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Abstract
Background: A variety of deep learning-based and iterative approaches are
available to predict Tracer Kinetic (TK) parameters from fully sampled or
undersampled dynamic contrast-enhanced (DCE) MRI data. However, both the
methods offer distinct benefits and drawbacks.
Purpose: To propose a hybrid algorithm (named as ‘Greybox’), using both
model- as well as DL-based, for solving a multi-parametric non-linear inverse
problem of directly estimating TK parameters from undersampled DCE MRI
data, which is invariant to undersampling rate.
Methods: The proposed algorithm was inspired by plug-and-play algorithms
used for solving linear inverse imaging problems. This technique was tested
for its effectiveness in solving the nonlinear ill-posed inverse problem of
generating 3D TK parameter maps from four-dimensional (4D; Spatial + Tem-
poral) retrospectively undersampled k-space data. The algorithm learns a deep
learning-based prior using UNET to estimate the Ktrans and Vp parameters
based on the Patlak pharmacokinetic model, and this trained prior was uti-
lized to estimate the TK parameter maps using an iterative gradient-based
optimization scheme. Unlike the existing DL models, this network is invariant
to the undersampling rate of the input data. The proposed method was com-
pared with the total variation-based direct reconstruction technique on brain,
breast, and prostate DCE-MRI datasets for various undersampling rates using
the Radial Golden Angle (RGA) scheme.For the breast dataset,an indirect esti-
mation using the Fast Composite Splitting algorithm was utilized for comparison.
Undersampling rates of 8×, 12× and 20× were used for the experiments, and
the results were compared using the PSNR and SSIM as metrics.For the breast
dataset of 10 patients, data from four patients were utilized for training (1032
samples),two for validation (752 samples),and the entire volume of four patients
for testing.Similarly, for the prostate dataset of 18 patients, 10 patients were uti-
lized for training (720 samples), five for validation (216 samples), and the whole
volume of three patients for testing. For the brain dataset of nineteen patients,
ten patients were used for training (3152 samples),five for validation (1168 sam-
ples),and the whole volume of four patients for testing.Statistical tests were also
conducted to assess the significance of the improvement in performance.
Results: The experiments showed that the proposed Greybox performs signifi-
cantly better than other direct reconstruction methods. The proposed algorithm
improved the estimated Ktrans and Vp in terms of the peak signal-to-noise ratio
by up to 3 dB compared to other standard reconstruction methods.
Conclusion: The proposed hybrid reconstruction algorithm, Greybox, can pro-
vide state-of -the-art performance in solving the nonlinear inverse problem of
DCE-MRI. This is also the first of its kind to utilize convolutional neural network-
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based encodings as part of the plug-and-play priors to improve the performance
of the reconstruction algorithm.
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1 INTRODUCTION

Recent advances in medical imaging technology and
tissue modeling have allowed clinicians to assess the
tissue pathophysiological status for accurate diagnosis
of diseases such as cancer, along with other clinically
relevant action items such as prognosis, treatment
planning, and assessment of treatment response. Tech-
niques such as CT perfusion,1 dynamic PET,2 dynamic
susceptibility contrast (DSC)3 magnetic resonance
imaging (MRI), arterial spin labelling (ASL),4 diffusion-
weighted imaging (DWI),5 diffusion tensor imaging
(DTI)6 and dynamic contrast-enhanced imaging (DCE)7

are popular quantitative imaging techniques. Apart
from the first two, the rest are magnetic resonance
(MR)-based techniques that do not subject the patient
to ionizing radiation. In DCE-MRI, the bloodstream is
injected with a T1 shortening contrast agent (CA),8 and
T1 weighted images of the region of interest (ROI)
are periodically collected after a time interval. This
leads to the use of four-dimensional (4D; 3D spatial
+ time) data acquisition to characterize healthy and
unhealthy tissues. The principle behind DCE-MRI is
that the vasculature in and around unhealthy tissue
behaves differently from that of healthy tissue. This will
cause different accumulation of CA in that region, and
therefore different intensities in the dynamic scan.

Recent advances in medical imaging technology and
tissue modeling have allowed clinicians to assess the
tissue pathophysiological status for accurate diagnosis
of diseases such as cancer, along with other clinically
relevant action items such as prognosis, treatment
planning, and assessment of treatment response. Tech-
niques such as CT perfusion,1 dynamic PET,2 DSC3

MRI, ASL,4 DWI,5 DTI6 and DCE imaging 7 are pop-
ular quantitative imaging techniques. Apart from the
first two, the rest are magnetic resonance (MR)-based
techniques that do not subject patients to ionizing
radiation. In DCE-MRI, the bloodstream is injected with
a T1 shortening CA,8 and T1 weighted images of the
ROI are periodically collected after a time interval. This
leads to the use of four-dimensional (4D; 3D spatial
+ time) data acquisition to characterize healthy and
unhealthy tissues. The principle behind DCE-MRI is
that the vasculature in and around unhealthy tissues
behaves differently from that of healthy tissues. This
will cause different accumulation of CA in that region,
and therefore different intensities in the dynamic scan.

