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Abstract
Purpose: To propose a robust time and space invariant deep learning
(DL) method to directly estimate the pharmacokinetic/tracer kinetic (PK/TK)
parameters from undersampled dynamic contrast-enhanced (DCE) magnetic
resonance imaging (MRI) data.
Methods: DCE-MRI consists of 4D (3D-spatial + temporal) data and has been
utilized to estimate 3D (spatial) tracer kinetic maps. Existing DL architecture for
this task needs retraining for variation in temporal and/or spatial dimensions.
This work proposes a DL algorithm that is invariant to training and testing in
both temporal and spatial dimensions. The proposed network was based on a
2.5-dimensional Unet architecture,where the encoder consists of a 3D convolu-
tional layer and the decoder consists of a 2D convolutional layer. The proposed
VTDCE-Net was evaluated for solving the ill-posed inverse problem of directly
estimating TK parameters from undersampled k − t space data of breast can-
cer patients, and the results were systematically compared with a total variation
(TV) regularization based direct parameter estimation scheme. In the breast
dataset, the training was performed on patients with 32 time samples, and test-
ing was carried out on patients with 26 and 32 time samples. Translation of the
proposed VTDCE-Net for brain dataset to show the generalizability was also
carried out. Undersampling rates (R) of 8×, 12×, and 20× were utilized with
PSNR and SSIM as the figures of merit in this evaluation. TK parameter maps
estimated from fully sampled data were utilized as ground truth.
Results: Experiments carried out in this work demonstrate that the proposed
VTDCE-Net outperforms the TV scheme on both breast and brain datasets
across all undersampling rates. For Ktrans and Vp maps, the improvement over
TV is as high as 2 and 5 dB, respectively, using the proposed VTDCE-Net.
Conclusion: Temporal points invariant DL network that was proposed in this
work to estimate the TK-parameters using DCE-MRI data has provided state-
of -the-art performance compared to standard image reconstruction methods
and is shown to work across all undersampling rates.

KEYWORDS
DCE MRI, inverse problems, medical image reconstruction, permeability imaging and magnetic
resonance imaging, pharmacokinetic modeling
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1 INTRODUCTION

Modern medical imaging methods provided an accu-
rate and noninvasive (or minimally invasive) way of
investigating anatomy and anatomical manifestations of
various diseases and injuries. The tissue physiological
or metabolical characterization is vital for accurate diag-
nosis of the disease. Recent advancements in the field
of quantitative imaging methods like computed tomogra-
phy (CT) perfusion,1 dynamic contrast enhanced (DCE)
magnetic resonance imaging (MRI),2 positron emission
tomography,3 and diffusion tensor imaging4 enabled this
characterization. The DCE-MRI is a promising tech-
nique,where a gadolinium-based T1 shortening contrast
agent5 is injected into the body, followed by repeated
acquisition of T1-weighted images of the region of inter-
est after a fixed time interval. This 4D (3D + time) data
processing results in physiological characterization of
investigated tissue. In DCE-MRI, one takes advantage
of blood capillaries surrounding the unhealthy tissue
behaving differently than that of surrounding healthy tis-
sue. This leads to change in the capillary permeability,
that is, the rate at which the contrast agent permeates
through the capillary and gets accumulated in extra-
cellular extravascular space (EES). For example, in the
case of malignant tumors, the blood capillaries formed
are leaky and display hyperpermeability when com-
pared to normal capillaries. By comparing such tracer
kinetic (TK) parameters, clinicians can provide a better
prognosis and treatment plan. Additionally, it is useful
in assessing the efficacy of the treatment. To estimate
these quantitative parameters, pharmacokinetic models
are utilized,most popular being Tofts,6 extended-Tofts or
eTofts,7 and Patlak model.8 Patlak model parameterizes
the tissue using two quantitative parameters, namely,
Ktrans and Vp. Ktrans denotes the rate at which contrast
agent permeates from capillaries into EES and Vp mea-
sures the volume fraction of blood capillaries in each
tissue (voxel). eTofts model utilizes an additional param-
eter called kep, which denotes the rate at which contrast
agent is cleared from the EES.

The raw data captured by the MR scanner are the
Fourier transform of the desired anatomical image.
These raw data are also called as k space data or
Fourier space data. When these k space data are cap-
tured repeatedly as a function of time, they are termed
k − t space data.Repeated acquisitions as a function of
time increases the overall scan time which makes DCE-
MRI less appealing both ergonomically and economi-
cally. Additionally, to accurately estimate the quantitative
parameters, the scans should have high spatial and tem-
poral resolution,although one comes at the cost of other.
Earlier works utilized principles of compressive sensing
to undersample k − t space below Nyquist threshold
and still recover high-quality MR images.9 By reducing
acquisition time of each 3D volume, temporal resolution
was improved and overall scan time was reduced. The

methods to estimate TK parameters from undersam-
pled k − t data can be classified into indirect and
direct methods. In indirect techniques, the anatomical
image is reconstructed first using the principles of
compressive sensing from which, as a second step,
TK parameters are estimated. Experiments by Smith
et al.,10 Feng et al.,11 and Rosenkrantz et al.12 have
shown that undersampling rates (R) of 4-28.7× can
be achieved without compromising the diagnostically
relevant information. They also utilized priors such
as TV or wavelet transform, induced by L1∕2 or L1
norms as sparsity constraints. In ref. [13], authors
experimented with deep learning (DL)-based indirect
parameter estimation using two popular model based
DL techniques namely MoDL14 and ISTA-Net15 and
compared the results with direct iterative schemes. The
main disadvantage of indirect techniques like ISTA-
Net and MoDL are that they provide reconstruction of
anatomical images and not TK parameters. To estimate
TK parameters from anatomical images additional
information like AIF, T1 maps, and scan acquisition
parameters are needed for which additional data acqui-
sition and computation are required. On the contrary,
in this work, we proposed an end-to-end network for
reconstruction of TK parameters from undersampled
k-t space data without any requirement of these
parameters.

