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Sparse Recovery Methods Hold Promise for Diffuse
Optical Tomographic Image Reconstruction

Jaya Prakash, Calvin B. Shaw, Rakesh Manjappa, Rajan Kanhirodan, and Phaneendra K. Yalavarthy

Abstract—The sparse recovery methods utilize the �p-norm-
based regularization in the estimation problem with 0 ≤ p ≤ 1.
These methods have a better utility when the number of inde-
pendent measurements are limited in nature, which is a typical
case for diffuse optical tomographic image reconstruction prob-
lem. These sparse recovery methods, along with an approximation
to utilize the �0 -norm, have been deployed for the reconstruction of
diffuse optical images. Their performance was compared systemat-
ically using both numerical and gelatin phantom cases to show that
these methods hold promise in improving the reconstructed image
quality.

Index Terms—Near infrared imaging, diffuse optical tomogra-
phy, image reconstruction, sparse recovery methods.

I. INTRODUCTION

N EAR infrared diffuse optical tomography is an emerging
biomedical imaging modality that uses wavelength in the

range of 600–1000 nm with a capability to provide functional
information of the tissue under investigation [1]–[3]. The main
imaging applications include breast cancer imaging and brain
function assays [4]–[7]. The near infrared (NIR) light is deliv-
ered and collected at the boundary using fibre bundles, these
boundary measurements are in turn used to reconstruct the in-
ternal tissue optical properties like absorption and scattering
coefficients [3]. The reconstructed optical images suffer from
the lack of sharp features, mainly due to the diffusive nature of
NIR light, arising from multiple scattering of photons [6], [7].

The reconstruction of optical properties in diffuse optical
tomography is ill-posed due to dominance of scattering as
well as limited available boundary data [7], [8]. To obtain
unique solution, typically a regularization scheme is included
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in the image reconstruction procedure [9]. The well-established
Tikhonov type regularization (quadratic penalty, �2-norm) im-
poses a smoothness constrain, leading to suppression of noise
and discouraging sharp edges in the reconstructed image [10].

Recently sparse recovery methods have been proposed to
show that �1-norm and �p -norm-based regularization methods
impose a sparsity constrain, facilitating the recovery of sharp
edges and being robust with noise in time-domain diffuse op-
tical tomography [11]. Most methods in the literature do not
deal with sparsity constraint, which relates the minimum num-
ber of required measurements to the sparsity of the image (or
vice versa), which can provide insight into the deployment of
these sparse recovery methods (�1-norm and �p -norm) for dif-
fuse optical image reconstruction problem. More importantly,
the application of �0-norm (or its approximation)-based regular-
ization has not been proposed for diffuse optical tomographic
image reconstruction, which is known to provide a high level
of sparsity induced solutions. The application of �0-norm-based
sparse recovery methods is inspired by the recent progress re-
ported in the signal processing community [12], typically ap-
plied in low-noisy environments.

This study aims to show that sparse recovery methods, all
�p -norm-based regularization with 0 ≤ p ≤ 1, hold promise in
diffuse optical tomographic image reconstruction with a spe-
cial emphasis on �0-norm-based regularization. Note that the
�0-norm is approximated by smooth version of �0-norm [12].
For completeness, the comparison also includes the traditional
�2-norm (Tikhonov)-based regularization scheme. The effec-
tiveness of the sparse recovery methods is shown using both
numerical and gelatin phantom cases, where the number of
measurements were fixed and sparsity in the target (or expected)
images is varied. Moreover, a case of varying noise level is also
taken up to test the robustness level of these sparse recovery
methods to the data noise. Note that in this study sparsifying
transformation, which can make any image as a sparse one, is
not performed in the reconstruction scheme to avoid the bias
introduced by these transforms with also keeping in mind most
tumors tend to be highly localized, making the original recon-
struction problem itself as a sparse one. The discussion in this
study is limited to a 2-D continuous wave (CW) case as the em-
phasis is on bringing out the promise of sparse recovery methods
for diffuse optical tomography.

II. METHODS

A. Diffuse Optical Tomography—Forward Problem

The diffuse optical image reconstruction problem, also known
as inverse problem, is a model-based iterative scheme, which

1077-260X © 2013 IEEE



6800609 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 20, NO. 2, MARCH/APRIL 2014

uses repeatedly the computational model of light propagation
in tissue (forward problem). This computational model deploys
diffusion equation (DE), which is known to be a reasonable
approximation to radiative transfer equation (RTE), in case of
thick tissues (such as breast and brain). In a CW-case, the DE is
given by [13]

−∇. [D(r)∇Φ(r)] + μa(r)Φ(r) = Qo(r) (1)

where Φ(r) is the photon density (real values) at position r
and Qo(r) represents the isotropic light source. The optical
absorption coefficient is represented by μa(r) and the optical
diffusion coefficient (D(r)) is defined as

D(r) =
1

3[μa(r) + μ′
s(r)]

(2)

where μ′
s(r) represents the reduced scattering coefficient, as-

sumed to be known in CW case. Robin (type-III) boundary
condition is used to model the refractive-index mismatch at
the tissue boundary [14]. The fluence (Φ(r)) is sampled at
the measurement position to obtain the modeled data, i.e.,
G(μa) = S{Φ(r)} = S{F (μa)}, where S is the sampling ma-
trix (containing source/detector positions) and F is the forward
computational model which is used to compute the fluence [9].
Here, F represents the finite-element method, which gives im-
mense flexibility in terms of numerical modeling of irregular
geometries, such as breast and brain [7], [8], [13]. The experi-
mentally obtained CW data are represented by y (= ln(A), with
A being amplitude of the data). For the CW case, it is assumed
that μ′

s(r) to be a known constant, making the unknown (or
parameter to be estimated) as μa(r).

