
SpiNet: A deep neural network for Schatten p-norm regularized medical
image reconstruction

Aditya Rastogi and Phaneendra Kumar Yalavarthya)
Department of Computational and Data Sciences, Indian Institute of Science, Bangalore 560012, India

(Received 28 August 2020; revised 30 December 2020; accepted for publication 19 January 2021;
published 22 March 2021)

Purpose: To propose a generic deep learning based medical image reconstruction model (named as
SpiNet) that can enforce any Schatten p-norm regularization with 0 < p ≤ 2, where the p can be
learnt (or fixed) based on the problem at hand.
Methods: Model-based deep learning architecture for solving inverse problems consists of two parts,
a deep learning based denoiser and an iterative data consistency solver. The former has either L2
norm or L1 norm enforced on it, which are convex and can be easily minimized. This work proposes
a method to enforce any p norm on the noise prior where 0 < p ≤ 2. This is achieved by using
Majorization–Minimization algorithm, which upper bounds the cost function with a convex function,
thus can be easily minimized. The proposed SpiNet has the capability to work for a fixed p or it can
learn p based on the data. The network was tested for solving the inverse problem of reconstructing
magnetic resonance (MR) images from undersampled k space data and the results were compared
with a popular model-based deep learning architecture MoDL which enforces L2 norm along with
other compressive sensing-based algorithms. This comparison between MoDL and proposed SpiNet
was performed for undersampling rates (R) of 2×, 4×, 6×, 8×, 12×, 16×, and 20×. Multiple figures
of merit such as PSNR, SSIM, and NRMSE were utilized in this comparison. A two-tailed t test was
performed for all undersampling rates and for all metrices for proving the superior performance of
proposed SpiNet compared to MoDL. For training and testing, the same dataset that was utilized in
MoDL implementation was deployed.
Results: The results indicate that for all undersampling rates, the proposed SpiNet shows higher
PSNR and SSIM and lower NRMSE than MoDL. However, for low undersampling rates of 2× and
4×, there is no significant difference in performance of proposed SpiNet and MoDL in terms of
PSNR and NRMSE. This can be expected as the learnt p value is close to 2 (norm enforced by
MoDL). For higher undersampling rates ≥6×, SpiNet significantly outperforms MoDL in all metrices
with improvement as high as 4 dB in PSNR and 0.5 points in SSIM.
Conclusion: As deep learning based medical image reconstruction methods are gaining popularity,
the proposed SpiNet provides a generic framework to incorporate Schatten p-norm regularization
with 0 <p ≤ 2 with an added advantage of providing superior performance compared to its counter-
parts. The proposed SpiNet also has useful addition of Schatten p-norm value in regularization term
being automatically chosen based on the available training data. © 2021 American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.14744]
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is immensely popular in
clinical imaging on account of being minimally invasive, ver-
satile in requirement of tissue contrast and capable of effec-
tive imaging of both anatomical and physiological changes in
tissues (e.g., DCE MRI,1 ASL,2 DSC MRI3 etc.). However,
the mechanism of data acquisition makes MRI inherently
slow compared to other three-dimensional (3D) imaging
techniques like x-ray computed tomography. This problem
has been addressed by developments in both hardware for
data acquisition as well as faster reconstruction methods.
Multicoil MRI techniques (parallel MRI),4 like SENSE,5

SMASH,6 and GRAPPA7 have been successful in reducing
the number of phase encoding steps by using an array of

spatially distributed receiver coils and exploiting the redun-
dancy present in the acquired data. However, such apparatus
makes the scanner more costly and may not give the required
acceleration in scan time, specially for dynamic MRI.

Hence, attempts have been made to reduce the scan time
by using advanced computational algorithms in tandem with
or independent to parallel MRI. The core concept behind
such algorithms is the theory of compressive sensing, which
allows robust recovery of signal from fewer number of mea-
surements.8 These algorithms work by constructing a loss
function between acquired and computed data (k space in
case of MRI) and enforcing a prior such as total variation
(TV),9 discrete wavelet transform (DWT),10 dictionary-based
transform,11 and other low rank transforms.12 Algorithms to
solve these problems can be divided into variable splitting
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algorithms,13 operator splitting algorithms,14,15 and nonsplit-
ting algorithms.16,17 These are typically iterative in nature and
hence require high computational time and manual tuning of
regularization parameters. Moreover, the priors used might
not be optimal for a given application.

Recently, convolutional neural network (CNN)-based
techniques have shown promising results in image recon-
struction and are also computationally efficient. Moreover,
the data driven approach of CNN also has a property of
learning the prior tailored to the application at hand. In
medical imaging, CNNs have shown promising results in
image recovery/enhancement tasks like bandwidth enhance-
ment,18,19 perfusion map denoising 20 etc. CNNs have also
been used to solve linear inverse problems using UNET
architectures,21 GAN,22 and residual learning based archi-
tectures.23 Such methods are also called discriminative
learning methods.

These discussed networks do not incorporate the linear
relation between measurements and required anatomical
image explicitly. Also, both the linear relation and the prior
are learnt implicitly. This subjects the network to find the
optimal solution from a larger solution space and leads to
more trainable parameters, which in turn demand more train-
ing data. Moreover, the implicitly learnt linear relationship
can only provide an approximate solution. On the contrary,
the traditional iterative techniques explicitly incorporate both
the linear relationship and the handcrafted prior, but the prior
tends to be suboptimal. Keeping in mind the advantages and
limitations of both techniques, Deep Image Prior24 explored
the idea of integrating the merits of both techniques. The
authors learnt the prior using discriminative learning and
enforced the linear relationship explicitly. The latter is also
called as data consistency term. The objective of the network
is to learn a mapping f θ : z! x, such that it minimizes the
following cost function for a fixed z and y.

JðθÞ¼ kAf θðzÞ� ykpp (1)

Here A : x → y and p = 1 or 2. The network can be trained
for a single y, and z can be any fixed random input and J(θ) is
minimized for a fixed number of iterations. Later, x can be
estimated as x¼ f θ̂ðzÞ where θ̂ minimizes J(θ). In such a
framework, the architecture of the network itself can work as
the prior and usually architectures like encoder–decoder
works better than skip connection networks like UNet and
ResNet. This idea has been used for image denoising, inpaint-
ing, and super-resolution, Magnetic particle imaging (MPI)25

and Deep radon transform.26 One prominent limitation of this
method is that it needs large number of trainable parameters
to map from random signal z to required image x and the
reconstruction is primarily driven by the choice of architec-
ture.