Contrary to the indirect methods, direct methods esti-
mate the TK parameters from undersampled data by
solving a nonlinear inverse problem without reconstruct-
ing the anatomical images as an intermediary step.
Guo et al.16,17 and Dikaois et al.18 showed that direct
reconstruction methods perform better than indirect
methods. In their work,18 the authors used Bayesian
inference on prostate cancer dataset to achieve an
undersampling rate of 4×. More recent works (refs.
16,17) validated direct estimation methods for higher
undersampling rate of 100× and gave the flexibility
to incorporate any prior. Experiments with the breast
data13 showed that at low undersampling rates, DL-
based indirect methods perform significantly better;
however, at higher undersampling rate, the iterative
direct techniques using total variation (TV)19 regulariza-
tion perform significantly better. However, direct iterative
techniques are computationally expensive and require
manual tuning of hyper parameters. Recent investiga-
tions addressed these limitations by using DL-based
direct estimation techniques. Bliesener et al.20 esti-
mated Ktrans from fully sampled data using DL at each
pixel individually using one-dimensional (1D) convolu-
tion. However, instead of image as input, they utilized
concentration maps and arterial input function (AIF) as
input. Cagdas et al.21,22 estimated parameters using
dilated convolution and fully connected layers with
temporal dimension are channels. Kettelkamp et.al23

modified the network proposed by Cadgas et al. by
incorporating AIF as an input information. However, as
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1562 VTDCE-NET

these networks use fully convolutional layers and treat
temporal dimension as number of channels, these net-
works are not invariant to change in temporal or spatial
dimensions and require retraining once these dimen-
sions vary. Moreover, Kettelkamp et.al23 estimated TK
parameters from fully sampled DCE-MRI data—not from
undersampled DCE-MRI data—with explicit knowledge
of AIF. From undersampled DCE-MRI data, AIF can-
not be accurately estimated. The proposed architecture
addressed both the issues of invariance to spatiotem-
poral dimension as well as the requirement of AIF for
TK parameter estimation.

To address this limitation, this work propose a 2.5D
Unet24-based architecture for direct estimation of TK
parameters from undersampled k − t space. The net-
work consists of three-dimensional (3D) convolutional
layers for the encoder part and two-dimensional (2D)
convolution layers for the decoder part. The bottleneck
consists of an averaging layer along the temporal axis
to convert 3D data into 2D data.As the network consists
only of convolutional layers and has averaging lay-
ers along temporal dimensional, the network becomes
invariant to changes in temporal and spatial dimen-
sions while training and testing. This network has been
named as VTDCE-Net for variable time and space
DCE network. The proposed VTDCE-Net was trained
and tested on breast cancer patients for undersampling
rate of 8×, 12× and 20× using RGA undersampling
pattern.11 The results were compared with a direct iter-
ative parameter estimation technique as performed in
ref. [13] using PSNR, SSIM,25 and high-frequency error
norm (HFEN26) as metrics. The proposed network was
also tested and trained on brain images to evaluate the
generalization capabilities. Moreover, utility and impor-
tance of time invariant networks were demonstrated (in
Section 3.5) by comparing the proposed network results
with another noninvariant network (called as DCE-Net),
which is also based on Unet architecture. The main dif-
ference in VTDCE-Net and DCE-Net is that the DCE-Net
is not flexible to variance in temporal dimension. DCE-
Net treats the temporal dimensions as channels, and a
2D Unet is where the output channel dimension is two in
order to give the two TK parameters. The main objective
of the experiment performed in Section 3.5 was to show
that resampling the input to match the data dimensions
on which the network was trained does not give the most
optimal results.

2 THEORY AND METHODS

Notation wise, small boldface alphabets such as x are
for vectors and capital boldface alphabets like A are
for matrices. The r describes the spatial location in 3D
volume in image domain, that is, r ∈ {x, y, z} and ‚r was
used to denote location in 3D volume of frequency
domain, that is, r̂ ∈ {kx, ky, kz}. The small boldface k(r̂, t)

was utilized to denote fully sampled k − t space data
and small boldface k̂(r̂, t) to denote under sampled k − t
space data.

Patlak model8 was utilized for parameter estima-
tion from DCE MRI images as it is a popular two
compartmental model, which parameterizes the tis-
sue with two TK parameters, namely, Ktrans and Vp.
The forward model was defined with these two TK
parameters as inputs and the undersampled k − t
space as output. The forward model is shown in
Figure 1 and is mathematically defined as shown in
Equation (1):

k̂(r̂, t) = f̂ (Ktrans(r), Vp(r)) = U(r̂, t) ⊙ f (Ktrans(r), Vp(r)).

(1)

In Equation (1), f (⋅) maps the inputs to the fully sam-
pled k − t data and U(r̂) is the undersampling map. ⊙
signifies element-wise multiplication. The forward mod-
els f̂ (⋅) and f (⋅) are nonlinear functions and the inverse
problem is ill-posed. More detailed information on them
can be found in ref.[13].Equation (1) can be solved using
a DL-based technique as shown below:

K̂trans(r), V̂p(r) = f̃ (iFFT2D(f̂ (Ktrans(r), Vp(r))). (2)

Here, K̂trans(r) and V̂p(r) are the estimated maps
using neural network f̃ (⋅). This work proposed a neu-
ral network that is invariant to the temporal dimension
of the input data using a 2.5D Unet architecture, where
the encoder is 3D and decoder is 2D. The architecture
is explained in the next subsection.