B. Diffuse Optical Tomographic Image Reconstruction

The image reconstruction (or inverse problem) procedure in-
volves matching the experimental data (y) with the modeled
data (G(μa)) in a least-squares sense [9]. As this problem is ill-
posed, typically a regularization term is added to bring stability
and uniqueness to the estimation process.

1) Tikohonov Minimization Scheme (�2-Norm Based Reg-
ularization): The most popular regularization scheme is the
Tikohonov minimization scheme, that deploys �2-norm of the
unknown parameter. The objective (or cost) function in this case
turns out to be

Ω(μa) = ‖y − G(μa)‖2
2 + λ‖μa‖2

2 . (3)

The regularization parameter is given by λ and ‖.‖2
2 represents

the square of the �2-norm. The function G(μa) can be expanded
using a Taylor series expansion around μa0 as

G(μa) = G(μa0) + J�μa + (�μa)T S�μa + · · · (4)

with J = ∂G(μa )
∂μa

representing the Jacobian [dimension: M ×
N , with M representing the number of measurements and N
representing the number of FEM nodes (unknowns)] and S
represents the Hessian (second-order derivative). �μa is the
update given as μa − μa0 . Linearizing the previous equation
leads to an objective function [15]

Ω(�μa) = ‖δ − J�μa‖2
2 + λ‖�μa‖2

2 (5)

with δ = y − G(μa) being the data-model misfit. The Gauss—
Newton update equation that results by minimizing the afore-
mentioned objective function is [16]

(JT J + λI)�μa = JT δ. (6)

The Jacobian is typically computed using the adjoint method
[13], where the forward problem is solved twice, one for the
regular source term and another for adjoint source. The update
equation provides a direct estimation of�μa , after computation,
it is added to the current μa , resulting in a new estimate of μa .
Using this μa , both G(μa) and J are recomputed for getting new
update using (6). This process is repeated until the difference in
‖δ‖2

2 in subsequent iterations becomes lesser than 2%.
This �2-norm-based method has been widely used for esti-

mation of the optical properties in diffuse optical tomographic
image reconstruction. Due to �2-norm of the parameters, the
objective function is a convex function, which has a clear min-
ima. At the same time, this norm only allows smooth solutions
for the problem at hand, discouraging the sharp features in the
reconstructed images. Moreover, this assumes that the parame-
ter function is smooth piece-wise continuous function (allowing
twice differentiability), encouraging dense solutions (sparseness
being absent).

As most tumors are known to be highly localized, it is a good
approximation to assume that the reconstructed μa is going to
be sparse, especially in cases where one knows the background
μa of the imaging domain. This background μa (constant value
throughout the domain) could be easily estimated using any
of the data calibration procedures that approximates the imag-
ing domain as semiinfinite [17]. The sparse recovery methods,
where the �p -norm is used in the regularization with 0 ≤ p ≤ 1,
known to provide sparse solutions (with p = 0 encouraging
highest sparsity in the solution) as well as sharp changes in
the recovered μa distribution.

2) Sparse Recovery Method (�p -Norm Based With 0 < p ≤
1): The unconstrained objective function to be minimized with
respect to �μa in this case can be written as

Ω′(�μa) = ‖δ − J�μa‖2
2 + λ‖�μa‖p

p (7)

with p = 2, it reverts to (5). The aforementioned cost func-
tion becomes a nonconvex one, when 0 < p < 1, which can
not be solved directly. In order to overcome this limitation,
we adopt a homotopy-like cooling approach with a help of
majorization–minimization (MM) framework as proposed in
Refs. [18]–[21]. The MM replaces the objective function to
be solved by a sequence of simpler minimization problems.
The function Ω′(�μa) is minimized starting off with an initial
guess �μk

a and a new vector, �μ
(k+1)
a is found which further

decreases Ω′(�μa); in summary the following relation needs to
be satisfied

Ω′(�μ(k+1)
a ) < Ω′(�μk

a ). (8)

The aforementioned condition is met using a new function
H(�μa) which majorizes Ω′(�μa) and the new function is
minimized to get the new update (�μ

(k+1)
a ). In addition the

new function (H(�μa)) should be chosen such that H(�μa) ≥
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Ω′(�μa) for all �μa and H(�μa) should equal Ω′(�μa) at
�μk

a .
In order to minimize Ω′(�μa), initially the data-fidelity term

(‖δ − J�μa‖) of (7) is considered.

Ω1(�μa) = ‖δ − J�μa‖2
2 . (9)

For this minimization, the new function, Hk (�μa) is chosen to
be

Hk (�μa) = ‖δ − J�μa‖2
2

+ (�μa −�μk
a )T (αI − JJT )(�μa −�μk

a ). (10)

In here, α is the maximum eigen value of the matrix JTJ and I
is the identity matrix. Minimizing the previous function is same
as minimizing the following function:

Hk (�μa) = ‖b −�μa‖2
2 (11)

where b = �μk
a + α−1(JT (δ − J�μk

a )). Note that this update
is known as the Landweber iteration. The second step in MM
framework is to include the regularization term (λ‖�μa‖p

p )
in the function Hk (�μa), this results in the following cost
function:

H ′
k (�μa) = ‖b −�μa‖2

2 +
λ

α
‖�μa‖p

p . (12)

Now, the previous function is minimized by using the first-order
condition, which requires computing the partial derivatives of
the function given by