The Quantitative analysis of DCE-MRI can be per-
formed using non-parametric (model-free) and paramet-
ric methods.Non-parametric methods analyze the tissue
by characterizing the shape and size of the CA intensity
versus time graph at each voxel in the ROI. Com-
monly used non-parametric indices include the peak
enhancement (ΔS), wash-in,9 wash-out10 slope, time
to peak enhancement (TP), signal enhancement ratio
(SER),11 and area under the curve (AUC). However,
although these indices are correlated with tissue activ-
ity, such as permeability and vascular density, they do
not directly quantify these parameters. These param-
eters can be quantitatively assessed using pharma-
cokinetic (PK) models, the most popular being Patlak12

and extended-Tofts or e-Tofts13 models. These mod-
els are based on mathematical modeling of drug/agent
exchange between the vasculature, cells, and extracel-
lular extravascular space (EES). Patlak model charac-
terizes tissues using vascular permeability (Ktrans) and
plasma volume fraction (Vp). The eTofts model uses
an extra parameter to characterize the volume frac-
tion of the EES. These parameters are also called
tracer kinetic (TK) parameters because they charac-
terize the dynamics of the tracer (CA) in the tissue.
Clinically, Ktrans parameter in DCE-MRI is important
because it provides valuable information about tissue
vascularity and perfusion, which has widespread appli-
cations in oncology,13,14 treatment monitoring,15 and
drug development.16 It helps clinicians and researchers
better understand and manage various diseases and
conditions by providing information on the vascular
characteristics of the tissues. For example, one of the
primary applications of DCE-MRI and Ktrans is in oncol-
ogy to assess tumour angiogenesis. tumour growth
depends on angiogenesis, which involves the forma-
tion of new blood vessels. Ktrans helps assess the
rate at which CAs enter and exit the tumour tissue,
providing valuable information on tumour vascularity.
This information is crucial for the diagnosis, staging,
and treatment planning of cancer. Although Ktrans is
a parameter of interest, Vp has clinical applications,
such as quantification of blood volume and differentia-
tion of tissue type.17 It is the physiological equivalent of
rCBV from DSC-MRI. Vp can aid in distinguishing differ-
ent tissue types based on their vascular properties. For
example,highly vascularized tumours may have a higher
Vp than surrounding normal tissue, allowing for bet-
ter tumour characterization. Moreover, similar to Ktrans,
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Vp can be used to monitor the effectiveness of anti-
angiogenic therapies and other treatments that affect
tissue vascularity. Changes in Vp over time can provide
information regarding the treatment response. Another
important use for the accurate estimation of Vp, and the
most relevant in general, is to calculate Ktrans. Without
prior knowledge of Vp, the estimation of Ktrans becomes
a blind inverse problem.

To accurately estimate these TK parameters, high
spatial and temporal resolution of the imaging data is
important.However,spatial and temporal resolutions are
inversely related,and in many applications,it is difficult to
achieve Nyquist sampling simultaneously in the spatial
and temporal dimensions. However, compressive sens-
ing (CS) and parallel imaging-based techniques18 have
shown that sampling of k-t space below the Nyquist rate
is possible, allowing simultaneous improvement of both
spatial and temporal resolution, along with a reduction
in scan time and patient motion artifacts. Algorithms for
estimating TK parameters from undersampled k-t space
can be categorized into indirect and direct estimation
algorithms. Indirect estimation algorithms reconstruct
anatomical images using the fundamentals of CS and
use them to estimate the TK parameters. Examples
include the works of Smith et al.,19 Feng et al.20 and
Rosenkrantz et al.21 Through tests on various animal
and human scans, they demonstrated that undersam-
pling rates (R) of 4-28.7× were possible without sacri-
ficing diagnostic accuracy. They used L1∕2 or L1 norms
to induce sparsity with priors, such as wavelet transform
or Total Variation (TV). Without recreating the anatom-
ical pictures, direct estimation approaches enable TK
parameters to be directly calculated from the under-
sampled k-t space. Guo et al.22,23 and Dikaois et al.24

have demonstrated that for higher undersampling
rates, direct estimating strategies outperform indirect
ones.

All methods mentioned above are conventional iter-
ative techniques and require handcrafted prior to mini-
mize the cost function. Researchers have recently used
deep learning-based direct estimation techniques to
estimate the TK parameters. Bliesener et al.25 proposed
a one-dimensional convolutional network to estimate the
parameters at each pixel individually from fully sam-
pled k-t data using both AIF and concentration maps
as the network input. Cagdas et al.26,27 used dilated
convolution with a fully connected last layer to estimate
TK parameters by treating the temporal dimension as
channels without explicitly using AIF in the network.
Kettelkamp et al.28 improved this network by incor-
porating the AIF as an input. However, because the
number of time samples was utilized as input chan-
nels, the network was not robust to data with different
time samples. Moreover, as the PK model is learned
implicitly, the network is also inflexible to the choice of
PK model. This shortcoming can be addressed using
indirect deep learning methods for TK parameter esti-

mation using MR image reconstruction networks such
as SpiNet,29 MoDL30 and ISTA-Net.31 The advantage
of this is that the hand crafted prior is learnt using a
data driven approach. However, it was shown in [32]
that conventional direct estimation techniques perform
better than indirect deep-learning-based techniques for
high undersampling rates.