2.1 VTDCE-net architecture

The architecture of the network is shown in Figure 2
and consisted of an encoder with 3D convolutions
and a decoder with 2D convolutions. The input to
the network was a time series data where each slice
(e.g axial) has “T” temporal acquisitions. For a single
axial slice, the input was a three-dimensional data
(Height×Width×T), whereas the output to the net-
work were two-dimensional TK parameter maps Ktrans
and Vp each having dimensions Height×Width. The
objective was for the network to be invariant to the
number of input time steps and give a two-dimensional
reconstruction. To do this at each level of the 3D
encoder, just before downsampling, a five-dimensional
data (Batch×Channels×Height×Width×T)—which is
the output of the 3D convolution layer of encoder—
was reduced to four-dimensional data—input to the
2D convolution layer of decoder—by taking mean
along the temporal (“T”) dimension. It reduced the
input from (Batch×Channels×Height×Width×T) to
(Batch×Channels×Height×Width×1), where the last
dimension was later squeezed out. This allowed the
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VTDCE-NET 1563

F IGURE 1 Block diagram of forward and inverse models for estimating the Tracer-kinetic parameters using Patlak model.8 Randomized
golden-angle radial scheme was utilized for obtaining undersampling mask U( ‚r, t). The top-row presents the steps in forward modeling. The
function f (⋅) is a non-linear function which maps the tracer-kinetic parameters onto the k-t space of anatomical images. f̂ (⋅) maps the
tracer-kinetic parameters onto the undersampled k-t space of anatomical images, that is, the data acquired by Fast-MRI scanner. Black dashed
arrows represent the parameters required for reconstruction. Grey shaded arrow depicts the inverse problem

F IGURE 2 This figure depicts the architecture of VDCTE-Net. The encoder consists of 3D convolutions and downsampling and the
decoder consists of 2D convolutions and upsampling. Sky blue denotes mean along the time axis, which converts 3D tensor into 2D tensor. The
violet arrow denotes mean along time axis and concatenation. The last layer of Unet bifurcates into two branches one learns Ktrans and the
other learns Vp

network to be trained and tested on different number of
time samples as shown in our experiments. Our exper-
iments showed that the results of the network were
robust to change in time samples with this technique
because the average was taken along the temporal
dimension of the feature maps which are calculated
using trained convolution layers. Moreover, the down-
sampling part along the Height, Width, and Temporal
dimensions of the Unet architecture compressed the

data and provides salience representation to have
a robust quantitative imaging. Three levels of down-
sampling (upsampling) using maxpooling (transpose
convolution) were utilized.The last layer of decoder was
bifurcated into two channels to learn the two param-
eter maps. All convolutional filters (3D and 2D) had a
filter-size of 3 with stride of 1. The convolutions were
followed by batch-normalization and ReLU activation
function (apart from the output layers).
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1564 VTDCE-NET

2.2 Datasets

For the experiments in this work, breast and brain DCE
MRI datasets were utilized. The details of the same are
in the next subsections.

2.2.1 Breast dataset

Experiments on breast tissues were performed using
QIN Breast DCE-MRI dataset,27 which was available
on The Cancer Imaging Archive (TCIA).28 It contains
data from a longitudinal study to assess the response
to neoadjuvant chemotherapy.29 Images were acquired
at two points: before the first round of treatment (V1)
and after the first round (V2) using Siemens 3T system
with a body coil and a four-channel bilateral phased-
array breast coil. The images were fat-saturated and
were acquired using a 3D gradient echo-based TWIST
sequence.30 The data acquisition parameters included
flip angle of 10◦,TE of 2.9 ms,and TR of 6.2 ms,respec-
tively. The field of view was 30–34 cm with 320×320
in-plane matrix size and a slice thickness of 1.4 mm.
The dataset consisted of 4D DCE-MRI acquisition from
10 patients, with each patient being scanned before
and after first round of neoadjunct chemotherapy. There
are 26–32 image volumes, each containing 120–128
slices with a temporal resolution of 18–20 s and a
total acquisition time of ∼10 min. A gadolinium-based
contrast agent Gd-HP-D03A was administered with a
dose of 0.1 mmol/kg of body mass followed by 20 ml
saline flush at a speed of 2 ml/s using a programmable
injector.

2.2.2 Brain dataset

To show the robustness of VTDCE-Net, the network
was also trained and tested on brain dataset. The brain
DCE MRI dataset was made available by The Refer-
ence Image Database to Evaluate Therapy Response
(Rider) NEURO MRI project31 on TCIA28 and consisted
of scans of 19 patients with recurrent glioblastoma.
Dynamic images were obtained during the intravenous
injection of 0.1 mmol/kg of Magnevist at 3 ccs/s, started
24 s after the scan had begun on a 1.5 T scanner. The
images were acquired using a 3D FLASH technique,
with a flip angle of 25 degrees, TE of 1.8 ms, TR of
3.8 ms with voxel size of 1×1×5 mm, and in-plane
matrix size of 256×256 . Each volume has 16 slices,
obtained every 4.8 s with a total of 65 time samples.

2.3 Implementation

The training of VTDCE-Net was performed for under-
sampling rate (R) of 8×, 12×, and 20× using radial

golden angle (RGA)11 undersampling pattern. RGA
scheme follows a radial trajectory for data acquisition
where the angle between two consecutive radial spokes
is given by the golden ratio (∼ 1.618).The angle between
two consecutive radial spokes is given as mod ( 360

1.618
×

n, 360) for full spoke, where n is the number of spokes.
The major advantage of RGA over uniform radial cov-
erage is that in RGA, each new spoke always fills the
largest gap of the previous coverage, and all spokes
never repeat each other.32 For each R, different net-
works were trained and tested.For brain dataset, training
and testing were performed only for R = 20×. TV-
based estimation scheme was also implemented for
comparison as mentioned in ref. [13]. The implementa-
tion details of VTDCE-Net and TV scheme are provided
below.

2.3.1 VTDCE-net

For training on breast dataset, 492 3D images (2D +

time) were utilized from six patients as training data and
82 3D images from two patients were used for validation.
The input to the network was 3D data and outputs were
Ktrans and Vp maps. All samples of training and valida-
tion dataset had 32 time samples. Mean square error
between reconstructed ground truth maps along with
mean square error between their gradients was used
as loss function, and ADAM33 was used with parame-
ters 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8. The learning
rate was kept at 1 × 10−4, and training was performed
for 200 epochs with a batchsize of four and patchsize
of 128×128. For training, only those axial slices that had
a visible tumor were utilized. For testing, unseen images
of two patients were used. From the brain dataset of
19 patients, we used 10 for training (401 samples), 5 for
validation, (71 samples) and 4 for testing.

2.3.2 Total variation scheme

For implementing TV scheme, limited memory Broyden–
Fletcher–Goldfarb–Shanno algorithm (l-BFGS) algor-
ithm34 was utilized. The regularization parameters were
tuned for each undersampling rate R and were kept
constant for all patients.