∂H ′
k (�μa)

∂�μa(i)
=2b(i) − 2�μa(i)+

λ

α
p|�μa(i)|p−1sgn(�μa(i))

(13)
where sgn(�μa(i)) is the signum function defined as

sgn(�μa(i)) =

⎧
⎪⎨

⎪⎩

1 for �μa(i) > 0,

−1 for �μa(i) < 0,

0 for �μa(i) = 0.
(14)

Now, setting the partial derivatives to zero and solving for
�μa(i), the following update equation is obtained

�μa(i) = sgn(b(i))max

(

0, |b(i)| − p
λ

2α
|b(i)|p−2

)

. (15)

Hence, the MM-framework for minimizing the objective func-
tion in (7) can be summarized using a two-step iterative solu-
tion [18] as given in Fig. 1. In this study, Algorithm 1 was used
for all cases 0 < p ≤ 2 for fair comparison of the results.

For p = 0, the smooth-�0 framework is used to solve the
objective function, which will be introduced in the following
section. The inputs to Algorithm 1 consist of certain specifica-
tions such as d and Tol, where d is required to iteratively reduce
(cool) the value of λ and the value of Tol is used as terminating
condition for the inner loop based on the relative change of the
cost function. The values of α and λ correspond to the step size
and the initial regularization parameter. The value of α was set
to one in all cases, but λ was chosen empirically in each case
for faster convergence.

Till now the regularization terms contain the norms of un-
knowns with 0 < p ≤ 2, where the sparsity in the expected

Fig. 1. Algorithm 1. Based (0 < p ≤ 2) sparse recovery algorithm.

solution is inversely proportional to the p value. Specifically, the
sparsest solution can be found when p = 0. But the problem of
using exact �0-norm, which mainly counts the nonzero elements
(counts the cardinality), is an NP -hard problem [22]. Typically,
one employs an approximation to the �0-norm to get around this
problem, one such approximation is smooth-�0-norm.

3) Sparse Estimation Using Smooth-�0 Norm: The objective
function in this case can be written as

Ω̃(�μa) = ‖δ − J�μa‖2
2 + λ‖�μa‖0 . (16)

In this study, the �0-norm is minimized using a well-established
smooth-�0 scheme [12], [23], [24]. The smooth-�0-norm was
approximated with the help of Gaussian function, which is given
by

ρ(�μa) = e
−�μ 2

a
σ 2 . (17)

It can be clearly seen that as �μa tends to 0, ρ(�μa) will
tend to 1. On the other hand if σ tends to 0, ρ(�μa) will tend
to 0. In other words, the mathematical definition of ρ(�μa)
becomes [12]

ρ(�μa) =
{

1 if |�μa | � σ,

0 if |�μa | 	 σ.
(18)

Hence, the �0-norm can be written as

‖�μa‖0 = N −
N∑

i=1

ρ(�μai
). (19)

The maximization of function given by (18) will be same as
minimization of function given by (19).
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Fig. 2. Algorithm 2. Smooth-�0 -norm based sparse recovery algorithm.

The method of Lagrange multipliers is used for maximizing
(18) subject to J�μa = δ, leading to the objective function [12]

Ω̃(�μa) =
N∑

i=1

ρ(�μai
) − λ̃T (J�μa − δ). (20)

The partial derivative of the previous equation is evaluated with
respect to �μa resulting in a Karush–Kuhn–Tucker (KKT) con-
ditions to solve for N+M unknowns (N of �μa and M of λ̃). The
linear system to be solved now is [12]

⎧
⎨

⎩

[

�μa1e
−�μ 2

a 1
σ 2 . . .�μaN N e

−�μ 2
a N N

σ 2

]

− JT λ1 = 0

J�μa − δ = 0
(21)

where λ1 is −σ2 λ̃. In other words, it can be clearly seen that the
function defined in (18) is a dual for �0-norm when the σ tends
to a very small value (σ ≤ �μa ).

The Smooth-�0 norm method tries to maximize (17) using a
steepest ascent Algorithm, will in turn minimize the ‖�μa‖0
of the function. The overall non-linear image reconstruction
Algorithm using the Smooth-�0 norm method is given in
Algorithm 2. It was shown in [12] that (21) will be an update to
the �2-norm-based method as σ takes a very high value.

The value of σmin is 10−9 is chosen to approximate the
�0-norm, specifically the lowest value of the norm [12]. The
step 7 in Algorithm 2 (see Fig. 2) indicates the steepest ascent
step which maximizes the derivative of the Gaussian function
defined in step 6 (�Gauss). It can be observed that the steepest
ascent Algorithm is repeated only for 3 iterations (iter = 3), en-
suring the faster convergence, running for each σit defined by
a decreasing sequence [12]. The step 8 indicates the projection
taken on to the convex set, this step is performed to avoid trap-
ping of the steepest ascent Algorithm in a local maxima [12].
The steepest ascent Algorithm uses a decreasing variance step

(step 9 of Algorithm 2) with σdec dictating the decreasing se-
quence and taking a value between 0 and 1. Another important
observation is that if σmin is chosen to have a high value (close
to 1), then the obtained solution will lead to an �2-norm-based
solution [12]. The μ0 in the Algorithm 2 (step-7) is a positive
constant that acts as a step size for the steepest ascent method.

In compressive sensing, it is well known that, if one uses Z
incoherent (independent) measurements, the number of parame-
ters that could be exactly reconstructed (represented by S) in the
sparse recovery methods is given by S = Z/ln(

√
N) [22], [25].