These short comings can be addressed by forming a
Tikhonov type functional of Eq. (1) which is a sum of data
consistency term and prior. It was demonstrated that Deep
Image Prior24 can be seen as a Tikhonov type functional27 for
inverse problem (and vice versa25) for a continuous and dif-
ferentiable f θð�Þ. This separates the prior from the data

consistency term and using operator splitting or variable spit-
ting techniques, the prior and data consistency term can be
dealt separately. The prior is implemented using a neural net-
work and the data consistency term is solved analytically.
Networks like ISTA-Net28 used the operator splitting tech-
nique and networks like MoDL,29 ADMM-Net30 and Refs.
[31,32] used variable splitting technique. Enforcing data con-
sistency while training the network improved the accuracy of
network with advantage of training samples requirement
being in few hundreds. ADMM-Net and ISTA-Net used neu-
ral network to learn the transform domain in which the signal
is sparse. In ADMM-Net, the prior term is solved using a
piece-wise linear shrinkage function with trainable parame-
ters to generalize a Lp norm regularization. On the contrary,
ISTA-Net used L1 norm as regularization, which transforms
the prior into a soft thresholding problem. Moreover, ISTA-
Net enforced orthonormality on the sparsity transform.
Instead of learning a transform domain, Refs. [29,31–35].
treated solving for prior term as denoising and substituted it
with a neural network based denoiser. These networks iter-
ated between these two parts for a fixed number of iterations
to compute the solution. Ref. [29] showed that end to end
training with shared weights of denoiser gave better results
than using pretrained denoisers31,32 or learning a different
denoiser at each iteration. For its purpose, MoDL enforced
L2 norm on the prior distribution and solved the linear rela-
tionship using conjugate gradient (CG) algorithm. In MoDL,
it was also shown that CG performs better than proximal gra-
dient method as applied in Refs. [33–35]. A limitation of
MoDL was that it enforced L2 norm on noise prior, which
may not be optimal for problem at hand (e.g., L2 norm is
optimal for Gaussian noise and is known to promote smooth-
ness in the reconstructed image).

To overcome this limitation and present a generic frame-
work, this work proposes a novel model-based deep learning
architecture which enforces Lp norm (0 < p ≤ 2) [also
known as Schatten p-Norm] on the noise prior, which was
named as SpiNet (representing Schatten p-norm regularized
inversion based deep neural Network). To solve the data con-
straint with Schatten p-Norm, Majorization–Minimization
(MM) algorithm36 was deployed. To be specific, for mini-
mization, CG was utilized and we used four MM loops. We
trained and tested proposed SpiNet using the same training
and testing datasets as utilized in MoDL and experimented
with undersampling rates R of 2×, 4×, 6×, 8×, 12×, 16×, and
20× with radial golden angle (RGA)37 and variable density
random sampling pattern and by adding white Gaussian noise
of level 0.01. We also systematically compared proposed Spi-
Net results with iterative compressive sensing based recovery
techniques using TV and DWT regularization. For compar-
ison of reconstruction results, peak signal-to-noise ratio
(PSNR) was utilized as a figure of merit. Another unique fea-
ture of proposed SpiNet was that the p in Schatten p-Norm
regularization can be a trainable as well as fixed variable,
making it very generic, and demonstrate the same by fixing
the value of p to 1 and thereby enforcing L1 constraint on
noise prior. Our experiments showed that for lower
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undersampling rates (especially, 2× & 4×), the performance
of MoDL and proposed SpiNet are very similar. For higher
undersampling rates, proposed SpiNet performs significantly
better. We corroborated the last statement using two-tailed t
test for unequal variance (Welsh test). In short, the novelty of
this work lies in proposing a generic iterative model-based
deep learning network (called it as SpiNet), which can
enforce any Lp norm (Schatten p-norm) with 0 < p ≤ 2 reg-
ularization for medical image reconstruction, where p can be
a fixed or trainable parameter.

2. BACKGROUND

2.A. Notations

We used small boldface alphabets such as x for vectors
and capital boldface alphabets like A for matrices. The sym-
bol r describes the spatial location in 3D volume in image
domain, that is, r ∈ {x, y, z} and r̂ was used to denote loca-
tion in 3D volume of frequency domain, that is,
r̂∈fkx, ky, kzg. The pth-norm of any vector x was denoted as
kxkp and it was defined as kxkp¼ðΣnjxnjpÞ1=p (Schatten p-
norm), where xn is the nth element of vector x. The small
boldface b(r, c) was utilized to denote fully sampled k space
data, where c stand for coil number and small boldface
b̂ðr̂,cÞ was utilized to denote under sampled k space data.
Superscript H was used to denote conjugate transpose of a
matrix. If the matrix is real, it is equivalent to transpose of
the matrix. Also symbol "*" was used to define Hadamard
product between two matrices (element wise multiplication).

2.B. Image reconstruction/inverse problem

Forward model is an estimation of the undersampled k
space data from an anatomical image and it is illustrated in
Fig. 1. The steps involved in forward modeling are described
below:

1. The first step involves estimation of individual coil
images from anatomical data and this can be written as

x̂ðr,cÞ¼ Sðr,cÞxcðrÞ (2)

Here xcðrÞ is the vector x(r) repeated c times.
2. The k space acquisition of the parallel coils can be esti-

mated from the individual coil image using two-dimen-
sional (2D) Fourier transform as shown in Eq. (3)
using the same rationale as given in the work of Wang
et al.38

bðr̂,cÞ¼F�Fx̂ðr,cÞ (3)

Where F is the one-dimensional discrete Fourier trans-
form matrix and ⊗ is the Kronecker product.

3. The undersampled k space data can then be obtained
via Eq. (4) using undersampling mask Uðr̂,cÞ:-

b̂ðr̂,cÞ¼Uðr̂,cÞ∗bðr̂,cÞ (4)

In our experiment, we utilized radial golden angle
undersampling mask.37

The objective of inverse problem is to estimate the
anatomical image x(r) from multicoil undersampled k space
data b̂ðr̂,cÞ. The foundation for recovery of signals from
incomplete measurements was laid by the earlier works of
Candès and Tao39,40 and Donoho.41 For successful recovery
of anatomical images from undersampled k space data, three
conditions are important. First, the desired signal (anatomical
image in our case) should be sparse in some domain Γ(�).
Second, the artifacts produced by the undersampling matrix
should be incoherent in Γ(�) and finally, the reconstruction
method should enforce both data consistency and sparsity
constraint. The incoherence of different undersampling pat-
terns is described in detail in Ref. [10] Anatomical image can
be recovered from undersampled k space data using a cost
function as shown in Eq. (5).

FIG. 1. Cartoon image of main steps involved in forward and inverse model (reconstruction). In forward model, undersampled k space data were estimated from
the anatomical image by first constructing the coil images using coil sensitivity maps. The 2D Fourier transform of coil images gives the fully sampled k space
data, which will then be multiplied with Radial Golden Angle (RGA) undersampling map as described in Ref. [37] to get the undersampled k space data or
b̂ðr̂,cÞ. [Color figure can be viewed at wileyonlinelibrary.com]
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~xðrÞ¼ argmin
xðrÞ

kAxðrÞ�b̂ðr̂,cÞk22þ λkΓðxðrÞÞkpp (5)

Here A¼Uðr̂,cÞ �F�FSðr,cÞIc where Ic is a matrix that pro-
duces c copies of x(r).