This study presents the Greybox algorithm, a hybrid
technique that combines the adaptability of iterative
reconstruction models with respect to the number of
time samples and the advantages of data-driven priors
from PK models. The Greybox algorithm is an amal-
gamation of the conventional iterative estimation tech-
nique (Whitebox) and deep learning-based techniques
(Blackbox).This algorithm was inspired by plug-and-play
algorithms33 used for solving linear inverse problems
in imaging. Recently, many algorithms have used deep
learning-based priors29–31,34 in the plug-and-play frame-
work for solving linear inverse problems. While the deep
learning-based prior is a widely explored method in the
domain of inverse problems, these methods are primar-
ily explored in cases where the measurement operator
is known. In this study, Ktrans, which is the most impor-
tant parameter, was estimated from an unknown Vp,
which is part of the measurement operator, and vice
versa. This makes the current problem a blind non-
linear inverse problem, where the joint estimation of
both the parameters of interest and the forward func-
tion is required. Recently, Gan et al.35 also proposed
a denoising prior for blind image deconvolution. How-
ever, unlike the proposed Greybox, they solved a linear
inverse problem using a prior trained on a larger dataset.
Furthermore, existing methods that use deep learning-
based priors29–31,34 require separate priors for each
subsampling rate, and generative prior-based methods
require very large training data to train, making the
existing methods intractable as the subsampling rate
changes. The prior in the proposed method employs a
single trained network for all undersampling rates for a
wide range of 2 − 20× undersampling. Therefore, it can
be used to reconstruct an undersampling rate without
explicitly training a prior for that undersampling rate (can
be seen as more of unsupervised). Finally, another nov-
elty of this work is to demonstrate that even though a
network is trained on very few samples for the difficult
task of estimating TK maps using undersampled data
and performs poorly in terms of TK parameter estima-
tion when trained in an end-to-end fashion, it helps in
better estimation of parameters when used as a prior.
This is unlike other plug-n-play-based algorithms, which
demonstrate results using fine-tuned denoisers. Earlier
work36,37 showed that during training,the neural network
(UNET in this study) prioritized learning low-frequency
details first. In this study,the objective was to learn a prior
for low-frequency details in the TK maps. This learned
UNET prior is then utilized to regularize the error in the
reconstruction of low-frequency components of the TK
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parameter maps. In summary, the novelty of this work
includes:

1. First algorithm to solve a non–linear blind inverse
problem using a deep prior trained on very small
datasets.

2. Trained prior can be utilized for multiple undersam-
pling rates even those not seen during training.

3. Demonstration of reconstruction of TK parameter
maps using an imperfect deep prior to regularize
error in estimating low frequency components.

The results of the proposed approach were compared
to those of a direct estimation method employing Total
Variation (TV)38 as carried out in Ref. [22]. A two-tailed
t-test for unequal variance was utilized to assess if there
was any significant difference in the performance of the
two methods,wherein peak signal-to-noise ratio (PSNR)
and Structural Similarity Index Measure (SSIM)39 were
utilized for comparison.

2 BACKGROUND

2.1 Notations

In the presented work, capital boldface letters such as
M to represent matrices, and tiny boldface letters such
as v to represent vectors. The vectors 𝜃 and �̂� are
used to define the 3D location in the image and fre-
quency domains,respectively.The pth − norm of a vector
v is represented by ||v||p, which is defined as ||v||p =
(Σn|vn|p)1∕p, where vn is the nth element of the vector
v. To distinguish between fully sampled and undersam-
pled k-t space data, the tiny boldface symbols k(�̂�, t) and
k̂(�̂�, t) are used respectively.

2.2 Image reconstruction

The Patlak model12 was employed in this study as the
PK model to quantify the exchange of CA between the
vasculature and the EES. The rate at which CA perme-
ates from the vasculature to the EES is represented
by Ktrans (min-1), while Vp (0 ≤ Vp ≤ 1) denotes the
volume fraction of blood vessels in the tissue. The for-
ward and inverse problems are delineated in detail in
Ref [32].

As outlined in Section 1, algorithms for estimating TK
parameters from undersampled k-t space can be cat-
egorized into indirect and direct estimation algorithms.
Direct method of reconstruction uses compressive
sensing (CS) schemes to directly estimate TK maps
from undersampled k-t space data.22 It was shown in
Ref. [22] and [32] that direct reconstruction outperforms
indirect reconstruction for TK parameter estimation
specifically at higher undersampling rates. The opti-

mization function for direct estimation of Ktrans and Vp
can be written as

K∗
trans(𝜃), V∗

p(𝜃) = argmin
Ktrans,Vp

||f (Ktrans(𝜃), Vp(𝜃)) − k̂(�̂�, t)||22
(1)

f (⋅, ⋅) is a mapping from TK space to undersampled
k-t space.

3 METHODS

The direct iterative methods, while computationally slow,
can be more robust than neural network-based meth-
ods. The performance of these methods is highly
dependent on the proper prior selection. Based on the
popularity of Plug and Play priors33 for solving the lin-
ear inverse problems,29,30,40 this paper suggests an
approach called “Greybox” that uses deep learning to
solve the non-linear inverse issue of TK parameter
estimation. In this work, the discussion was limited to
comparing direct estimation techniques using TV and
deep learning-based regularization.