As the sparsity level decreases (S ∼ N ), the sparse recov-
ery methods (�p -norm with 0 ≤ p ≤ 1) give an equivalent of
�2-norm solutions.

C. Quantitative Analysis

The Pearson correlation is used as a measurement of the
degree of correlation between the target and the reconstructed
image having a range of values from −1 to 1. This is a common
figure of merit used in the emission tomography as well as
biological imaging [25]. This measure is defined as [25]

PC(μa
target , μa

recon) =
COV (μa

target , μa
recon)

σ(μa
target)σ(μa

recon)
(22)

where μa
target is the expected μa distribution and μa

recon is
the reconstructed μa distribution using �p -norm-based regular-
ization (0 ≤ p ≤ 2). The COV is the covariance and σ indicates
the standard deviation. This measure describes the detectability
of the target.

The other metric used to measure the accuracy of the recon-
struction is based on the mean value of the region of interest
(ROI), the value of the ROI is proportional to the contrast re-
covery (the higher the mean value in the ROI the better is the
contrast recovery) and higher ROI leads to better detectability
of the tumor.

III. NUMERICAL AND GELATIN PHANTOM EXPERIMENTS

A. Circular Domain Numerical Experiments
(Regular Geometry)

The comparison of the performance of �p -norm (0 ≤ p ≤ 2)-
based regularization methods that were discussed in this study
was achieved by using a circular domain initially. The circu-
lar domain has a diameter of 86 mm which is discretized into a
finite-element mesh (centred around origin), a finer one for mim-
icking the experimental data generation and another coarser one
for the reconstruction scheme. The background optical prop-
erties of the domain was set to μa = 0.01 mm−1 , and μ′

s =
1 mm−1 having a uniform refractive index of 1.33. It had two
small targets mimicking tumor region separated by a distance of
10 mm having a radius of 2.5 mm, centered around (20,7.5) and
(20,−7.5). The tumor (target) optical properties were set to μa

= 0.02 mm−1 , and μ′
s = 1 mm−1 . The target μa distribution is

given in the Fig. 3 (top-left corner). The data-collection system
had 16 fibers arranged on the boundary of the circular domain,
where when one fiber acts as a source, rest act as detectors.
This setup results in 16×15 = 240 number of measurements
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Fig. 3. Comparison of the reconstructed μa distribution using the �2 , �1 , �p ,
and �0 norm-based regularization scheme for the case of two small circular
targets (top-left corner). The numerically generated data were corrupted with
1% normally distributed Gaussian noise. The 1-D cross section of reconstructed
μa distribution along the solid line of target image is shown in the bottom-right
corner.

Fig. 4. Similar effort as Fig. 3, except the small targets are in rectangular in
shape and are placed at the center of the imaging domain.

(M). Each source was modeled as a Gaussian source having
full width at half maximum of 3 mm to mimic the experimental
case [26] and is placed at one mean transport length inside the
boundary. The numerical experimental data were generated us-
ing a fine mesh having 10 249 nodes (corresponding to 20 160
linear triangular elements) with addition of 1% normally dis-
tributed gaussian noise. A calibrated data were used to perform
the reconstruction on a coarser mesh consisting of 1933 nodes
(corresponding to 3726 linear triangular elements) [17]. The
norms that were used in the reconstruction include �2 , �1 , �0.45
(implemented using Algorithm 1), and smooth-�0 (implemented
using Algorithm 2).

A similar effort having rectangular targets placed close to
the center of imaging domain is considered to test the ability
to recover sharp edges using the methods discussed in here.
The rectangular absorbers are separated by 20 mm in the center
of the imaging domain as shown in top-left corner of Fig. 4.
The rectangles were of size 7×9 mm placed at (0,13.5) and
(0,−13.5), these absorbers have the similar optical properties as
of earlier case.

B. Patient Mimicking Numerical Experiments
(Irregular Geometry)

To test the effectiveness of the reconstruction methods dis-
cussed in this study, a patient mimicking irregular geometry is
considered with increasing data noise level. The patient mimick-
ing mesh had an irregular boundary, the geometry was acquired
in Dartmouth NIR-MRI setup [27], where the tissue morphol-
ogy is captured using MRI, consisting of both fatty and fibro-
glandular tissue. The background optical properties were set to
same values as in circular domain case. It was assumed that
there are only two regions in the tissue, tumor (target), and
background (achieved by making the fibro-glandular tissue and
fatty tissue into one region). Initially, a circular target mimick-
ing the tumor with a radius of 7.5 mm is placed in the irregular
imaging domain centred at (27,−7.5). The optical properties for
the tumor region were kept as μa = 0.02 mm−1 , μ′

s = 1 mm−1

having 100% contrast compared to background as shown in
Fig. 5. The experimental data were generated using a fine patient
mesh having 4876 nodes (corresponding to 9567 linear triangu-
lar elements). This data were added with 1% and 5% normally
distributed Gaussian noise. The reconstruction was performed
on a coarser mesh consisting of 1969 nodes (corresponding to
3753 linear triangular elements). The data-collection strategy
was similar to the previous case.

Next, a case of same geometry as earlier, but having three
regions, typically observed in breast imaging, is considered.
In this case, the fibro-glandular region was also irregular in
nature, having optical properties as μa = 0.015 mm−1 , μ′

s =
1 mm−1 . The target and fatty tissue have taken the same values
as the earlier case. The target μa -distribution is shown in the
top-left corner of Fig. 6. In this case, the data collection and
reconstruction were performed in the same fashion as the earlier
case, except the data-noise level of only 1% is considered here.