2.4 Computational implementation

All computations were carried out on a Linux worksta-
tion with an Intel i9 processor with 2.10 GHz clock
speed, having 128 GB RAM and a Quadro RTX
8000 GPU with 48 GB memory. The pre-processing
and post-processing steps were performed in MATLAB
and implemented the neural networks in Pytorch. The
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VTDCE-NET 1565

F IGURE 3 This figure illustrates the Ktrans maps (left) and Vp maps (right) reconstructed using different reconstruction techniques and
using different undersampling rates R. GT stands for ground truth, “US” stands for maps estimated from undersampled data using zero-filled
k − t space, TV represents maps estimated using total variation regularized scheme, and VTDCE represents estimated maps using the
proposed VTDCE-Net. The even rows shows the zoomed in ROI bounded by the green box in figure above. In (i), it can be seen that as
undersampling rate increases, the information in undersampled image (US) decreases. Both TV and VTDCE-Net are able to reconstruct the
Ktrans maps, but TV reconstruction shows hyper-intensive region toward the core of the tumor (which is generally not true as the core of tumor
consists of dead tissue), whereas VTDCE reconstruction resembles more to the ground truth (GT). Similarly for Vp maps in (ii), one can see that
VTDCE-Net provides improved performance than TV for all R; however, the maps are hypointense compared to the ground truth.

TV reconstruction algorithms were implemented on
MATLAB 2018b using the parallel computing toolbox
on 12 threads. Implementation of the proposed method,
including the developed code, was made available as
open-source at https://github.com/adityarastogi2k12/VT
DCE.

3 RESULTS

3.1 Breast dataset

In this subsection, comparison of the performance of
VTDCE-Net and TV parameter estimation method using
PSNR, SSIM,25 and HFEN26 as metrics was performed.
Note that the HFEN provides a measure of the fidelity
at high spatial frequencies with lower-value indicating
higher performance of reconstruction algorithm in terms
of recovery of edge information.26 The comparison was
carried out on multiple slices of two patients “A” and “B.”
Patient “A” had 26 time samples, whereas patient “B”
had 32 time samples. Network was trained and tested
for R = 8×, 12× and 20×. As previously mentioned,

the training was completed on data with 32 time sam-
ples. Figure 3 shows Ktrans and Vp maps estimated
from a representative slice of patient “A” using differ-
ent methods. “GT” stands for ground truth, “US” stands
for maps estimated from undersampled data using
zero-filled k − t space, “TV” represents maps estimated
using TV scheme, and “VTDCE” represents estimated
maps using the proposed VTDCE-Net. In Figure 3-i,
it can be seen that TV-estimated maps have hyper-
intensive regions near the core of the tumor, which is
not visible in the ground truth. This is generally not
true because hypoxia and nutrient deficiency in the
case of large solid tumors—due to insufficient blood
supply—lead to necrosis. Figure 3-ii also shows that
TV reconstruction results in hyperactivity in the necrotic
region. Vp signifies the volume fraction of blood ves-
sels/capillaries and therefore cannot show hyperactivity
in the necrotic region. This artifact is not present in
VTDCE-Net reconstruction. Table 1 shows the perfor-
mance of the above-mentioned parameter estimation
methods for multiple slices of two patients in reconstruc-
tion of Ktrans. The methods are compared using PSNR,
SSIM,and HFEN for multiple undersampling rates.From
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1566 VTDCE-NET

TABLE 1 This table shows PSNR, SSIM, and HFEN metrics for Ktrans estimated using VTDCE and TV for R = 8 ×, 12 ×, 20 × for all slices
of the Breast data of Patient “A” and Patient “B.” “US” stands for maps estimated from undersampled data using zero-filled k − t space, TV
represents maps estimated using total variation regularized scheme, and VTDCE represents estimated maps using the proposed VTDCE-Net.
From the table, it can be seen that proposed VTDCE performs better in terms of all metrics across both patients for all R.

US VTDCE TV
PAT R PSNR SSIM HFEN PSNR SSIM HFEN PSNR SSIM HFEN

PAT
A

8× 34.74 ± 0.80 0.91 ± 0.01 62.91 ± 4.51 39.30 ± 0.84 0.95 ± 0.01 23.79 ± 2.09 38.28 ± 0.69 0.94 ± 0.01 24.04 ± 2.78

12× 33.80 ± 0.79 0.89 ± 0.01 75.76 ± 5.06 39.66 ± 0.66 0.95 ± 0.00 23.65 ± 1.57 37.76 ± 0.60 0.95 ± 0.01 27.04 ± 3.13

20× 32.55 ± 0.75 0.86 ± 0.01 96.25 ± 6.79 39.46 ± 0.74 0.94 ± 0.01 26.07 ± 1.90 37.05 ± 0.65 0.93 ± 0.01 31.35 ± 4.01

PAT
B

8× 37.39 ± 0.55 0.91 ± 0.01 55.9 ± 4.11 39.53 ± 0.56 0.94 ± 0.01 30.68 ± 1.49 38.98 ± 0.67 0.95 ± 0.01 30.9 ± 2.75

12× 36.54 ± 0.56 0.89 ± 0.01 64.32 ± 5.49 40.97 ± 0.56 0.95 ± 0.00 30.47 ± 2.03 38.98 ± 0.77 0.94 ± 0.01 31.99 ± 2.39

20× 35.21 ± 0.62 0.86 ± 0.01 79.06 ± 5.89 38.95 ± 0.54 0.92 ± 0.00 33.75 ± 1.34 38.82 ± 0.81 0.93 ± 0.01 34.65 ± 2.21

TABLE 2 This table shows PSNR, SSIM, and HFEN metrics for Vp estimated using VTDCE and TV for R = 8 ×, 12 ×, 20 × for all slices of
the Breast data of Patient “A” and Patient “B.” “US” stands for maps estimated from undersampled data using zero-filled k − t space, TV
represents maps estimated using total variation regularized scheme, and VTDCE represents estimated maps using the proposed VTDCE-Net.
From the table, it can be seen that VTDCE performs better in terms of both PSNR and SSIM across both patients and undersampling rates.