This cost function (Eq. (5)) can be solved using itera-
tive techniques like proximal gradient,42 alternating direc-
tion method of multipliers (ADMM),43 iterative
shrinkage–thresholding algorithm (ISTA) and its variations
(TwISTA, FISTA etc),14,15 split augmented Lagrangian
shrinkage algorithm (SALSA)13 etc. For solving Eq. (5)
using these techniques, commonly used sparsifying trans-
forms are TV9 and DWT10 and the sparsity constraint is
enforced using p = 1, that is, L1 norm. For p < 1, the
Eq. (5) is nonconvex and the methods mentioned above
are not applicable. However, the nonconvex function kzkpp
can be bounded by a convex function and solved using
MM approach. This method is called FOCUSS and was
introduced by Gorodnitsky et al.36 The steps of FOCUSS
are shown below. For a separable constraint

kzkpp ¼ΣN
i¼1jzijp, let yi ¼ jzij2. Then hðyiÞ¼ yp=2i is strictly

concave in 0 < p < 2. Utilizing Taylor expansion about a
constant �yi results in

hðyiÞ<h0ð�yiÞðyi��yiÞþhð�yiÞ (6)

where h0ð�yiÞ¼ p
2ð�yp=2�1

i Þ. Hence Eq. (6) can be written as

hðyiÞ<
p
2
ð�yp=2�1

i Þðyi��yiÞþhð�yiÞ (7)

As �yi is a constant, Eq. (7) thus becomes

hðyiÞ<
p
2
ð�yp=2�1

i ÞyiþC (8)

For a separable constraint, Γ(�) such that for any x,
ΓðxÞ¼ γðx1Þ γðx2Þ ⋯ γðxMÞT , the cost function [Eq. (5)]
will become

JðxÞ¼ kAx�b̂k22þ λΣN
i¼1gðxiÞ (9)

Here, the parenthesis were removed for brevity and
gðxiÞ¼ jγðxiÞj2p=2 ¼ hðyiÞ. Substituting this in Eq. (9) and
using Eq. (8) leads to

JðxÞ≤ kAx�b̂k22þ λΣN
i¼1

p
2
jγð�xiÞj2ðp=2�1ÞjγðxiÞj2þC (10)

for some constant �x. By inserting Eq. (8) in (9), applying
upper bound to the cost function J(x) becomes the majoriza-
tion step. Sum of all terms consisting of only j�xij is replaced
with C and as the constant C is not important for minimiza-
tion, the solution of Eq. (10) is

~x¼ argmin
x

kAx�b̂k22þ λ0kWΓðxÞk22 (11)

where, λ0 ¼ λ p2 and W¼ diagðjγð�xÞjp=2�1). When �x¼ x then
kWΓðxÞk22 ¼kΓðxÞkpp and Eq. (11) is same as Eq. (5) for
a separable Γ(�). Solving Eq. (11) is the minimization step.
The main steps to solve Eqs. (10) & (11) are given in
Algorithm 1.

Recently a new perspective to solve image reconstruction
and denoising problem was provided in Ref. [44] by decou-
pling the data consistency and prior constraint. Substituting
the kΓð�Þkpp with q(�), where the latter is the image prior, the
decoupled form of Eq. (5) is

~z¼ argmin
z

kx� zk22þ λqðzÞ (12)

~x¼ argmin
x

kAx�b̂k22þαkx�~zk22 (13)

Here, Eq. (12) is equivalent to denoising x with a prior
q(�) and Eq. (13) enforces the data consistency in vicinity of
~z. If one lets ΓðxÞ¼NwðxÞ, where N wðxÞ¼ x� z, and p = 2,
Eq. (5) simplifies into Eq. (13) The effectiveness of noise pri-
ors as regularizers was demonstrated in Refs. [45,46] The
denoiser can be an off-the-shelf algorithm like BM3D, which
was implemented for MR reconstruction in.47 Researchers
have also used pretrained denoiser 32 or have attempted end
to end training along with iterative reconstruction.29,33,48

Aggarwal et al.29 recently proposed MoDL and showed that
weight sharing among denoisers at different iterations and
with end to end learning outperforms pretrained denoisers as
well as end to end learning without weight sharing. More-
over, sharing weights leads to reduction in the number of
parameters, they demonstrated state-of-the-art recovery with
only 360 training samples.29

The formulation of MoDL is (Eq. (14))

~x¼ argmin
x

1
2
kAx� b̂k22

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Constraint

þ λkN wðxÞk22
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

prior

(14)

By substituting N wðxÞ¼ x� z, the solution of this problem
can be written as follows

zk ¼Dk
wðxk�1Þ (15)

xk ¼ðAHAþ λIÞ�1ðλzkþAH b̂Þ (16)

Here, Dk
wð�Þ is a CNN-based denoiser at kth iteration. MoDL

enforced L2-norm as prior, which may not be the best prior
as reconstruction with undersampled data includes aliasing
artifact as well and L2-norm is known to promote smooth-
ness in the reconstructed image. To give a more generalized
framework, in this work, we propose Schatten p-norm
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constraint (prior/regularization) and corresponding cost func-
tion can be written as

~x¼ argmin
x

1
2
kAx�b̂k22þ λkN wðxÞkpp (17)

Similar to MoDL, the solution to Eq. (17) can be written as
follows

zk ¼Dk
wðxk�1Þ (18)

xk ¼ argmin
x

1
2
kAx�b̂k22þ λkx� zkkpp (19)

Similar to above, when ΓðxÞ¼N wðxÞ, and 0 < p ≤ 2, Eq.
(5) simplifies into Eq. (19). If the value of p = 1, it simplifies
into traditional L1 norm regularized compressive sensing
algorithm. The architecture of the network is explained in
Section 3.A. The relationship between SpiNet and established
MoDL as well as analytical compressive sensing reconstruc-
tion framework has been explained in detail in Appendix A.

3. MATERIALS AND METHODS

In this section, we will describe the implementation of
proposed SpiNet and Total Variation and Discrete Wavelet
Transform based iterative recovery which uses the concepts
of compressive sensing (abbreviated as CS-TV). The details
of architecture of MoDL are given in Ref. [29].

3.A. Proposed SpiNet

The architecture of proposed SpiNet is given in Fig. 2.
The network consists of two blocks, a CNN-based denoiser
block (DW) for solving Eq. (18) and a data consistency block
(DC) for solving Eq. (19). The latter was solved using MM
algorithm as described in Eqs. (6)–(10). The Schatten p-norm
regularized function kx�zkkpp is a separable cost function,
where gðxiÞ¼ jðxi� zki Þj2p=2. Here, zk is given by Eq. (18). To
solve Eq. (19), we write a cost function using majorization as

JðxÞ≤ 1
2
kAx�b̂k22þ λ0kWðx� zkÞk22 (20)

Here, λ0 ¼ λp=2 and W = diag(j�xi� zki jp=2�1). Minimizing
Eq. (20) w.r.t x gives

x¼ðAHAþ λ0W2Þ�1ðλ0W2zkþAH b̂Þ (21)

Equation (21) was minimized using CG method for M1 itera-
tions (i.e., Minimization iterations) to estimate x given W and
zk and was used as �x for next Majorization iteration. The
Majorization step as shown in Eq. (20) has been repeated N̂
(i.e., number of majorization iterations) times to give the out-
put xk , that is, xk ¼ xN̂ . We repeat Eq. (18) and (19) N times
to get the output of network ~x. The denoiser block was
inspired by Ref. [49] and learns a noise residue. It has been
implemented using NL layers of convolutional filters followed
by batch normalization (BN) layers. First NL�1 layers of the
network have ReLU activation function after BN layer and
the input to the block was added to the output of the block. In

the network, the parameters belong to a set Θ, such that
Θ¼fλk ,Dk

w,p
kgNk¼1 are trainable parameters, where N is the

number of iterations in unrolled network and Dk
wð�Þ is the

deep learning based denoiser. As the training parameters are
shared among different iterations, Θ¼fλ,Dw,pg. The loss
function of the network has been

LðΘÞ¼ 1
Nt

ΣNt
i¼1k~xi�yik22 (22)

where Nt represents the number of images in training data
and fyigNt

i¼1 are the labels.