C. Gelatin Phantom Experiment

The comparison of the methods that was discussed in
Section II-B was also performed using an experimental gelatin
phantom data, which closely mimics the typical breast compo-
sition. This phantom was prepared using a mixture of Indian
ink for producing absorption effect and Titanium oxide (TiO2)
for scattering [10]. The gelatin phantom had a radius 43 mm
and height of 25 mm. The layers of gelatin were fabricated by
using a hardening heated gelatin solution (having a concentra-
tion of 80% of deionized water and 20% of gelatin (G2625,
Sigma Inc)) successively to produce an experimentally breast
mimicking phantom. The thickness of the outer layer that mim-
ics the adipose region is 10 mm with its optical properties being
μa = 0.0065 mm−1 and μ′

s = 0.65 mm−1 . The middle layer
that mimics the fibro-glandular layer has a diameter of 76 mm,
having the optical properties as μa = 0.01 mm−1 and μ′

s =
1.0 mm−1 . The tumor is mimicked as a cylindrical hole extend-
ing in the Z-direction filled with intralipid mixed with Indian
ink with optical properties being μa = 0.02 mm−1 and μ′

s =
1.2 mm−1 with a radius of 8 mm and height of 24 mm. The
data were collected using 785 nm light source for the valida-
tion of individual layers optical properties. The CW data were
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Fig. 5. Comparison of the reconstructed μa images obtained using �2 , �1 , �p , and �0 norm-based regularization scheme for an irregular geometry (mimicking
typical in vivo case) with increasing noise level (indicated at the left hand side). The top-middle 1-D profile plot along the solid line of target image is for the data
noise level of 1% and the top-right one for results obtained using 5% noisy data.

Fig. 6. Comparison of reconstructed absorption coefficient obtained for the
case of irregular heterogeneous tissue, mimicking a typical breast, using �2 ,
�1 , �p , and �0 norm based regularization scheme. The data noise level is 1%.
Similar to Fig. 3, the 1-D cross section of the reconstructed results are given in
the bottom right corner.

collected using a single layer of fibers (at z=0 mm) leading to
240 ln A data points. The collected data were calibrated using
the finite-element mesh having 1785 nodes (corresponding to
3418 linear triangular elements). All computations were carried
out on a Linux work station with an Intel Xeon 5410 Dual Quad
Core 2.33 GHz processor with 64 GB of RAM. The modeling of
light propagation was performed using MATLAB-based open-
source NIRFAST [8] and smooth-�0 -norm-based Algorithm was
written based on open-source code [28]. The MATLAB package
was registered at Mathworks, Natick, MA, USA.

Moreover, in all cases (numerical as well as gelatin phan-
tom), the experimental data are calibrated to remove the un-
warranted biases among different channels as well as numer-
ical errors induced by finite-element discretization [17]. The
FEM-based method is a well-established numerical method for

modeling light propogation, but is known to induce errors due
to coarse discretization and source modeling, hence calibration
is performed to provide a good initial guess [17], [29]. The data-
calibration also results in initial guess (μ0

a ) [17]. The same initial
guess is used for all methods for consistency. It is also important
to note that the �p -norms that were considered between 0 and 1
were varied (in steps of 0.05) and then a p vs ‖y − G(μarec)‖2
(G(μarec) represents the data collected using the reconstruction
absorption distribution) graph was plotted, the p resulting in a
minimum value of ‖y − G(μarec)‖2 is considered as optimal p.

IV. RESULTS

For the case of small circular targets, the reconstruction re-
sults obtained using the methods described earlier are given in
Fig. 3. The 1-D cross-section profile of reconstructed μa distri-
bution along the solid line of the target image of Fig. 3 is given at
the bottom-right corner. Similar effort in the case of small rect-
angular targets is reported in Fig. 4. It is clearly evident that as
the p in the �p -norm is approaching zero, the resolution as well
as quantitativeness of the targets is improving, with smooth-
�0-norm providing the highly desired spatial resolution as well.
The circular and rectangular targets placed at the center and edge
of the imaging domain were used to show the effectiveness of
sparse recovery methods (in terms of spatial resolution). The
rectangular targets were primarly chosen to show the capability
of sparse recovery methods in reconstructing sharp edges. Note
that the sensitivity of the imaging domain at the center is lower
compared to the edge [30], in turn indicating that the experi-
ments involving targets located close to the center forming the
worst case scenario. This also makes the spatial resolution at the
center of imaging domain comparatively lower.

The reconstruction results pertaining to the case of irregular
imaging domain containing only two regions with data noise
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Fig. 7. Comparison of reconstructed μa results obtained for the case of ex-
perimental gelatin phantom, mimicking a typical breast, using �2 , �1 , �p , and
�0 norm based regularization scheme. Similar to Fig. 3, the 1-D cross section
of the reconstructed results are given in the bottom right corner.

TABLE I
SET OF RECONSTRUCTION PARAMETERS USED FOR

THE RESULTS PRESENTED IN THIS STUDY

levels of 1% and 5% were given in Fig. 5. Here, the 1-D line
profile was given in the middle and last columns of top-row
for 1% and 5% noisy data cases, respectively. For the case of
heterogeneous irregular tissue containing three regions, closely
mimicking typical breast, the results are presented in Fig. 6. Fi-
nally, the reconstruction results obtained for the case of experi-
mental gelatin phantom data are given in Fig. 7. Here, �p -norm
with p = 0.65 performed superior compared to other ones. The
typical total computational time for obtaining these reconstruc-
tion results for the case of smooth-�0-norm is 20 s, and all other
cases take about 45 s.