3.1 Direct parametric estimation using
TV regularization

The method for directly estimating parameters was thor-
oughly detailed in Ref. [22]. The anisotropic || ⋅ ||TV
induces sparsity in Ktrans and Vp maps due to the
low permeability of CA in the majority of breast tissue.
Thusly, the cost-function can be written as

K∗
trans(𝜃), V∗

p(𝜃) = argmin
Ktrans,Vp

||f (Ktrans(𝜃), Vp(𝜃)) − k̂(�̂�, t)||22

+𝜆1||Ktrans(𝜃)||TV + 𝜆2||Vp(𝜃)||TV (2)

Similar to Ref. [22], this equation is solved alternatively
by minimizing Ktrans and Vp as shown in Equation (3)
and Equation (4)

K∗
trans(𝜃) = argmin

Ktrans

||f (Ktrans(𝜃), Vp(𝜃)) − k̂(�̂�, t)||22

+𝜆1||Ktrans(𝜃)||TV (3)

V∗
p(𝜃) = argmin

Vp

||f (Ktrans(𝜃), Vp(𝜃)) − k̂(�̂�, t)||22 + 𝜆2||Vp(𝜃)||TV

(4)

The solutions to Equation (3) and Equation (4) are
obtained using the limited memory Broyden–Fletcher–
Goldfarb–Shanno (l-BFGS) algorithm.41 The gradients
were computed in accordance with the method
outlined in Ref. [22] by relaxing the norm as described
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in Ref. [42]. The TK parameters were also estimated
without regularization (i.e., setting 𝜆_1 and 𝜆_2 to zero),
resulting in L2 estimates. This procedure is also equiv-
alent to solving Equation (1) in a cyclic manner. The
algorithms described in this subsection are considered
“Whitebox” methods, as each step of these algorithm is
well understood.

3.2 Proposed Greybox

In Greybox, a neural network is trained to estimate the
prior knowledge necessary for promoting sparsity. The
objective function for the Greybox algorithm can be
expressed as follows (the dimension indications were
removed for brevity):

J(Ktrans, Vp) = ||f (Ktrans, Vp) − k̂||22
+𝜆1||Γ1(Ktrans)||22 + 𝜆2||Γ2(Vp)||22 (5)

Equation (5) can be minimized by alternatively solving
for Ktrans and Vp. The parameters have been estimated
as shown below:

Kj
trans = argmin

Ktrans

||f (Ktrans, Vj−1
p ) − k̂||22 + 𝜆1||Γ1(Ktrans)||22 (6)

Vj
p = argmin

Vp

||f (Kj
trans, Vp) − k̂||22 + 𝜆2||Γ2(Vp)||22 (7)

Equation (6) was solved using Half Quadrature Splitting
(HQS) by introducing an auxiliary variable z. The cost
function corresponding to Equation (6) thus becomes

Ĵ(Ktrans, z) = ||f (Ktrans, Vj−1
p ) − k̂||22

+𝜆1||Γ1(z)||22 + 𝜇||Ktrans − z||22 (8)

Equation (8) has been solved by keeping Ktrans con-
stant and solving for z, followed by solving for Ktrans by
keeping z constant as shown below.

zj = argmin
z

𝜆1||Γ1(z)||22 + 𝜇||Kj−1
trans − z||22 (9)

Kj
trans = argmin

Ktrans

||f (Ktrans, Vj−1
p ) − k̂||22 + 𝜇||Ktrans − zj||22

(10)

Similarly,Equation (7) was solved by introducing another
auxiliary variable y. This simplifies Equation (7) to

yj = argmin
z

𝜆2||Γ2(y)||22 + 𝜇||Vj−1
p − y||22 (11)

Vj
p = argmin

Vp

||f (Kj
trans, Vp) − k̂||22 + 𝜂||Vp − yj||22 (12)

Equations (9) and (11) resembles denoising operation,
and as such, can be replaced by any general-purpose

denoising algorithm. In this study, two denoisers based
on the UNET architecture43 were employed as priors to
address these equations. The training strategy for these
UNETs is illustrated in Figure 1. The denoisers were
trained using Ktrans (Vp) maps estimated from zero-filled
undersampled k-t space, with undersampling rates (R)
of 4×,8×,12×,16× and 20×,as inputs and the map esti-
mated from fully sampled data as ground truth. These
trained networks were then used as denoising priors
for Ktrans and Vp parameters in Γ1(Ktrans) and Γ2(Vp)
respectively. The rationale behind employing maps esti-
mated from multiple undersampling rates as input was
that as the quality of the maps improves as one mini-
mizes Equation (5), the maps will become increasingly
similar to those estimated from lower undersampling
rates. By utilizing inputs from multiple undersampling
rates, a stable prior can be established at each iteration,
and the algorithm can achieve better generalizability.
The Greybox algorithm was visually depicted in the form
of a flowchart in Figure 2.

4 EXPERIMENTAL DETAILS

4.1 Dataset

The DCE MRI datasets for the breast,prostate,and brain
were used in the experiments conducted for this study.
Below is a detailed description of these datasets.