US VTDCE TV
PAT R PSNR SSIM HFEN PSNR SSIM HFEN PSNR SSIM HFEN

PAT A 8× 25.99 ± 0.48 0.64 ± 0.01 51.19 ± 5.29 29.21 ± 0.60 0.78 ± 0.01 30.18 ± 2.01 26.95 ± 0.85 0.74 ± 0.02 42.45 ± 3.84

12× 25.12 ± 0.47 0.61 ± 0.01 60 ± 6.57 28.69 ± 0.65 0.76 ± 0.01 34.02 ± 1.94 26.53 ± 0.79 0.69 ± 0.02 46.01 ± 4.51

20× 23.66 ± 0.49 0.57 ± 0.01 76.58 ± 9.01 27.14 ± 0.76 0.70 ± 0.01 36.89 ± 1.91 25.71 ± 0.82 0.62 ± 0.03 56.84 ± 8.49

PAT
B

8× 25.05 ± 0.42 0.63 ± 0.01 33.1 ± 2.94 28.59 ± 0.36 0.79 ± 0.01 17.84 ± 0.88 23.84 ± 0.47 0.70 ± 0.02 27.79 ± 2.26

12× 24.28 ± 0.44 0.60 ± 0.01 38.03 ± 3.58 28.52 ± 0.33 0.79 ± 0.01 19.71 ± 1.01 23.63 ± 0.46 0.66 ± 0.01 29.84 ± 2.77

20× 22.93 ± 0.46 0.56 ± 0.01 47.47 ± 4.62 26.24 ± 0.41 0.68 ± 0.02 24.81 ± 0.94 23.28 ± 0.44 0.60 ± 0.01 33.03 ± 3.38

TABLE 3 This table shows PSNR and SSIM metrics for Ktrans estimated using VTDCE and TV for R = 8 ×, 12 ×, 20 × in the R0I region for
all slices of the Breast data of patients “A” and “B.” “US” stands for maps estimated from undersampled data using zero-filled k − t space, TV
represents maps estimated using total variation regularized scheme, and VTDCE represents estimated maps using the proposed VTDCE-Net.
From the table, it can be seen that VTDCE performs better in terms of PSNR for both patients and all R and in terms of SSIM, it also performs
better than TV in most cases.

US VTDCE TV
PAT R PSNR SSIM PSNR SSIM PSNR SSIM

PAT A 8 × 29.06 ± 0.84 0.77 ± 0.02 33.36 ± 0.82 0.91 ± 0.01 32.68 ± 0.69 0.86 ± 0.01

12 × 28.06 ± 0.84 0.73 ± 0.02 34.46 ± 0.65 0.92 ± 0.00 32.22 ± 0.58 0.90 ± 0.00

20 × 26.76 ± 0.80 0.66 ± 0.02 34.02 ± 0.70 0.90 ± 0.00 31.58 ± 0.61 0.89 ± 0.01

PATB 8 × 32.87 ± 0.76 0.817 ± 0.02 35.94 ± 1.43 0.93 ± 0.01 35.46 ± 2.65 0.92 ± 0.01

12 × 31.92 ± 0.56 0.78 ± 0.02 35.64 ± 1.46 0.92 ± 0.01 35.37 ± 2.73 0.91 ± 0.01

20 × 30.41 ± 0.52 0.72 ± 0.03 35.53 ± 1.24 0.91 ± 0.01 35.147 ± 2.80 0.90 ± 0.01

the table, it can be seen that VTDCE-Net performs
better than TV for all undersampling rates for both
patients in terms of PSNR and HFEN. In terms of
SSIM, the VTDCE-Net performs at par or better than TV.
Table 2 shows results for the estimation of Vp and it can
be observed that VTDCE-Net performs better than TV
scheme in terms of all metrics (PSNR,SSIM,and HFEN)
by a margin of ∼ 3 dB in some cases. Tables 3 and
4 shows the performance of VTDCE-Net in the tumor
region (ROI) of patients “A” and “B” for estimation of
Ktrans and Vp parameters. From the tables, it can be

seen that the VTDCE-Net performs better than TV for
both patients and for all undersampling rates by a mar-
gin of as much as ∼ 2.5 dB for Ktrans and ∼ 3 dB for
Vp.

To examine if the proposed VTDCE-Net provided a
significant improvement in performance of TK param-
eter estimation with TV-regularized algorithm, we per-
formed a two tailed t-test for unequal variance for
different undersampling rates. The null hypothesis was
that the TV-based parameter estimation and the pro-
posed VTDCE-Net have same mean performance in
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VTDCE-NET 1567

TABLE 4 This table shows PSNR and SSIM metrics for Vp estimated using VTDCE and TV for R = 8 ×, 12 ×, 20 × in the R0I region for all
slices of the Breast data of patients “A” and “B.” “US” stands for maps estimated from undersampled data using zero-filled k − t space, TV
represents maps estimated using total variation regularized scheme, and VTDCE represents estimated maps using the proposed VTDCE-Net.
From the table, it can be seen that VTDCE performs better in terms of PSNR and SSIM for both patients and all R.

US VTDCE TV
PAT R PSNR SSIM PSNR SSIM PSNR SSIM

PAT
A

8× 21.13 ± 0.43 0.48 ± 0.02 25.15 ± 0.73 0.71 ± 0.01 22.57 ± 1.11 0.69 ± 0.02

12× 20.18 ± 0.49 0.43 ± 0.01 24.84 ± 0.82 0.71 ± 0.02 22.27 ± 1.06 0.65 ± 0.02

20× 18.64 ± 0.61 0.37 ± 0.01 24.06 ± 0.77 0.67 ± 0.02 21.39 ± 1.10 0.55 ± 0.03

PAT
B

8× 22.73 ± 0.54 0.54 ± 0.01 27.55 ± 0.49 0.76 ± 0.02 24.16 ± 0.67 0.65 ± 0.02

12× 22.02 ± 0.52 0.51 ± 0.01 27.45 ± 0.40 0.76 ± 0.02 23.94 ± 0.72 0.62 ± 0.01

20× 20.45 ± 0.52 0.44 ± 0.02 25.19 ± 0.46 0.64 ± 0.02 23.51 ± 0.62 0.55 ± 0.01

TABLE 5 This table shows the t-test for the Ktrans maps of two
patients for R 8×, 12×, 20×. The t-test is done for PSNR, and average
values of PSNR for multiple slices of same patients are tabulated.
The null hypothesis is that the performance of VTDCE-Net and TV
are same in terms of mean PSNR. p-Value of < 0.05 shows
significant difference in the performance of two methods. “Sig ?”
denotes if the difference is significant to reject the null hypothesis
(p-value < 0.05) or not.