3.B. Reconstruction using regularization (CS-TV)

Model-based sparse recovery method was utilized as the
standard method and is described in detail in Ref. [50] for
anatomical image recovery. We recover the anatomical
images by incorporating two priors in Eq. (5) namely aniso-
tropic total variation (TV) and two dimensional Debauchy’s
discrete wavelet transform (DWT). The modified optimization
algorithm in this case will be

~xðrÞ¼ argmin
xðrÞ

kAxðrÞ� b̂ðr,cÞk22
þλ1kψðxðrÞÞk1þ λ2kxðrÞkTV

(23)

Here ψ(�) represents two level Debauchy’s wavelet decompo-
sition. The L1 norm in Eq. (23) was relaxed as shown in Ref.
[8] Two-dimensional DWT operator can be implemented as a
matrix vector multiplication as shown in Ref. [38]. Equation
(23) was solved using limited memory Broyden-Fletcher-
Goldfarb–Shanno (l-BFGS)51 algorithm. The regularization
parameters λ1 and λ2 were chosen empirically. This method
will be referred as "CS-TV" from here onwards.

4. EXPERIMENTAL DETAILS

4.A. Dataset

The dataset utilized for training and testing of proposed
SpiNet is identical to the one used in MoDL29 for fair com-
parison. The training dataset was acquired using 3D T2
CUBE sequence with Cartesian readouts using a 12-channel
head coil. The training dataset had 90 slices each from four
patients and each image dimension was 256 × 232 with
1 mm isotropic resolution. The dimension of training data is
360 × 256 × 232 × 12 (slices × rows × column × coils).
The 90 slices selected for training had noticeable skull anat-
omy for training. The testing was performed on the dataset of
a fifth patient and the dimensions of testing data was
164 × 256 × 232 × 12 (slices × rows × column × coils). For
testing also, only those slices were selected which had skull
anatomy present. The coil sensitivity maps were generated
using ESPIRiT52 and the undersampling maps were gener-
ated using RGA sampling. For training and testing, we retro-
spectively undersampled the k space data. Different randomly
generated realizations of undersampling pattern were utilized
for different slices, however, same pattern was used for all 12
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coils data of same slice. For testing the sensitivity to noise,
we added white Gaussian noise (WGN) with standard devia-
tion being 0.01 (1% noise) to the undersampled k space data.

To analyze the generalizability of SpiNet on different
organs or image sequence, we trained and tested SpiNet on
Chest MRI data and T1-weighted dynamic contrast-enhanced
(DCE) MR data of breast cancer patients. The chest MRI data
consist of 100 training and 50 testing images and undersam-
pling rate of 6× was used. More details of this dataset are
given in Ref. [53]. For DCE MRI data of the breast consisted
of 3000 training images from five patients and testing data of
932 images from sixth patients and undersampling rate of
20× was used. More details on this dataset can be found in
Ref. [53] Respective state of the art (SOTA) methods used
for chest MRI data and DCE breast cancer data are ADMM-
Net53 and ISTA�Netþ.28

4.B. Implementation

The training and testing dataset were retrospectively under-
sampled with undersampling rate R of 2×, 4×, 8×, 12×, 16×
and 20× using RGA undersampling scheme. The implementa-
tion details of proposed SpiNet and MoDL were given below.

4.B.1. Proposed SpiNet

For training proposed SpiNet, the training dataset con-
sisted of 360 anatomical images of brain from four patients
and the testing dataset consisted of 164 images from a single
patient. The dataset is described in Section 4.A in more
detail. The number of iterations (N) were ten for all under-
sampling rates R. The number of layers (NL) were kept as
five in all cases and the filter size and number of filters are
given in Table I. The real and complex component of the
AH b̂ were taken as separate channels as input to the first layer
of neural network. White Gaussian noise (WGN) of level

0.01 was added to training and testing data and RGA under-
sampling mask was utilized. All trainable parameters were
shared among the ten iterations. For ease of convergence, we
followed the training strategy of MoDL and trained the net-
work initially for one iteration, that is, N = 1 for 100 epochs
and then used the learnt weights for initializing a network
with ten iterations, which was again trained for 100 epochs.
ADAM30 optimizer was deployed for optimization as this
scheme maintains two learning rates corresponding to each
parameter. These learning rates were estimated from the first
and second moments of gradients. The learning rate was
10�3 and other parameters for ADAM were
β1 ¼ 0:9,β2 ¼ 0:999 and ε ¼ 10�8. The number of majoriza-
tion iterations N̂ was kept as four and number of CG itera-
tions M1 was also kept as four. The value of p was initialized
as 0.9 for training. Other initializations ranging of p
∈ [0.7,1.2] were also tested, but no major difference in or
learnt p value was noticed. The total number of trainable
parameters were 113,922.

4.B.2. MoDL

For training MoDL network, the training and testing data-
set were same as proposed SpiNet. The number of iterations
N, number of layers NL, filter size and number of filters were

FIG. 2. Network architecture of proposed SpiNet in rolled fashion. Each iteration of the network consists of two blocks, namely denoiser block (DW) and data
consistency block (DC). [Color figure can be viewed at wileyonlinelibrary.com]

TABLE I. Size of filters Nx�Ny, number of input channels Nc and the num-
ber of filters Nf at every layer in DW block of kth iteration for the proposed
SpiNet as shown in Fig. 2.

Layer no. Size of filter (Nx x Ny x Nc x N f )

1 3 × 3 × 2 × 64

2 - 4 3 × 3 × 64 × 64

5 3 × 3 × 64 × 2

These hyperparameters were same ∀k as weights were shared.
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kept same as SpiNet. For Solving Eq. (16), CG method was
used till the residue was <10�5. The codes for MoDL imple-
mentation were borrowed from https://github.com/hkaggarwa
l/modl and more details of MoDL implementation are present
in Ref. [29].

4.C. Figure of merit

For comparing reconstruction results using methods dis-
cussed in this work, PSNR, normalized root mean square
error (NRMSE), and structural similarity index metric
(SSIM)55 were utilized as choice of metric. PSNR (in dB) =
20logmax

mse, where mse is the mean square error between
reconstructed image and target image. NRMSE between esti-
mate x̂ and target x is given by NRMSE = x̂ and target x is
given by NRMSE = rmseðx, x̂Þ

maxfxg�minfxg. The PSNR ∈ (0, ∞)
(measured in dB), is the measure of signal compare to noise
present in the reconstructed image, and higher value of PSNR
represents better reconstruction. SSIM metric ∈ (0, 1] and
it takes value 1 when both images are same. The exponents
for the luminance, contrast, and structural terms were set to 1
and σ for Gaussian weighing function was set to 1.5.
NRMSE ∈ [0, ∞) and the value is 0 when both images are
exactly same.