4.2 Breast dataset

For the majority of experiments performed in this study,
the publicly available QIN Breast DCE-MRI dataset
was utilized, which is sourced from The Cancer Imag-
ing Archive (TCIA).44 This dataset consists of breast
DCE-MRI scans collected from a long-term clinical trial
assessing the efficacy of neoadjuvant chemotherapy
(NACT).45 The scans were obtained at two time points:
before the first treatment round (V1) and after the first
round (V2). The scans were acquired using a Siemens
3T system with a four-channel bilateral phased array
and a 3D gradient echo-based TWIST (Time-resolved
angiography With Stochastic Trajectories) sequence for
fat suppression. The flip angle, Time to echo (TE), and
Time of repetition (TR) were set at 10◦, 2.9 ms, and 6.2
ms, respectively, with a field of view (FOV) of 30–34 cm.
The in-plane scan resolution was 320 × 320 with a slice
thickness of 1.4 mm, and there were 28–32 anatomical
volumes with a total scan time of 10 min,each containing
120–128 slices with a temporal resolution of 18–20 s. A
gadolinium-based CA was administered at a dosage of
0.1 mmol/kg of body mass using a programmable injec-
tor, followed by a 20 mL saline flush at a rate of 2 mL/s.
The breast data utilized in this study comprised V1 and
V2 investigations from ten patients.
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F IGURE 1 Network for learning prior for Ktrans (and Vp) reconstruction. Two separate UNETs (one for Ktrans and another for Vp) were
trained to estimate the prior.

4.3 Brain dataset

This manuscript also utilizes the DCE-MRI brain
dataset, which is part of the RIDER (The Reference
Image Database to Evaluate Therapy Response)
NEURO MRI project published on TCIA.46 The dataset
comprises 19 individuals with recurrent glioblastoma
who underwent multiple scans on a 1.5 T scanner.Each
patient had two scanning sessions. To obtain dynamic
images, 0.1 mmol/kg of Magnevist intravenous CA was
injected into the patient’s vein at a rate of 3 ccs/s, 24
s after the scan commenced. The 3D FLASH sequence
was employed to capture the dynamic images, with flip
angles of 25 degrees, TR of 3.8 ms, and TE of 1.8 ms.
The voxel sizes and in-plane matrix resolution were
1 × 1 × 5mm and 256 × 256, respectively, and
16 axial slices were acquired. Out of 19 patients, 15
patients and their two sessions were used for training
(12 for training and 3 for validating) the neural network.
However, in the testing phase,only the first session scan
of the four patients was used.

4.4 Prostate dataset

The prostate dataset utilized in this study was obtained
from the QIN Prostate database,47 which is publicly
available at TCIA.44 The dataset comprised of DCE MRI
of 22 patients, with each patient having only one scan
session. Out of the 22 patients, 1 was excluded from
the experiment as it consisted of only four time samples.
Of the remaining 21, 15 patients were utilized for train-
ing the network, 3 for validation, and 3 for testing. Each
scan consisted of 12–16 axial slices. The scans were
conducted using a 3T scanner equipped with endorectal
and phased array surface coils. The scanner employed
a 3D SPGR sequence with flip angle set at 15 degrees,
TE at 1.3 ms, and TR at 3.6 ms. The FOV of the scan
was 26 square centimeters with a resolution of 1 mm3

and an in-plane image size of 256 × 256 pixels. The
volumetric scans, which were either 12 or 16 slices,
were acquired at an interval of approximately 5 s. Prior
to the administration of contrast, a protocol was fol-
lowed which involved the acquisition of approximately
five baseline scans to determine the baseline tissue
parameters. Gadopentetate dimeglumine (0.15 mmol
per kilogram) was then administered intravenously via
a syringe pump at a rate of 3 mL/s, followed by a 20 mL
saline flush at the same rate.

4.5 Implementation

Using the Radial Golden Angle (RGA) undersampling
pattern, Greybox training was conducted with under-
sampling rates (R) of 4×, 8×, 12×, 16× and 20×. To
enhance robustness, random noise with a signal value
of 𝜎 = 0.01 was added to the undersampled k-t space.
A population-averaged Arterial Input Function (AIF) with
a delay time specified by the patient’s metadata was
employed (delay time was the same for all patients in
the prostate and brain datasets). The specifics of each
algorithm’s implementation are detailed below.

4.5.1 Whitebox techniques

The Whitebox technique employs L2 and TV based
regularized reconstruction methods for estimating
Ktrans and Vp. For the L2 regularized reconstruc-
tion, the parameters 𝜆1 and 𝜆2 were kept as zero.
In the case of the TV algorithm, the values of
𝜆1 and 𝜆2 were determined through adaptive grid
search for each undersampling rate, and the optimal
parameters were selected based on the highest average
SSIM value, which was calculated using the formula
SSIMavg =

1

1.5

∑N
i=1(SSIMKtrans

+ 0.5 ∗ SSIMVp
)i . These

values were held constant for all patients. The initial
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F IGURE 2 This flowchart illustrates the major steps of the
proposed Greybox. The previous estimate of Ktrans & Vp are used to
calculate priors by passing them through their respective UNETs and
are also used as initial estimates for next cycle of optimization of
cost function. K0

trans & V0
p are the maps estimated from zero-filled

undersampled k − t data.

guess for the L2 and TV reconstruction was the tracker
kinetic map estimated from the zero-filled undersam-
pled data. The number of cyclic iterations was set to ten
for the breast dataset and four for the brain and prostate
datasets, as no significant improvement in results was
observed beyond these values.