The reconstruction parameters used for performing the �0-
norm and �p -norm-based reconstruction is indicated in Table I
for all the experiments considered in this study. The values of
the optimal p are also indicated in Table I for the nonconvex-
based minimization schemes (p in �p -norm is in 0 < p < 1).
The figures of merit (Pearson Correlation and Mean μa in ROI)
for the numerical and experimental phantom cases are indicated
in Tables II and III. From these quantitative metrics, the perfor-
mance of sparse recovery methods can be seen to be dependent

TABLE II
PEARSON CORRELATION OF THE RECONSTRUCTED OPTICAL PROPERTIES

FOR THE RESULTS PRESENTED IN THIS STUDY

Fig. 8. Plot showing the variation of the data model misfit with experimental
data (y) and reconstructed optical property distribution for a specific p in the
�p -norm, corresponding to the case of Fig. 4. The p was considered in the
increments of 0.05 in 0 < p < 1.

on the data noise level as well as the expected sparseness (het-
erogeneity) in the solutions.

V. DISCUSSION

The sparse recovery methods have been deployed for diffuse
optical tomographic image reconstruction in the past with p in
the �p -norm being 0 < p ≤ 1 [11], [31]–[33]. In this study, for
the first time, recently developed approximation of �0-norm [12]
has been deployed, with a capability to provide more accurate
sparse reconstruction results. The comparison of these sparse
recovery methods has been performed systematically using both
numerical and gelatin phantom experiments. Also, quantitative
comparison of the reconstructed images via Pearson correlation
and mean ROI values is carried through for better understanding
of utilization of these sparse recovery methods.

Optimal p selection was done for the nonconvex minimization
schemes. A graph indicating the procedure for selecting optimal
p is shown in Fig. 8. This graph was plotted for the two small
rectangular targets case (shown in Fig. 4). The graph was plotted
by increasing the value of p in the intervals of 0.05 and the
corresponding data-model misfit was calculated. Here, the data-
model misfit is computed using the experimental data and the
reconstructed absorption distribution using a particular p value.
The same procedure was followed for all the other numerical
and experimental phantom case.

In the case of small circular targets (see Fig. 3), where the tar-
gets span about 12 nodes in total of 1933 nodes (i.e. S = 12 and
N = 1933), the minimum number of incoherent measurements
required are 46 to satisfy the exact sparse recovery condition in
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TABLE III
MEAN RECONSTRUCTED μa IN THE REGION OF INTEREST (TARGET)

FOR THE THE RESULTS PRESENTED IN THIS STUDY

compressive sensing. Recent works on measurement optimiza-
tion have indicated that roughly about 40% of measurements
can be considered as independent in a typical case [34]–[36].
By utilizing all measurements (240 here), the exact recovery
is possible. Also as the sparseness in the solution more, the
performance of �0-norm is superior as expected.

For the case of Fig. 4 (S = 32 and N = 1933), the minimum
incoherent measurements required are 121, making it a weak
case in terms of satisfying the exact recovery condition. The
results also indicate the same, where the shape recovery is poorer
compared to Fig. 3, but able to retain the quantitative accuracy.
Also the expected sparseness in this case is quite lower compared
to the case of Fig. 3, the deviation between �0.5-norm and �0-
norm is not significant, especially in Pearson correlation (see
Table II).

As the sparseness level decreases, especially for heteroge-
nous irregular tissue as in Fig. 6 (S = 645 and N = 1969), the
sparse recovery methods performance are inferior compared to
the traditional �2-norm case. Once again, this ascertains that
sparse recovery methods may not be optimal for these scenar-
ios. For more regular domains, still sparse recovery methods
hold promise (see Fig. 7). Table III indicates the mean μa in
the ROI, which shows that sparse recovery methods provide
the best values compared to traditional �2-norm-based recon-
struction method, with p being close to zero providing the best
performance.

The robustness to data noise is lacking for the case of �0-
norm as expected, which always demands tight bounds for the
data noise levels (< 1%). In these highly noisy cases, the �p -
norm provides significantly better results, similar to the trend
observed in Ref. [11]. These nonconvex minimization schemes
(p in �p -norm being 0 < p < 1) require much weaker incoher-
ence conditions as compared to convex minimization schemes
(p in �p -norm being 1 ≤ p ≤ 2) and guarantee a successful re-
covery even in smaller signal to noise ratio [37]. It is important
to note that this study was performed for the continuous wave
case, but the discussion and trends observed in the results should
hold good for both time-domain and frequency-domain case as
well.

VI. CONCLUSION

The sparse recovery methods that utilize the �p -norm-based
regularization schemes with 0 ≤ p ≤ 1 have resulted in fast
data-acquisitions in both computed tomography and magnetic
resonance imaging, both of them being well-determined prob-
lems. Typical diffuse optical tomographic image reconstruction

problem is severely underdetermined in nature and application
of these sparse recovery methods can hold promise in improving
the reconstructed image quality. More importantly, the applica-
tion of smooth-�0-norm, which promotes the highest level of
sparseness in the solutions is explored in this study. A system-
atic comparison, with decrease in the expected sparseness in the
solutions, of these sparse recovery methods is performed in this
study, which showed example cases where these have better util-
ity. The reconstruction Algorithms that were developed as part
of this study are available as an open-source for the enthusiastic
readers/users [38].

ACKNOWLEDGMENT

The authors would like to thank the NIR imaging group at
Dartmouth College for providing the necessary meshes as well
as gelatin phantom data that were used in this study.