4.D. Statistical test

We performed two-tailed t test for unequal variance (also
known as Welch test) for different undersampling rates. The
null hypothesis was that MoDL and proposed SpiNet have
same mean performance in terms of a given metric. Welch
test was conducted for averaged PSNR, NRMSE, and SSIM
for R = 2×, 4×, 6×, 8×, 12×, 16×, and 20× using the test
dataset of 164 images. Significance level α = 0.05 was
selected for testing. The results are shown in Table II for
PSNR, Table III for NRMSE and Table IV for SSIM, where a
P < 0.05 means that there is significant difference in the per-
formance of these two methods. Here P denotes the probabil-
ity that the difference in the performance of these two
methods happened by chance.

4.D.1. Computational implementation

All computations were carried out on a Linux workstation
with Intel i9 processor, 2.10 GHz clock speed, having 128
GB RAM and two Quadro RTX 8000 GPUs with 48 GB
memory each. Preprocessing and postprocessing steps were
performed in MATLAB and both neural networks were
implemented in Tensorflow v1.10. The proposed SpiNet is
available as open-source at https://github.com/adityarasto
gi2k12/SpiNet.

5. RESULTS

5.A. Results of specific image

We compare the performance of MoDL, proposed SpiNet,
and CS-TV on a single test image in this subsection. The iter-
ation wise comparison between them has been presented in
Section 5.B, where proposed SpiNet was shown to recon-
struct high quality image in lesser number of iterations.

The performance of MoDL and proposed SpiNet was
compared in Fig. 3 for undersampling rates R of 4×, 8×,
12×, 16×, and 20×. Figure 3(i) shows the results in the whole
brain region and the PSNR values are given in parenthesis.
Figure 3(ii) shows the performance of MoDL and proposed

TABLE II. Results of two-tailed Welsh test performed on averaged PSNR val-
ues (in dB) of MoDL and proposed SpiNet for different undersampling rates
(R).

R MoDL (PSNR) SpiNet (PSNR) Better Significant P-value

2× 42.41 42.53 SpiNet No 0.34

4× 40.83 40.97 SpiNet No 0.26

6× 39.01 39.96 SpiNet Yes 1.41e�11

8× 38.59 38.84 SpiNet Yes 0.03

12× 36.44 37.31 SpiNet Yes 7.40e�08

16× 34.49 36.25 SpiNet Yes 2.61e�29

20× 32.09 35.39 SpiNet Yes 8.34e�25

The last column denotes the P value for the statistical test, when its value is less
than 0.05, then we dismiss the null hypothesis that both methods have same aver-
age PSNR.

TABLE III. Results of two-tailed Welsh test performed on NRMSE values (in
%) of MoDL and proposed SpiNet for different undersampling rates (R).

R MoDL (%) SpiNet (%) Better Significant P-value

2× 0.77 0.76 SpiNet No 0.74

4× 0.93 0.92 SpiNet No 0.70

6× 1.11 1.04 SpiNet Yes 1.55e�4

8× 1.24 1.15 SpiNet Yes 3.82e�3

12× 1.70 1.44 SpiNet Yes 1.26e�15

16× 1.93 1.65 SpiNet Yes 4.07e�14

20× 2.61 1.84 SpiNet Yes 3.34e�44

The last column denotes the P value for the statistical test, when its value is less
than 0.05, then we dismiss the null hypothesis that both methods have same aver-
age NRMSE.

TABLE IV. Results of two-tailed Welsh test performed on SSIM values of
MoDL and proposed SpiNet for different undersampling rates (R).

R MoDL SpiNet Better Significant P-value

2× 0.98 0.99 SpiNet Yes 4.96e�22

4× 0.97 0.98 SpiNet Yes 6.30e�27

6× 0.90 0.98 SpiNet Yes 7.56e�85

8× 0.96 0.97 SpiNet Yes 5.10e�31

12× 0.93 0.96 SpiNet Yes 2.50e�38

16× 0.90 0.95 SpiNet Yes 1.09e�74

20× 0.89 0.94 SpiNet Yes 5.63e�54

The last column denotes the P value for the statistical test, when its value is less
than 0.05, then we dismiss the null hypothesis that both methods have same aver-
age SSIM.
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SpiNet in region bounded by green box in Fig. 3(i). From
both subfigures, we can observe that for low undersampling
rate (namely 4×) the performance of MoDL and proposed
SpiNet is very close to each other and the difference is mainly
due to the statistical nature of white Gaussian noise of level
0.01 added to the undersampled k space. However, as the
undersampling rate increases, the difference in performance
between both networks increases in which proposed SpiNet
performs better than MoDL in the whole image as well as the
bounded region. For 16× and 20× undersampling, there is

performance difference of ≈ 2 dB between MoDL and pro-
posed SpiNet in both whole image and bounded region. Also,
the cloud like artifacts in the cortical region of brain (dark/hy-
pointense region marked by cyan colored arrow) are more
visible in image estimated by MoDL compared to proposed
SpiNet result. Moreover, hyperintensive regions marked by
red and green arrows are better reconstructed by SpiNet as
compared to MoDL. T2-weighted MR images show hyperin-
tensive signals for structures containing high water content
like CSF, edema, or blood. The arrows marked by red and

FIG. 3. Comparison of performance of MoDL and proposed SpiNet in the (i) whole brain region and (ii) in region of interest (zoomed version of green bounding
box in (i)). In both subfigures (i) and (ii), the top row represents the original/target image from fully sampled k space. The undersampling rates (R) were men-
tioned on the left edge of (i). The first column from second row onwards represents the aliased image estimated from zero filled k space and is input to both
MoDL and proposed SpiNet. The second column of (i) and (ii) represents output of MoDL after 10th iteration and the third column of (i) and (ii) represents out-
put of 10th iteration of proposed SpiNet. The PSNR values are shown in parenthesis. It can be seen that for lower R the performance of MoDL and proposed Spi-
Net is similar but as R increases the gap between performance of proposed SpiNet and MoDL increases. Such regions are marked by red, green, and cyan arrows
in original of (ii). The significance of these arrows is explained in Section 5.A. Readers are advised to see the image in digital copy in full brightness of the
screen. [Color figure can be viewed at wileyonlinelibrary.com]
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green color marks the fissures and sulci which contains CSF.
Pathologies like CSF leak can cause distortion of these struc-
tures. The shape of sulci is also correlated with aging and
cognitive decline.56,57 Moreover, pathological processes, such
as demyelination or inflammation, often increases water con-
tent in tissues, which increases signal strength in T2-weighted

MR images. The cyan arrow represents lipids, which appear
dark in white matter. Cloud like artifacts in that region can be
mistaken with white matter diseases which shows as bright
regions in white matter. Additionally, such artifacts can effect
postprocessing on MR images like segmentation/classifica-
tion (artifact can act as adversarial noise), quantitative

