λ1 < λ2 implies δ1 > δ2).
Ideally one wants a solution with equal high frequency content
both at high noise and low noise scenarios, implying φ1 ≈ φ2.
From Appendix-I, it is clear that increasing φ will reduce α,
making α1 < α2. Therefore when δ1 > δ2, results in α1 < α2
i.e. fractional power reduces by increasing noise in the data.
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APPENDIX III
DIFFERENCE BETWEEN WEIGHTED- AND FRACTIONAL

REGULARIZATION METHODS

A. Generalized Weighted Regularization

In case of weighted Tikhonov scheme, the data fidelity term
and regularization term in Eq. (4) can be penalized using
weight matrices, which is given as,

�W T ikh = min
x

[
((Ax − b)T Wb(Ax − b))+ λ(xTWxx)

]

(38)

where Wb and Wx are diagonal weight matrices corresponding
to the data-fidelity and prior constraint, which are given as,

Wb = (C OV (Ax − b))−1; Wx = (C OV (x))−1 (39)

where COV indicates the covariance matrix. Differentiating
Eq. (38) with respect to x and equating to zero results in,

(
(AT WbA)+ λWx

)
xgeneral = (AT Wbb) (40)

Using the SVD of A in Eq. (40) results in,

(VST UTWbUSVT + λWx)xgeneral = VST UTWbb (41)

Assuming that we are weighting only the prior constraint i.e.
Wb = I, we will get,

(VST UTUSVT + λWx)xwx = VST UTb (42)

In other words, weighting the regularization term will lead to,

xwx = (VST SVT + λWx)
−1VST UTb (43)

We can rewrite the above equation as,

xwx = (VST SVT + λVVTWxVVT)−1VSUT b (44)

Further, rearranging the terms results in,

xwx = V(STS+ λVTWxV)−1SUTb (45)

The solution is given by,

xwx =
k∑

i=1

σi

σ 2
i + λvT

i wxvi
(uT

i b)vi

=
k∑

i=1

φwx (σi )(u
T
i b)vi (46)

The filter function while weighting the regularization will be,

φwx(σ ) = σi

σ 2
i + λvT

i wxvi
(47)

On similar lines, we can write xwb i.e. assuming Wx = I as,

xwb = V(STUTWbUS+ λI)−1STUTWbb (48)

The filter function while weighting the data-fidelity can be
written as,

φwb(σ ) = σiwb

σi uT
i wbuiσi + λ

(49)

B. Fractional Regularization Method

In case of fractional Tikhonov scheme, the data fidelity
term in Eq. (4) is penalized using fractional power and can
be rewritten as,

� f rac = min
x
(�Ax − b�2W + λ�x�22) (50)

where, �x�W = (x T Wx)
1
2 and W is symmetric positive

semidefinite matrix given as,

W = (AAT )
(α−1)

2 (51)

where, α represents the fractional power with α > 0. Differen-
tiating Eq. (50) with respect to x and equating to zero results
in,

(
(AT A)(α+1)/2 + λI

)
x = (AT A)(α−1)/2AT b (52)

The final solution is given by,

x f rac =
k∑

i=1

σαi

σα+1
i + λ(u

T
i b)vi

=
k∑

i=1

φ f rac(σi )(u
T
i b)vi (53)

The filter function of fractional Tikhonov method for α > 0
is given by,

φ f rac(σ ) = σα

σα+1 + λ (54)

Comparing Eq. (46), Eq. (49) and Eq. (54), it is clear
that the weighted regularization indeed scales or shifts the
singular values based on the weight matrix entries, in contrary
the fractional method raises the singular value to fractional
power.
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