4.5.2 Greybox techniques

The Greybox algorithm consists of two parts, (1) UNET
based denoising prior and (2) steepest gradient based
iterative minimizer. Two UNETs were used for denoising

TABLE 1 Hyperparameters of UNETs trained for prior estimate
of Ktrans, Vp maps.

Hyperparameters Ktrans Vp

Depth 4 4

Starting filters 32 16

Patch size 64 128

Downsampling rate 2.0 2.0

Filter increase rate 2.0 2.0

Dropout 0 0.1

Note: These hyperparameters were optimized empirically and were kept
constant for breast, brain, and prostate datasets.

Ktrans and Vp separately and as an estimator of prior.
The network specifications for the Ktrans and Vp UNETs
are provided in Table 1. The mean squared error was
employed as the loss function,and optimization was per-
formed using the ADAM48 optimizer with default settings
and a learning rate of 5 × 10−4 for both networks. The
networks were trained for 500 epochs with a batchsize
of four.The input-label pair for training the Ktrans network
were  = { ‚Ktrans, Ktrans

GT }M
i=1 where ‚Ktrans stands for

Ktrans map estimated from the zero-filled undersampled
k-t data, Ktrans

GT for the ground truth map estimated
from fully sampled k-t data and M is the number of
training samples. Similarly, for training the Vp UNET the

input-label pairs were  = { ‚Vp, Vp
GT }M

i=1. For the breast
dataset comprising 10 patients, data from 4 patients
were utilized for training, 2 for validation, and the entire
volume of 4 patients for testing. A total of 1032 sam-
ples were extracted from the 4 training patients,and 752
samples were extracted from the 2 validation patients.
For the prostate dataset consisting of 18 patients, 720
samples were extracted from 10 patients for training,216
samples from 5 patients for validation, and the entire 4D
volume of 3 patients for testing. For the brain dataset
containing 19 patients, 3152 samples from 10 patients
were utilized for training, 1168 samples from 5 patients
for validation, and the complete volume of 4 patients for
testing. In the implementation of the iterative minimizer
(2), the regularization parameter selection was similar
to that of the whitebox technique. Five iterations of the
steepest descent method were performed,and the num-
ber of cyclic descent iterations was kept the same as
those of the L2 and TV regularized algorithms.Similar to
the TV method, the parameters 𝜇 and 𝜂 were estimated
using adaptive grid search, and the Greybox algorithm
was initialized with tracker kinetic maps estimated from
zero-filled undersampled data.

4.5.3 UNET based prior estimation

An examination of the performance of iterative recon-
struction algorithms (including both Whitebox and
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Greybox methods) in conjunction with two sepa-
rate UNET-based denoising networks, which served
as denoising priors, was conducted for the esti-
mation of Ktrans and Vp. The training process for
this analysis is detailed in Subsubsection 4.5.2. The
results of this network are denoted as “UNET” in
Section 5.

4.6 Figures of merit

In this work, two figures of merit (metrics),namely PSNR
and SSIM,39 were used to compare the performance
of the aforementioned approaches objectively. For both
metrics, higher values indicate better reconstruction.
The PSNR (∈ (−∞,∞)) is measured in dB and is the
log ratio of peak signal to reconstruction error for Ktrans
or Vp. Whereas, the SSIM (∈ [−1, 1]) is a unitless metric
which represents the similarity of morphological aspects
of the reconstructed image with the ground truth. A
value closer to 1 denotes a higher performance of the
reconstruction method

4.7 Statistical test

The results from the Breast dataset of four patients were
subjected to a two-tailed t-test for unequal variance,also
known as the Welch test, for statistical analysis. The null
hypothesis stated that there is no significant difference
in the mean performance of the suggested Greybox
and the TV reconstruction algorithm with respect to a
particular metric. The Welch test was performed for the
averaged PSNR and SSIM values for R = 8×, 12×, and
20× with a significance level of 𝛼 = 0.05. The results
for Ktrans and Vp are presented in Table 6 and Table 7,
respectively. The probability that the performance
gap between these two algorithms is due to chance
is denoted by the symbol p, and a value of ≤ 0.05
indicates a statistically significant difference in their
performance.

4.8 Computational implementation

A Linux workstation with an Intel i9 CPU running at
2.10 GHz, 128 GB of RAM, and an NVIDIA Quadro
RTX 8000 GPU with 48 GB of memory was used
to do the calculations. While TensorFlow v1.13 was
used to create the neural networks, MATLAB was
used for the pre- and post-processing stages. With
The L2 and TV algorithm was implemented using
MATLAB 2018b’s parallel computing toolbox running
on 12 threads. The code is made available as open-
source for the suggested method’s implementation at
github.com/adityarastogi2k12/Greybox.

5 RESULTS

5.1 Breast data

This subsection evaluates the performance of the previ-
ously mentioned reconstruction algorithms on the breast
data of four patients. To draw statistical inferences from
the results, Welch’s test was employed, as explained
in Subsection 4.7. For visual comparison of the per-
formance of all methods, the reconstructed parameter
maps of a particular axial slice from one patient (patient
‘A’) were provided.Additionally, the Fast Composite Split-
ting Algorithm49 (FCSA), a popular iterative algorithm
for compressed MRI, was included in this experiment to
estimate the Ktrans and Vp for 8×, 12×, and 20× under-
sampling rates. The FCSA algorithm reconstructed the
MR image time series first and then estimated the TK
parameters (indirect estimation). The iterative nature of
the FCSA algorithm was chosen for comparison, as it
shares one of the main advantages of the proposed
Greybox method, namely, not requiring training for each
undersampling rate unlike deep learning-based recon-
struction methods. The regularizing parameters for the
FCSA algorithm were also fine-tuned using adaptive
grid search.