FIG. 4. Comparison of performance of all discussed methods in this work, CS-TV in third row, MoDL in fourth row, L1-Net results in fifth row, and proposed
SpiNet results in sixth row, respectively, for (i) 6× and (ii) 16× undersampling rates using variable-density Cartesian random sampling pattern given in (c). The
second row in both (i) and (ii) represents the image estimated from zero filled k space, which is also the input to the MoDL, L1-Net and proposed SpiNet. The
L1-Net was implemented using SpiNet in which the value of p was kept constant and equal to 1. The third column in both (i) and (ii) from second row onward
represents four times the difference between the estimated image and the original image in ROI (green bounding boxed image). The parenthesis values in first
two columns of (i) and (ii) represents the PSNR and third column numbers represent the root mean square error. Areas where MoDL is not able to properly
reconstruct the features or has artifacts are marked by red, green, and cyan arrows in (b) of (i) and (ii). The significance of these arrows is explained in Sec-
tion 5.A. Readers are advised to see the image in digital copy in full brightness of the screen. [Color figure can be viewed at wileyonlinelibrary.com]
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modeling of tissue parameters in case of diffusion tensor
imaging, dynamic contrast-enhanced imaging etc.

In the original implementation of MoDL, variable-density
Cartesian random sampling pattern was used as shown in
Fig. 4. To check versatility of proposed SpiNet, we compared
the performance of MoDL and SpiNet for variable-density

Cartesian random sampling pattern and the results are shown
in Fig. 4(i) for 6× and in Fig. 4(ii) for 16× undersampling.
For comparison, L1-Net results are also shown, that was
implemented exactly as SpiNet with enforced Schatten p-
norm having constant value equal to 1. We also implemented
CS-TV algorithm as described in Section 2.B to estimate high

FIG. 5. Comparison of performance of all discussed methods in this work, CS-TV in third row, MoDL in fourth row, L1-Net results in fifth row, and proposed
SpiNet results in sixth row, respectively, for (i) 6× and (ii) 16× undersampling rates using radial golden angle random sampling pattern given in (c). The second
row in both (i) and (ii) represents the image estimated from zero filled k space which is also the input to the MoDL, L1-Net and proposed SpiNet. The L1-Net
was implemented using SpiNet in which the value of p was kept constant and equal to 1. The third column in both (i) and (ii) from second row onward represents
four times the difference between the estimated image and the original image in ROI (green bounding boxed image). The parenthesis values in first two columns
of (i) and (ii) represents the PSNR and third column numbers represent the root mean square error. Areas where MoDL is not able to properly reconstruct the fea-
tures or has artifacts are marked by red, green and cyan arrows in (b) of (i) and (ii). The significance of these arrows are explained in Section 5.A. Readers are
advised to see the image in digital copy in full brightness of the screen. [Color figure can be viewed at wileyonlinelibrary.com]
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resolution image. The first column shows the performance of
above-mentioned methods in terms of PSNR (in parenthesis).
The second column shows the zoomed view of area bounded
by green box in first column. Here AHb represents the image
estimated from zero filled k space. The first image in third
column represents the undersampling mask and rest images
represent the error in estimated image for the bounded area.
These error images were multiplied with four for ease of
viewing. The values in parenthesis represent RMSE (root
mean square error) with respect to fully sampled image. From
the results, it can be observed that in terms of both PSNR and
RMSE, we get considerable improvement over AHb by all
methods. However, deep learning based methods perform
better than CS-TV algorithm. It can also be seen that for R =
6×, L1-Net and SpiNet perform better than MoDL by ≈
0.7 dB in the whole image and ≈ 1 dB in the bounded
region. Moreover, the performance of SpiNet and L1-Net is
similar and the small difference can be attributed to the ran-
dom noise. At higher undersampling rate, CS-TV has visible
staircase artifacts in cortical region. Moreover, the perfor-
mance of all deep learning based methods is considerably
better than CS-TV. For R = 16×, L1-Net and SpiNet perform
better than MoDL by ≈ 1.5 and ≈ 2.5 dB, respectively, in the
whole image and by ≈ 3 and ≈ 3.5 dB, respectively, in the
bounded region.

Figure 5 represents the results of RGA undersampling pat-
tern with R = 6× and 16×. The undersampling pattern resem-
bles variable-density pattern in figure because the image is
adjusted to match the aspect ratio of nearby images. It can be
seen that for R = 6×, L1-Net and SpiNet perform better than
MoDL by ≈ 0.7 dB in the whole image and ≈ 1 dB in the

bounded region. Additionally the performance of L1-Net and
SpiNet is comparable to each other. For R = 16×, the perfor-
mance of CS-TV shows the same trend as in Fig. 4(ii). Simi-
larly, L1-Net and proposed SpiNet perform better than
MoDL by a margin of ≈ 2.5 dB in the whole image and
≈ 2 dB in the bounded region. The performance of proposed
SpiNet is better than L1-Net by a margin of ≈ 0.7 dB. From
error images, it can also be observed that the error in L1-Net
and SpiNet resembles noise, the error in MoDL estimate has
higher concentration in the CSF region (area shown by red
and green arrows) and thus has higher structural loss at some
regions compared to other regions.

5.B. Comparison with MoDL as a function of
iterations

Here, we compare the performance of MoDL and pro-
posed SpiNet at different stages of reconstruction for a single
image. Figure 6 shows estimation of high resolution MR
image x10 (output of network after ten iterations) from aliased
image x0 (input to the network) estimated from zero filled
undersampled k space with undersampling rate R = 16× for
MoDL in Fig. 6(i) and SpiNet in Fig. 6(ii). Both subfigures
show the input xk�1, noise estimate N wð�Þ, denoised version
zk (i.e., output of DW block) and output of DC block xk for k
= 1, 4 & 10 (bounded in magenta, blue, and red boxes,
respectively). The second row in both subfigures shows the
zoomed in region that is bounded by the green box in the cor-
responding images above them. The noise estimates are mul-
tiplied by 10 for visibility. From the output of DC block of 4th

iteration (i.e., image (t)) in Figs. 6(i) and 6(ii) it can be seen

FIG. 6. Performance of (i) MoDL and (ii) proposed SpiNet across different iterations of corresponding networks in recovering the image from 16× undersampled
k space data. In both figures (a) represents the input to the network, (b) represents the noise estimate N wðx0Þ in the first iteration, (c) represents the denoised
image z1 after first iteration, which is the output of denoiser block DW, and (d) represents the output of data consistency block (DC) in first iteration. Images (e)-
(h) and (i)-(l) represent the same for 4th and 10th iteration, respectively, and in the same order. The bottom rows of both subfigures represent zoomed version of
corresponding images above them bounded by the green box. In both (i) and (ii) the magenta box shows the input, noise estimate, denoised output, and DC block
output for 1st iteration and the blue and red boxes show the same variables for 4th and 10th iteration, respectively, and in the same order. The magnitude of noise
images has been multiplied by 10 for clarity. From image (t) in (i) and (ii), it can be seen that SpiNet is able to achieve better quality of reconstruction than MoDL
after 4th iteration. From (x) in (i) and (ii) it can also be seen that SpiNet has sharper edges at the "x" shaped structure (marked by red colored arrow). Readers are
advised to see the image in digital copy in full brightness of the screen. [Color figure can be viewed at wileyonlinelibrary.com]
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that output of proposed SpiNet has less cloud like artifact in
the cortical region than MoDL. Even the output of DC block
of 1st iteration (i.e., image (p)) for SpiNet has sharper edges
and better contrast than corresponding output of MoDL.
From this, it is clear that proposed SpiNet recovers high qual-
ity image in lesser number of iterations.