PSNR Sig ?
PAT VTDCE TV p-Value (p-value < 0.05)

PAT
A

8× 39.30 ± 0.84 38.28 ± 0.69 4.65 e−5 Yes

12× 39.66 ± 0.66 37.76 ± 0.60 6.56 e−12 Yes

20× 39.46 ± 0.74 37.05 ± 0.65 1.70 e−12 Yes

PAT
B

8× 39.53 ± 0.56 38.98 ± 0.67 0.0034 Yes

12× 40.97 ± 0.56 38.98 ± 0.77 5.22 e−10 Yes

20× 38.95 ± 0.54 38.82 ± 0.81 0.46 No

TABLE 6 This table shows the t-test for the Vp maps of two
patients for R 8×, 12×, 20×. The t-test is done for PSNR, and average
values of PSNR for multiple slices of same patients are tabulated.
The null hypothesis is that the performance of VTDCE-Net and TV
are same in terms of mean PSNR. p-Value of < 0.05 shows
significant difference in the performance of two methods. “Sig ?”
denotes if the difference is significant to reject the null hypothesis
(p-value < 0.05) or not.

PSNR Sig ?
PAT VTDCE TV p-Value (p-value < 0.05)

PAT
A

8× 29.21 ± 0.60 26.95 ± 0.85 3.72e−14 Yes

12× 28.69 ± 0.65 26.53 ± 0.79 3.53e−14 Yes

20× 27.14 ± 0.76 25.71 ± 0.82 5.27e−8 Yes

PAT
B

8× 28.59 ± 0.36 23.84 ± 0.47 1.70e−29 Yes

12× 28.52 ± 0.33 23.63 ± 0.46 2.48e−25 Yes

20× 26.24 ± 0.41 23.28 ± 0.44 3.27e−24 Yes

terms of PSNR. This test was conducted on averaged
PSNR value for R= 8×,12×,and 20× for patients “A”and
“B.” Significance level 𝛼 = 0.05 was selected for testing.
The results are shown for Ktrans maps in Table 5 and
for Vp maps in Table 6. Here, p denotes the probability
that the difference in performance of these two methods

happened by chance. A p-value of < 0.05 means that
there is a significant difference in performance of these
two methods.From the tables, it can be seen that for both
parameter maps, the proposed VTDCE-Net performs
significantly better than TV algorithm for both patients
(except for the last reported result).

3.2 Brain dataset

To show that the proposed VTDCE-Net can also work
for other imaging scenarios, the performance of the pro-
posed VTDCE-Net and TV scheme was compared on
brain dataset using PSNR, SSIM, and HFEN as metrics.
The comparison was carried out on multiple slices of
four patients, all of which had 65 time samples. Network
was trained and tested for R = 20×. The performance
of the proposed VTDCE-Net and TV are illustrated in
Figure 4, which shows the Ktrans maps (Figure 4-i)
and Vp maps (Figure 4-ii) reconstructed using differ-
ent reconstruction techniques for undersampling rate
R = 20×. “GT” stands for ground truth, “US” stands for
maps estimated from undersampled data using zero-
filled k − t space, TV represents maps estimated using
TV scheme, and VTDCE represents estimated maps
using the proposed VTDCE-Net. The rows depict the
patient name, and for each patient, two representative
slices (z1 and z2) are shown. In Figure 4-i, it can be
seen that undersampling leads to loss of information
in parameter maps. Ktrans map estimated by TV shows
hyperintensive tumor regions along with higher perme-
ability in non-tumorous regions inside the brain,whereas
VTDCE estimation resembles more to the ground truth
(GT).Similarly for Vp maps, it can be seen that proposed
VTDCE-Net provide improved performance than TV for
all patients.

Table 7 shows the performance of above mentioned
parameter estimation methods for multiple slices of four
patients in reconstruction of Ktrans.From the table, it can
be observed that the proposed VTDCE-Net performs
better than TV for all patients in terms of PSNR and
HFEN and is at par or better than TV scheme in terms

 24734209, 2023, 3, D
ow

nloaded from
 https://aapm

.onlinelibrary.w
iley.com

/doi/10.1002/m
p.16081 by T

he L
ibrarian, W

iley O
nline L

ibrary on [19/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1568 VTDCE-NET

F IGURE 4 This figure illustrates the Ktrans maps (left) and Vp maps (right) reconstructed using different reconstruction techniques for
undersampling rate R = 20×. “GT” stands for ground truth, “US” stands for maps estimated from undersampled data using zero-filled k − t
space, TV represents maps estimated using total variation scheme, and VTDCE represents estimated maps using the proposed VTDCE-Net.
The rows depict the patient name, and for each patient, two representative slices (z1 and z2) are shown. In (i) and (ii), it can be seen that
undersampling leads to information loss. Both TV and VTDCE-Net are able to reconstruct the Ktrans maps, but TV reconstruction shows
hyper-intensive Ktrans maps which show high permeability in non-tumorous region inside the brain, whereas VTDCE reconstruction resembles
more to the ground truth (GT). Similarly, for Vp maps in (ii), one can see that VTDCE-Net provides improved performance than TV for all
patients. Viewers are advised to see the figures in full brightness of their screen.

TABLE 7 This table shows PSNR, SSIM, and HFEN metrics for Ktrans estimation using VTDCE and TV for R = 20 × for all slices of four
patients. “US” stands for maps estimated from undersampled data using zero-filled k − t space, TV represents maps estimated using total
variation scheme, and VTDCE represents estimated maps using the proposed VTDCE-Net. From the table, it can be observed that VTDCE
performs better in terms of both PSNR and SSIM in case of all patients.