REFERENCES

[1] D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer,
R. J. Gaudette, and Q. Zhang, “Imaging the body with diffuse optical
tomography,” IEEE Sig. Proc. Mag., vol. 18, no. 6, pp. 57–75, Nov. 2001.

[2] S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho,
J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting
hemoglobin and water concentration, oxygen saturation and scattering
measured in vivo by near-infrared breast tomography,” Proc. Nat. Acad.
Sci. U.S.A., vol. 100, pp. 12349–12354, 2003.

[3] A. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse
optical tomography,” Phys. Med. Biol., vol. 50, pp. R1–R43, 2005.

[4] S. R. Arridge, “Optical tomography in medical imaging,” Inv. Probl.,
vol. 15, pp. R41–R93, 1999.

[5] M. Schweiger, S. R. Arridge, and D. T. Delpy, “Application of the finite el-
ement method for the forward and inverse models in optical tomography,”
J. Math. Imag. Vis., vol. 3, pp. 263–283, 1993.

[6] A. Gibson and H. Dehghani, “Diffuse optical imaging,” Phil. Trans. R.
Soc. A, vol. 367, pp. 3055–3072, 2009.

[7] H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, “Numerical
modelling and image reconstruction in diffuse optical tomography,” Phil.
Trans. R. Soc. A, vol. 367, pp. 3073–3093, 2009.

[8] H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis,
S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen,
“Near infrared optical tomography using NIRFAST: Algorithms for
numerical model and image reconstruction algorithms,” Commun. Numer.
Methods Eng., vol. 25, pp. 711–732, 2009.

[9] P. K. Yalavarthy, B. W. Pogue, H. Dehghani, and K. D. Paulsen, “Weight-
matrix structured regularization provides optimal generalized least-
squares estimate in diffuse optical tomography,” Med. Phys., vol. 34,
pp. 2085–2098, 2007.

[10] R. P. K. Jagannath and P. K. Yalavarthy, “Minimal residual method pro-
vides optimal regularization parameter for diffuse optical tomography,” J.
Biomed. Opt., vol. 17, pp. 106015-1–106015-7, 2012.

[11] S. Okawa, Y. Hoshi, and Y. Yamada, “Improvement of image quality of
time-domain diffuse optical tomography with �p sparsity regularization,”
Biomed. Opt. Exp., vol. 2, pp. 3334–3348, 2011.

[12] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, “A fast approach for
overcomplete sparse decomposition based on smoothed �0 norm,” IEEE
Trans. Signal Process., vol. 57, no. 1, pp. 289–301, Jan. 2009.

[13] S. R. Arridge and M. Schweiger, “Photon-measurement density
functions—Part 2: Finite-element-method calculations,” Appl. Opt.,
vol. 34, pp. 8026–8037, 1995.

[14] M. Schweiger, S. R. Arridge, M. Hiroaka, and D. T. Delpy, “The finite
element model for the propagation of light in scattering media: Boundary
and source conditions,” Med. Phys., vol. 22, pp. 1779–1792, 1995.

[15] A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based itera-
tive image reconstruction scheme for time-resolved optical tomography,”
IEEE Trans. Med. Imag., vol. 18, no. 3, pp. 262–271, Mar. 1999.

[16] M. Schweiger, S. R. Arridge, and I. Nissila, “Gauss-Newton method for
image reconstruction in diffuse optical tomography,” Phys. Med. Biol.,
vol. 50, pp. 2365–2386, 2005.



PRAKASH et al.: SPARSE RECOVERY METHODS HOLD PROMISE FOR DIFFUSE OPTICAL TOMOGRAPHIC IMAGE RECONSTRUCTION 6800609

[17] B. W. Pogue, K. D. Paulsen, H. Kaufman, and C. Abele, “Calibration of
near infrared frequency-domain tissue spectroscopy for absolute absorp-
tion coefficient quantitation in neonatal head-simulating phantoms,” J.
Biomed. Opt., vol. 5, pp. 182–193, 2000.

[18] A. Majumdar and R. K. Ward, “On the choice of Compressed Sensing
priors and sparsifying transforms for MR image reconstruction: An exper-
imental study,” Signal Process. Image Commun., vol. 27, pp. 1035–1048,
2012.

[19] (accessed on May 4, 2013). [Online]. Available: http://cnx.org/content/
m32168/latest/

[20] A. Majumdar and R. K. Ward, “Under-determined non-Cartesian MR re-
construction,” in Proc. Med. Image Comput. Comput.-Assisted Interven-
tion Conf., 2010, pp. 513–520.

[21] R. Chartrand, “Exact reconstruction of sparse signals via non-convex min-
imization,” IEEE Sig. Proc. Lett., vol. 14, no. 10, pp. 707–710, Oct. 2007.

[22] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information,”
IEEE J. Inf. Technol., vol. 52, no. 2, pp. 489–509, Feb. 2006.

[23] A. Eftekhari, M. Babaie-Zadeh, C. Jutten, and H. A. Moghaddam,
“Robust-SL0 for stable sparse representation in noisy settings,” in Proc.
Int. Conf. Acoust., Speech, Signal Process., 2009, pp. 3433–3436.

[24] M. M. Hyder and K. Mahata, “An improved smoothed �0 approximation
algorithm for sparse representation,” IEEE Trans. Signal Process., vol. 58,
no. 4, pp. 2194–2205, Apr. 2010.

[25] J. Kuntz, B. Flach, R. Kueres, W. Semmler, M. Kachelrie, and S. Bartling,
“Constrained reconstructions for 4-D intervention guidance,” Phys. Med.
Biol., vol. 58, pp. 3283–3300, 2013.