5.C. Statistical analysis

Figure 7 shows the performance of MoDL (red), L1-Net
(green), and proposed SpiNet (blue) for 4×, 8×, 12×, 16×,
and 20× undersampling in terms of averaged PSNR based on
164 samples of test dataset. Similar trend to that of a single
test image was followed. As the undersampling rate R
increases, as expected, the proposed SpiNet starts to outper-
form MoDL. Moreover, for higher undersampling rate, the
error bar (standard deviation) of MoDL is wider than pro-
posed SpiNet, which also implies that proposed SpiNet can
be considered as a more reliable method for reconstruction.
The performance of L1-Net is also better than MoDL at
higher R, but performs inferior to the proposed SpiNet.

We also performed a two-tailed t test with unequal vari-
ance (Welch test) using the 164 images of test dataset. The
details of the test are given in Section 4.D. We take averaged
PSNR as metric for the test and the significance threshold is
0.05. The results of the test are given in Table II as function
of undersampling rate (R), where the difference in perfor-
mance is significant if P < 0.05. From the table, it can be
observed that for lower undersampling rates of 2× and 4×,
the performance of MoDL and proposed SpiNet is compara-
ble. However, for higher undersampling rates the difference
in performance of two methods is significant. This table
shows that for higher undersampling rate, the performance of
proposed SpiNet is significantly better than MoDL. The same
conclusion can be reached from Table III, where t test

performed using NRMSE as the metric. However, when the t
test was conducted using SSIM as metric, SpiNet performs
significantly better than MoDL even at low undersampling
rates as well and is the results are shown in Table IV. How-
ever, SSIM as an evaluation metric should only be used in
tandem with PSNR or NRMSE as these models were not
trained using SSIM as loss function. Therefore they do not
guarantee high recovery of SSIM and may not be consistent
to show a trend. One such observation is for R = 6× in case
of MoDL, where there is a drop in average SSIM value.

5.D. Runtime

Table V compares the training and testing time for MoDL
and proposed SpiNet in seconds. The training time is for 1
epoch of 360 training samples and the testing time is for the
test dataset of 164 images. From the table, it is clear that the
MoDL is ≈ 1.5 × faster than SpiNet in training and ≈ 2 ×
faster in testing.

The reason for longer training and testing time for SpiNet
are the multiple function calls and loop iterations because of
MM algorithm. Moreover, the operations performed in pro-
posed SpiNet are higher than MoDL. The optimization equa-
tion of SpiNet requires a) additional calculation of W2 (≈O
(3m) operations) at every majorization step (i.e., 4 × N times)
and b) matrix operations using W2 (≈Oð4m2Þ) at every
majorization step (i.e., 4 × N times) for N = 10. In case of
brain dataset, m = 256 × 232. These computations are not
required in case of MoDL. The above-mentioned two factors
contribute to longer training and testing time in case of the
proposed SpiNet. However, the proposed SpiNet is still
advantageous over MoDL as it provides better recovery in
terms of PSNR and can reconstruct same quality images in
lesser iterations as shown in Fig. 6 and Table VI. From
Table VI, it is also apparent that for R ≥6×, the reconstruc-
tion of SpiNet trained and tested for N = 5 outperforms
MoDL trained and tested for N = 10.

5.E. Learnt p-values

The enforced Schatten p-norm value, that is, p of SpiNet
was a trainable parameter. The learnt value of p for under-
sampling rates of (R) of 2×, 4×, 6×, 8×, 12×, 16×, and 20×
are shown in Table VII. From the table it can be seen that for
smaller R (lesser undersampling rates) the p values are close
to 2, that is, the constraint norm is closer to L2 norm. How-
ever, as we increase the undersampling rate, the value of p
decreases. A possible reason for this is that for lower R, the
noise prior N wð�Þ resembles more to Gaussian noise (which

FIG. 7. Comparison of the performance of MoDL (red), L1-Net (green) and
proposed SpiNet (blue) with respect to averaged PSNR (in dB) on the test
dataset of 164 images as a function of undersampling (R) rates. [Color figure
can be viewed at wileyonlinelibrary.com]

TABLE V. Training and testing time for MoDL and proposed SpiNet in sec-
onds (rounded to nearest integer).

Method MoD Proposed SpiNet

Training Time (in sec) 273 474

Testing Time (in sec) 35 61
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is the noise added to the k space). However, as we increase
the undersampling rate, the distribution of noise is not best
estimated with L2 norm as the distribution deviated from
Gaussian. Moreover, the unit ball of Lp norm where p ≈ 1.4
resembles the unit ball of elastic-net,58 which is shown to
give better performance than both L2 and L1 norm. For Spi-
Net trained with variable density undersampling pattern of
R = 16×, learnt p value = 1.40 and for RGA undersampling
pattern for R = 6×, the learnt p value is 1.46. However, the
learnt p value for breast data for RGA pattern of R = 20× is
1.22 and for chest MRI data (mentioned in Section 4.D) for
RGA pattern of R = 6× is 1.13 as shown in Table X and Sec-
tion 6. This shows that the learnt p value depends less on the
undersampling pattern and more on the data type.

5.F. Fivefold Cross validations

We performed a fivefold cross-validation study on pro-
posed SpiNet for 16× undersampling rate in which the data
of four of five patients were taken as training data and one
patient data were used for testing, leading to five models. The
results in terms of averaged PSNR (in dB) of the test data are
shown in Table VIII. It was found that the performance of
proposed SpiNet is similar in all cases, which suggests that
the network is robust and able to generalize across the data.

5.G. Ablation study

To decide the number of majorization iterations (N̂) and
number of minimization iterations (M1), we performed an
ablation study for undersamping rate of 12× and the results
for the same are shown in Table IX. From Table IX, it can be
inferred that for N̂ ≥ 4, the proposed SpiNet performs similar
in terms of PSNR and the learnt p - values are also similar.
However as the total number of iterations (N̂�M1) increases,
both computational time and memory requirement increases.
Hence we chose N̂ = 4 and M1 = 4 which has the minimum
number of total iterations among options where N̂ ≥ 4.

6. GENERALIZABILITY

To test the generalization ability of the proposed SpiNet,
as discussed in Section 4.A the chest MRI as well as DCE-
MR data of the breast were utilized. The chest MRI data and
the undersampling masks were same as used in implementa-
tion of ADMM-Net.53 For experiments on contrast enhance
breast MRI data, the training and testing techniques are same
as used in.54 Chest MR results are compared with ADMM-
Net and the results for the breast data is compared with
ISTA�Netþ,28 and these results are shown in Table X. It can
be seen that the proposed SpiNet outperforms both state of
the art networks for the respective datasets by a margin
≈ 1.5 dB and assert that the proposed SpiNet has the capabil-
ity to work across various datasets.