US VTDCE TV
PAT PSNR SSIM HFEN PSNR SSIM HFEN PSNR SSIM HFEN

PAT A 32.87 ± 0.93 0.79 ± 0.04 76.75 ± 3.43 38.50 ± 1.01 0.93 ± 0.02 21.78 ± 4.01 36.62 ± 2.52 0.92 ± 0.04 28.11 ± 3.75

PAT B 37.08 ± 1.87 0.87 ± 0.05 76.71 ± 10.39 41.38 ± 1.47 0.95 ± 0.01 24.98 ± 3.21 40.99 ± 0.86 0.95 ± 0.00 28.73 ± 1.07

PAT C 35.21 ± 1.05 0.84 ± 0.04 80.13 ± 9.03 39.31 ± 1.63 0.93 ± 0.02 28.69 ± 3.6 37.04 ± 3.84 0.88 ± 0.16 32.83 ± 4.68

PAT D 32.30 ± 0.78 0.79 ± 0.04 87.65 ± 4.47 38.34 ± 1.16 0.93 ± 0.01 23.25 ± 1.48 36.65 ± 2.13 0.91 ± 0.04 26.43 ± 2.07

of SSIM. Table 8 shows results for the estimation of Vp,
and similar to Table 7, it can be observed that the pro-
posed VTDCE-Net performs better than TV scheme in
terms of PSNR, SSIM, and HFEN by a margin of ∼ 2–
4 dB in terms of PSNR and as much as 0.12 points in
terms of SSIM. The proposed VTDCE-Net reduced the
HFEN by as much as 44% over TV. Table 9 shows the

performance of VTDCE-Net in the tumor region (ROI) of
patients “A,” “B,”and “C” for estimation of Ktrans parame-
ter for undersampling rate of 20×. From the table, it can
be seen that the VTDCE-Net performs better than TV
for all three patients and by a margin of as much as
∼ 4 dB. Only results for Ktrans parameter is shown in
ROI because it is the more important parameter in tumor
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VTDCE-NET 1569

TABLE 8 This table shows PSNR, SSIM, and HFEN metrics for Vp estimation using VTDCE and TV for R = 20 × for all slices of four
patients. “US” stands for maps estimated from undersampled data using zero-filled k − t space, TV represents maps estimated using total
variation scheme, and VTDCE represents estimated maps using the proposed VTDCE-Net. From the table, it can be observed that VTDCE
performs better in terms of PSNR for all patients and in terms of SSIM for three out of four patients.

US VTDCE TV
PAT PSNR SSIM HFEN PSNR SSIM HFEN PSNR SSIM HFEN

PAT A 25.49 ± 0.95 0.52 ± 0.04 65.76 ± 6.33 29.37 ± 0.68 0.74 ± 0.01 27.11 ± 3.3 25.11 ± 2.04 0.70 ± 0.04 48.49 ± 7.74

PAT B 28.24 ± 1.43 0.60 ± 0.07 71.27 ± 7.52 31.83 ± 1.08 0.77 ± 0.03 30.62 ± 5.06 29.95 ± 0.87 0.65 ± 0.01 45.85 ± 6.78

PAT C 26.32 ± 1.34 0.55 ± 0.05 69.45 ± 7.13 29.85 ± 0.86 0.74 ± 0.01 30.22 ± 2.84 26.18 ± 1.91 0.71 ± 0.03 45.92 ± 3.49

PAT D 25.17 ± 1.03 0.50 ± 0.05 72.55 ± 4.33 29.72 ± 0.70 0.74 ± 0.02 27.52 ± 1.24 26.46 ± 1.40 0.62 ± 0.02 49.19 ± 5.45

TABLE 9 This table shows PSNR and SSIM metrics for Ktrans estimation using VTDCE and TV for R = 20 × in ROI for all slices of three
patients. “US” stands for maps estimated from undersampled data using zero-filled k − t space, TV represents maps estimated using total
variation scheme, and VTDCE represents estimated maps using the proposed VTDCE-Net. From the table, it can be observed that VTDCE
performs better in terms of both PSNR and SSIM in case of all patients.

US VTDCE TV
PAT PSNR SSIM PSNR SSIM PSNR SSIM

PAT A 35.71 ± 1.95 0.83 ± 0.03 38.06 ± 2.08 0.88 ± 0.04 37.23 ± 2.85 0.86 ± 0.05

PAT B 36.15 ± 2.08 0.84 ± 0.03 39.20 ± 1.28 0.91 ± 0.01 37.09 ± 2.32 0.89 ± 0.01

PAT C 30.01 ± 1.15 0.75 ± 0.05 34.09 ± 1.20 0.84 ± 0.03 29.92 ± 3.37 0.79 ± 0.14

TABLE 10 Repeated held-out four-fold cross validation for results for Ktrans parameter estimation of patients “A” and “B”

Fold 1 Fold 2 Fold 3 Fold 4
PAT PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PAT A 39.66 ± 0.66 0.95 ± 0.00 39.51 ± 0.78 0.95 ± 0.01 39.83 ± 0.49 0.96 ± 0.00 39.27 ± 0.53 0.94 ± 0.01

PAT B 40.97 ± 0.56 0.95 ± 0.00 41.39 ± 0.79 0.95 ± 0.00 40.66 ± 0.71 0.94 ± 0.01 40.42 ± 0.61 0.94 ± 0.01

region than Vp. Moreover, results for only three patients
are shown in Table 9, as the tumor region in patient “D”
could not be properly identified.

3.3 Cross validation

To demonstrate the robustness of the proposed archi-
tecture to training data, a repeated held-out fourfold
cross validation study was performed on VTDCE-Net
for 12× undersampling rate on breast dataset. In each
of them, the validation data (data of two patients) was
swapped with two different patients from training data.
The results in terms of averaged PSNR (in dB) and
SSIM of the test data are shown in Table 10 for Ktrans
and Table 11 for Vp. It was found that the performance of
proposed VTDCE-Net is similar in all cases, which sug-
gests that the network has not overfitted and provides a
good generalization.