[26] T. O. Mcbride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen,
“A parallel-detection frequency-domain near-infrared tomography system
for hemoglobin imaging of the breast in vivo,” Rev. Sci. Instr., vol. 72,
pp. 1817–1824, 2001.

[27] B. Brooksby, S. Jiang, C. Kogel, M. Doyley, H. Dehghani, J. B. Weaver,
S. P. Poplack, B. W. Pogue, and K. D. Paulsen, “Magnetic resonance-
guided near-infrared tomography of the breast,” Rev. Sci. Instrum., vol. 75,
pp. 5262–5270, 2004.

[28] (accessed on May 4, 2013). [Online]. Available: http://ee.sharif.edu/∼
SLzero/

[29] S. Jiang, S. P. Poplack, K. D. Paulsen, B. W. Pogue, T. O. McBride, and
M. M. Doyley, “Near-infrared breast tomography calibration with optoe-
lastic tissue simulating phantoms,” J. Electron. Imaging., vol. 12, pp. 613–
620, 2001.

[30] P. K. Yalavarthy, H. Dehghani, B. W. Pogue, and K. D. Paulsen, “Criti-
cal computational aspects of near infrared circular tomographic imaging:
Analysis of measurement number, mesh resolution and reconstruction
basis,” Opt. Exp., vol. 14, pp. 6113–6127, 2006.

[31] M. Suzen, A. Giannoula, and T. Durduran, “Compressed sensing in diffuse
optical tomography,” Opt. Exp., vol. 18, pp. 23676–23690, 2010.

[32] C. B. Shaw and P. K. Yalavarthy, “Effective contrast recovery in rapid
dynamic near-infrared diffuse optical tomography using �1 -norm-based
linear image reconstruction method,” J. Biomed. Opt., vol. 17, pp. 086009-
1–086009-10, 2012.

[33] C. B. Shaw and P. K. Yalavarthy, “Prior image-constrained �1 -norm-based
reconstruction method for effective usage of structural information in
diffuse optical tomography,” Opt. Lett., vol. 37, pp. 4353–4355, 2012.

[34] L. Chen and N. G. Chen, “Optimization of source and detector configu-
rations based on Crame–Rao lower bound analysis,” J. Biomed. Opt., vol.
16, pp. 035001-1–035001-10, 2011.

[35] D. Karkala and P. K. Yalavarthy, “Data-resolution based optimization of
the data-collection strategy for near infrared diffuse optical tomography,”
Med. Phys., vol. 39, pp. 4715–4725, 2012.

[36] J. Prakash and P. K. Yalavarthy, “Data-resolution based optimal choice
of minimum required measurements for image-guided diffuse optical to-
mography,” Opt. Lett., vol. 38, pp. 88–90, 2013.

[37] Q. Lyu, Z. Lin, Y. She, and C. Zhang,“A comparison of typical �p mini-
mization algorithms,” J. Nuerocomput., vol. 119, pp. 413–424, 2013.

[38] (accessed on Jun. 4, 2013). [Online]. Available: https://sites.google.
com/site/sercmig/home/sparserecdot

Jaya Prakash received the B.Tech. degree in infor-
mation technology from the Amrita School of En-
gineering, Bengaluru, India, in 2010, and the M.Sc.
Engg.) degree in supercomputer education and re-
search centre (SERC) from the Indian Institute of
Science, Bengaluru, in November 2012, where he is
currently working toward the Ph.D. degree in medi-
cal imaging. He was the coauthor of the paper chosen
for ISMRM Merit Award (Summa Cum Laude) in
2012. His research interests include biomedical opti-
cal imaging, compressive sensing, GPU computing,

and inverse problems in medical imaging. Mr. Prakash received the SPIE Op-
tics and Photonics Education Scholarship and Microsoft Research Indian PhD
Fellowship in 2013.

Calvin B. Shaw received the B.E. degree from the
M.S. Ramaiah Institute of Technology (MSRIT),
Bengaluru, India, in 2009, and the M.Sc. (Engg.) de-
gree at Supercomputer Education and Research Cen-
tre (SERC), the Indian Institute of Science (IISc),
Bengaluru, in September 2012, where he is currently
working towards the Ph.D. degree in medical imag-
ing. His research interests include biomedical optical
imaging, compressive sensing, sparse recovery meth-
ods, and inverse problems in medical imaging.

Rakesh Manjappa received the B.Tech. degree in
engineering physics from the Indian Institute of Tech-
nology Delhi, New Delhi, India, in 2011, and is cur-
rently working toward the Ph.D. degree from the De-
partment of Physics, Indian Institute of Science, Ben-
galuru, India. His research interests include diffuse
optical tomography, optical projection tomography,
tissue polarimetry, and Monte Carlo modeling.

Rajan Kanhirodan received the M.Tech. and Ph.D.
degrees from the Indian Institute of Science, Ban-
galore, India. He is an Associate Professor in the
Department of Physics, Indian Institute of Science,
Bangalore, India. His research interests include to-
mographic image reconstructions, signal and image
processing, medical imaging, and embedded systems.

Phaneendra K. Yalavarthy received the M.Sc. de-
gree in engineering from the Indian Institute of Sci-
ence, Bangalore, Bengaluru, India, and the Ph.D. de-
gree in biomedical computation from Dartmouth Col-
lege, Hanover, NH, USA, in 2007. He is an Assistant
Professor in Supercomputer Education and Research
Centre, the Indian Institute of Science, Bangalore. His
research interests include medical image computing,
medical image analysis, and biomedical optics.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