5.1.1 Patient ‘A’

Figure 3 and Figure 4 illustrate the maps of Ktrans and
Vp respectively, estimated using various methods and
different undersampling rates. Specifically, the methods
include I. Fully sampled data, II. zero-filled undersam-
pled data, III. L2 based direct reconstruction, IV. TV
based direct reconstruction, V. FCSA based indirect
estimation, VI. UNET trained as denoising prior, and
VII. Proposed Greybox algorithm (Grey). The columns
correspond to different undersampling rates, including
R = 8×, R = 12×, and R = 20×. Figure 3i and Figure 4i
show the maps of Ktrans and Vp in the whole breast
region respectively, while Figure 3 ii and Figure 4 ii
represent the corresponding maps in the ROI, marked
by the green box. From Figure 3i, it can be observe that
as R increases, the details in Ktrans map estimated from
undersampled data are lost.L2,TV , Indirect,UNET Prior
and Greybox can better estimate the structure of the
tumour; however, the high-frequency information in and
around the tumour was lost in prior estimation. Figure 3
ii shows the ROI and it can be observed that L2 and TV
reconstructions show more hyperpermeability at inner
and outer tumour boundaries as marked by the green
arrow. This is biologically unlikely as large tumours have
dead tissues at the centre, which have low permeability
(as seen in the fully sampled image). The proposed
Greybox algorithm has better visual fidelity to the
ground truth and has preserved this detail better than
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F IGURE 3 The figures display reconstructed Ktrans breast data map of (i) representative axial slice and (ii) zoomed ROI (green-colored
bounded box in (i)) of patient “A”. The various under-sampling rates are mentioned at top of the columns and the reconstruction strategies are
listed in front of the rows: I Ground truth, II. Undersampled data with zero paddings, III. L2 (no regularization) based direct reconstruction, IV.
Direct TV regularized reconstruction, V. Indirect FCSA based reconstruction, VI. UNET based prior, VII. Proposed Greybox based direct
reconstruction. From (i), it can be seen that as R increases, the details present in the map were lost, also for all R, L2, TV and Greybox perform
better than denoising using neural network. However, from (ii), the L2 and TV reconstructions show hyperpermeability in the tumour region as
marked by the green arrow. L2 and TV reconstructions also show hyperpermeability near the core of the tumour, which consists of dead tissue
and generally has lower perfusion. The perfusion was better estimated by the Greybox algorithm [Digital copy in the full brightness of the screen
is recommended for the viewing of these images]. FCSA, Fast Composite Splitting Algorithm; ROI, region of interest.

other methods. From Figure 4i, it can also be observed
that as R increases, artifacts in Vp map estimated from
undersampled data increases. L2, TV , Indirect, UNET
prior and Greybox are able to reduce artifacts in the
whole breast region. However, the UNET estimated map
is not able to recover lost information like dead tissue at
the core of the tumour. Figure 4 ii shows the ROI, and it
can be observed that L2 and TV reconstructions better

estimate the tumour map; however, the estimated map
has specular noise in the whole image (as shown by
the green arrow), with more noise in L2 reconstruction
than TV reconstruction. As indicated by the cyan arrow,
both algorithms also give a ring-like artifact around
the tumour boundary. The proposed Greybox algorithm
improved the reconstruction of the tumour structure
without introducing the specular noise or ring artifact.
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F IGURE 4 The figure displays the Vp reconstruction maps of Patient ‘A’ for the same representative slice as Figure 3. From (i), it can be
inferred that as R increases, the details present in the map were lost, also for all R, L2, TV , Indirect and Greybox perform better than the prior.
However, from (ii), the L2 and TV reconstructions show halo-like artifacts on the tumour boundary as marked by the cyan arrow and specular
noise in and outside the breast region (marked by green arrow). Similarly, Vp estimated from Indirect method also has specular noise outside
the breast region and is also blurry. The Vp maps were better reconstructed by the Greybox algorithm without halo artifact at boundaries and
less specular noise [Digital copy in the full brightness of the screen is recommended for the viewing of these images].

Figure 5 illustrates the absolute error maps computed
by subtracting the Ktrans parameter estimated by vari-
ous reconstruction algorithms from the Ktrans estimated
from fully sampled data. It is evident from the figure that
the error associated with the contrast-enhancing por-
tion of the tumour is less in the prior estimate when
compared to other methods (excluding Greybox).This is
because the Ktrans map denoised by the Prior network
has effectively estimated low-frequency structures.