3.4 Runtime

The runtimes of VTDCE-Net and TV scheme for Ktrans
and Vp map estimation of a single axial slice are

tabulated in Table 12 (rounded off to nearest second).
From the table, one can deduce that the VTDCE-Net,
which is a neural network based algorithm, is the faster
algorithm to reconstruct the tracer kinetic maps.

3.5 Comparison with time-variant
method

The novelty of proposed VTDCE-Net compared to exist-
ing networks is that it is able to handle multiple time
samples.As there is no fixed standard defining the num-
ber of volumetric acquisitions, the clinicians determine
this either based on their domestic protocols or based
on the patient history. The latter is important because
for accurate estimation of tracer-kinetic parameters,
the contrast agent concentration profile should show
early rise and a long tail. This might not be true for
patients with slow perfusion near the region of interest
due to higher mean transit time. In such cases, more
number of time samples need to be acquired. Similarly,
there are cases in which the clinicians have to reduce
the number of time samples in order to reduce scan
time such as in the case of late-stage Alzheimer’s and
dementia patients,who cannot stay steady for long.One
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1570 VTDCE-NET

TABLE 11 Repeated held-out four-fold cross validation for results for Vp parameter estimation of patients “A” and “B”

Fold 1 Fold 2 Fold 3 Fold 4
PAT PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

PAT A 28.69 ± 0.65 0.76 ± 0.01 28.26 ± 0.71 0.75 ± 0.01 28.85 ± 0.69 0.76 ± 0.00 28.47 ± 0.63 0.76 ± 0.01

PAT B 28.52 ± 0.33 0.79 ± 0.01 28.90 ± 0.72 0.80 ± 0.01 28.76 ± 0.52 0.79 ± 0.00 29.11 ± 0.63 0.80 ± 0.00

TABLE 12 This table shows the approximate reconstruction time
for Ktrans and Vp for VTDCE-Net and TV scheme for a single slice.

Method
Reconstruction
time (s)

TV 65

VTDCE-Net 0.02

F IGURE 5 Concentration profile at location where Vp = 1. Red
curve denotes the original sampling of 30 points in a span of 3 min.
The cyan curve shows the resampled points.

solution is to resample the data to match the temporal
dimension on which the network is trained. However, the
experiments in this work have shown that it is not the
best strategy. Figure 5 shows the simulated concentra-
tion profile as a function of time from a region where Vp
= 1. The red curve denotes the original profile sampled
30 times in a duration of 3 min. The cyan curve shows
the same profile resampled to have 40 time points in
3 min using a polyphase anti-aliasing filter. From the
graph, it can be observed that the peak concentra-
tion and the wash-in35 slope of the resampled profile
are different from the original profile. This can lead to
difference in the estimated parameter maps. To demon-
strate this effect, another Unet was trained to estimate
tracer-kinetic parameters from undersampled DCE MRI
data of breast tissue for R = 8×. However, it treated the
temporal dimensions as number of channels and there-
fore was not flexible to temporal samples. Similar to
VTDCE-Net, three levels of downsampling/upsampling
were performed and used the same loss function. This

TABLE 13 This table shows the performance of DCE-Net and
VTDCE-Net for estimation of Ktrans of patient “A” for undersampling
rate of 8×. For DCE-Net, the time samples were upsampled to 32
from original acquisition of 26 to match the training data temporal
dimension. The reconstructed distribution was not shown here.

Method PSNR (dB)

DCE-Net 38.1

VTDCE-Net 39.30

TABLE 14 Performance of network for Ktrans estimate when
trained on higher undersampling R and tested for lower R for PAT “A”
of breast dataset. Compared to Table 1, the performance deteriorates
significantly. This shows that the network does not work well when
trained and tested for different undersampling rates.

Trained/
Tested

8× 12×
PSNR SSIM PSNR SSIM

20× 32.27 0.88 34.44 0.92

12× 35.80 0.93

network was called as DCE-Net and it was tested on
patient “A” by resampling the time points from 26 to
32, and the results are tabulated in Table 13. It can
be seen that VTDCE-Net, which is flexible to the num-
ber of time samples, gives better performance than a
network which requires resampling. This shows that
resampling is not an ideal strategy and it is useful to
have a network which is invariant to number of time
samples.

3.6 Generalization for different
undersampling rates

To test if a network trained for higher undersampling
rate can estimate TK parameters accurately for lower
undersampling rate, we performed an experiment on
patient “A” of breast dataset and tabulated the results
in Table 14. The table shows the performance of
VTDCE-Net when trained for a higher undersampling
rate and tested for a lower undersampling rate. When
compared to Table 1, the performance of VTDCE-Net
deteriorated when trained and tested for different under-
sampling rates. This was primarily because for different
undersampling rates, different degrees of degrada-
tion/corruption were caused in the TK parameters.When
the network was only trained for one undersampling
rate, it only saw the degradation of that degree and the
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VTDCE-NET 1571

weights were trained accordingly.Hence, the network did
not generalize well for even lower undersampling rate
while testing. However, from the table, one can see that
the closer training R was to testing R, the better was
the recovery.

4 CONCLUSION

This work proposed a robust neural network for direct
parameter estimation from undersampled DCE-MRI
data that is invariant to spatiotemporal dimensions.Sys-
tematic comparison with another popular direct and
robust parameter estimation technique, that is, TV-
based reconstruction, was carried out. This work also
demonstrates that the proposed VTDCE-Net outper-
forms TV-based reconstruction on breast dataset for
undersampling rates of 8×, 12×, and 20×. To demon-
strate the generalizability of the proposed network,
training and testing on brain dataset for R = 20×
were also performed. This work also showed that tech-
niques like temporal resampling are not the best option
when it comes to using neural networks for parame-
ter estimation, especially in the physiological imaging
methods like DCE-MRI. However, a major limitation
of this architecture is that network cannot general-
ize across different undersampling rates as shown
in Section 3.6, that is, a new network has to be
trained for each undersampling rate. Another major
limitation of this study is that it has utilized rela-
tively a smaller dataset. Detailed experimentation on a
much larger dataset is required for knowing the clini-
cal utility. Our future work will focus on addressing this
limitation.
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