Table XI shows the performance of SpiNet on chest and
breast dataset without and with retraining the network in
fourth and fifth columns respectively. It can be seen from the

TABLE VI. This table compares the PSNR (in dB) for MoDL and SpiNet
when trained and tested for N = 5 and N = 10 for different undersampling
rates (R).

R

MODL SpiNet

N = 10 (PSNR) N = 5 (PSNR) N = 10 (PSNR) N = 5 (PSNR)

2× 42.41 42.29 42.53 42.51

4× 40.83 40.52 40.97 40.77

6× 39.01 38.85 39.96 39.61

8× 38.59 38.08 38.84 38.62

12× 36.44 36.2 37.31 37.06

16× 34.49 33.86 36.25 35.78

20× 32.09 31.47 35.39 35.17

It can be seen that the results for SpiNet for N = 5 are superior to the results of
MoDL for N = 10.

TABLE VII. This table shows the learnt p value for proposed SpiNet for differ-
ent undersampling rates (R).

R PSNR (dB) p

2× 42.53 1.81

4× 40.97 1.69

6× 39.96 1.42

8× 38.85 1.40

12× 37.31 1.39

16× 36.25 1.38

20× 35.39 1.36

TABLE VIII. This table shows results (in terms of averaged PSNR (in dB)) of
test data (164 images) for fivefold cross validation performed for 16× under-
sampling rate.

Test patient data PSNR (dB)

Patient 1 35.52

Patient 2 35.51

Patient 3 35.62

Patient 4 35.72

Patient 5 35.55

TABLE IX. Results of ablation study for undersampling rate of 12× for decid-
ing the ratio between number of Majorization iterations to number of Mini-
mization iteration (MM ratio).

Network MM Ratio p PSNR (dB)

Lp 2/8 1.5 37.09

Lp 3/6 1.45 37.14

Lp 4/5 1.42 37.31

Lp 5/5 1.37 37.35

Lp 5/4 1.43 37.40

Lp 4/4 1.39 37.34

From here, it can be seen that majorization iterations ≥4 give similar results in
terms of PSNR of reconstructed image.
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table that retraining leads to better reconstruction. An impor-
tant observation is that the PSNR of SpiNet without retrain-
ing is still higher than that of aliased images. This is expected
as introducing a data consistency term should give results at
least as good or better than the input. This is one of the silent
features of model-based DL architectures, which has been
shown here.

7. LIMITATIONS

There are some inherent limitations for the proposed Spi-
Net, which can make its application domain narrow. First
being that Majorization–Minimization algorithm that was uti-
lized is only applicable to separable priors, which can be writ-
ten in form kΓðxÞkpp ¼ΣijγðxiÞjp. This might not be true for
all inverse problems and a reformulation of Eq. (5) will be
required to make it more generic. Second, theoretically the
convergence of the network is not known and hence its appli-
cation for complex nonlinear inverse problems may be lim-
ited. Finally. SpiNet like all deep learning models focuses on
decreasing the cost function over whole training set, hence it
can be invariant to minor abnormalities, which can be of clin-
ical significance, but do not contribute much to training loss
(Osteophyte, early stages of heterotopic ossification). Hence,
the validation of this network for dataset with more patholo-
gies may be needed to claim generality of the network.

8. CONCLUSION

In this work, we proposed a novel architecture that can
enforce regularization of any norm p (Schatten p-norm) in
unrolled deep learning based scheme for solving an inverse
problem. We demonstrated the idea for reconstruction of MR
images from undersampled k space data and compared pro-
posed SpiNet results with MoDL, which utilizes p = 2. We
illustrated that the proposed SpiNet has the capability to learn
the p value as well as work for a fixed p value (as shown with
p = 1). For different undersamping rates (R), keeping all

hyper-parameters same, it was demonstrated that for lower R,
MoDL and SpiNet performance is similar. For higher R (≥
6×), the proposed SpiNet performs significantly better than
MoDL. We have also provided detailed explanation of our
observations and have highlighted the limitations of our
approach, will try to address these limitations in future work.
The trained network is available for enthusiastic users as open
source at https://github.com/adityarastogi2k12/SpiNet.
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APPENDIX A

A.1. MoDL being special case of SpiNet

The cost function for SpiNet is given in Eq. (17). The min-
imization is achieved by variable splitting technique as shown
in Eqs. (18) and (19), for prior and data consistency terms,
respectively. The cost function for Eq. (19) can be upper
bounded using Majorization–Minimization algorithm as
shown in Eq. (20). Here, λ0 = λp/2 and W = diag
(j�xi� zki jp=2�1). Minimizing Eq. (20) w.r.t x leads to Eq. (21).

For p = 2, W = I, and λ0 = λ, simplifies Eq. (21) to (16),
which is the update equation in the MoDL. Hence, for p = 2,
SpiNet simplifies into MoDL. Hence in Fig. 2, the DC block
of SpiNet simplifies to that of MoDL,29 making MoDL as
special case of SpiNet.

A.2. SpiNet as a special case of compressive
sensing based reconstruction framework

Compressive sensing framework for solving the inverse
problem involves minimizing cost function given in Eq. (5).

TABLE X. This table shows performance for SpiNet for Chest and Breast
dataset and compares the results with their state of the art methods.

Data R

Training
images
(number) SOTA (PSNR)

SpiNet
tuned
(PSNR) p

Chest 6× 100 ADMM-Net/37.17 � 4.1 38.6 � 3.6 1.13

Breast 20× 3000 ISTA�Netþ/30.19 � 1.8 31.7 � 1.1 1.22

TABLE XI. This table shows the performance of SpiNet when trained on brain
data and tested on chest/breast data (column fourth) and when fine tuned for
the respective datasets (column fifth).

Testing data R Input (PSNR) Not tuned (PSNR) Tuned (PSNR)

Chest 6× 23.97 � 3.8 30.8 � 4.2 38.6 � 3.6

Breast 20× 18.36 � 1.3 23.2 � 2.1 31.7 � 1.1

Second column shows the PSNR (in dB) of the aliased images generated from the
undersampled k space data.
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The norm enforced on the prior is mostly p = 1 as it is con-
vex and enforces sparsity. In case of SpiNet ΓðxÞ¼N wðxÞ
which is the noise present x. Moreover, N wðxÞ¼ x�
DwðxÞ¼ x� z is also sparse for the optimal solution. It was
shown in Ref.44 that a prior regularized optimization func-
tion can be split into two equations where one contains the
prior term and other the data consistency term as shown in
Eqs. (18) and (19), respectively. Solving Eq. (18) is analogous
to denoising. In analytical compressive sensing frameworks,
a handcrafted prior gets utilized, which is not data dependent.
Hence in traditional compressive sensing framework the
denoisier is not learnt based on the training data. Therefore,
in Fig. 2, the DW block is not CNN based and can be fixed to
be a denoiser of choice. Hence SpiNet becomes a special case
of conventional compressive sensing framework, when the
denoiser is trainable/data-driven.

a)Author to whom correspondence should be addressed. Electronic mail:
yalavarthy@iisc.ac.in
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