However, the estimation of high-frequency structures
is subpar. Conversely, the L2 method demonstrates a
superior ability to estimate high-frequency structures in
comparison to the prior,and thus, the Greybox approach,
which combines both these priors,exhibits superior esti-
mation of Ktrans with low error in both high-frequency
and low-frequency regions.Figure 6 illustrates the abso-
lute error maps for Vp. Furthermore, it is apparent from
the figure that the TV , L2, and FCSA-based Indirect
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F IGURE 5 The figures display the error (with respect to fully sampled data) in reconstructed Ktrans breast data map of (i) representative
axial slice and (ii) zoomed ROI (green-colored bounded box in (i)) of patient “A”. The various under-sampling rates are mentioned at the top of
the columns and the reconstruction strategies are listed in front of the rows: I. Undersampled data with zero paddings, II. L2 (no regularization)
based direct reconstruction, III. Direct TV regularized reconstruction, IV. Indirect FCSA based reconstruction, V. UNET based prior, VI. Proposed
Greybox based direct reconstruction. The images it can be seen that the Prior has less error in the Contrast-Enhancing tumour part i.e area with
low spatial frequency. Therefore using this prior helps in better estimation of low frequency components in Greybox reconstruction. From the
figure, it can be seen that Greybox estimation has the least error in estimating Ktrans maps. [Digital copy in the full brightness of the screen is
recommended for the viewing of these images].

techniques exhibit specular artifacts outside the breast
region, which are absent in the Prior estimate while the
prior displays a high error in the tumour region. The
proposed Greybox displays comparatively lower error
in both the tumour region and its surroundings.

5.1.2 Average results

The performance of Greybox algorithm is compared
with the performance of zero-filled reconstruction (US),
L2,TV ,FCSA and the prior estimated by UNET of Ktrans
and Vp on four patients for R = 8×, 12× and 20×. In

Table 2 and Table 3, 3D PSNR and 3D SSIM are used
as metrics for the comparison for Ktrans and Vp respec-
tively. Additionally, the mean and standard deviation of
2D PSNR and 2D SSIM, respectively, computed in the
axial plane, were used as metrics for the comparison
for Ktrans and Vp in Table 4 and Table 5. A total of
approximately 100 axial slices with visible tumours were
selected from the testing phase of the four patients for
the evaluation. From the tables, it can be seen that aver-
age 2D PSNR and SSIM are very close to 3D PSNR
and SSIM in every case. The PSNR and SSIM values
were also calculated in 2D because the standard devia-
tion provides insights into the precision of the algorithm
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F IGURE 6 The figure displays the error (with respect to fully sampled data) in Vp reconstruction maps of Patient ‘A’ for the same
representative slice as Figure 5. From the figure, it can be seen that Greybox reconstruction has less error outside the contrast-enhancing
region. This can be attributed to the absence of high-frequency specular artifacts present in the Prior estimated by UNET. [Digital copy in the full
brightness of the screen is recommended for the viewing of these images].

across different slices. Furthermore, the 2D estimation
of PSNR and SSIM allowed for statistical analysis,which
would not be possible otherwise. In both Table 4 and
Table 5, it can be seen that the Greybox algorithm
outperforms other algorithms in terms of both metrics.
Moreover, based on Subsubsection 5.1.1, Table 4 and
Table 5, it can be inferred that there is less improvement
in the quality of Vp maps from algorithms like L2, TV ,
FCSA based indirect method and Greybox when com-
pared to improvement in quality of Ktrans map. However,
the improvement by the Greybox algorithm is greater
for Vp when compared to other algorithms. The experi-
ment also demonstrates that the Greybox algorithm was
capable of utilizing a network trained to denoise the TK
parameter maps for estimating prior and improving the

results, even though the network was trained on very
small datasets and performed poorly.

5.1.3 Statistical test

The Welch’s test was conducted using PSNR and SSIM
values of the Ktrans and Vp maps estimated using the
Greybox and TV algorithms for three different magni-
fication levels (R = 8×, 12×, and 20×) on four patient
breast data. The null hypothesis was that the average
performance of the two algorithms in estimating the TK
parameters was the same. The test is further explained
in Subsection 4.7. A p-value less than 0.05 indicated
a significant difference in the performance of the two
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TABLE 2 This table shows the 3D (volume) computation of
PSNR and SSIM for Ktrans maps reconstructed using different
reconstruction algorithms for different undersampling rates R.

Pat
No. Method

R = 8× R = 12× R = 20×

PSNR SSIM PSNR SSIM PSNR SSIM

PAT A US 34.44 0.9 33.49 0.88 32.54 0.86

L2 36.08 0.89 35.69 0.88 35.66 0.87

TV 38.3 0.97 37.79 0.96 37.02 0.94

UNET Prior 35.59 0.93 34.52 0.92 33.47 0.9

Indirect 37.81 0.93 37.02 0.92 36.36 0.92

Grey 39.87 0.98 38.89 0.97 37.94 0.96

PAT B US 36.99 0.91 36.04 0.89 34.99 0.86

L2 37.84 0.92 38 0.91 37.79 0.9

TV 39.01 0.96 39.01 0.95 38.84 0.94

UNET Prior 37.74 0.93 37.01 0.92 36.3 0.91

Indirect 38.88 0.94 37.93 0.93 37.39 0.93

Grey 40.99 0.97 40.42 0.96 39.85 0.95

PAT C US 35.29 0.91 34.37 0.89 33.32 0.86

L2 36.67 0.92 36.37 0.9 35.93 0.89

TV 37.04 0.94 36.71 0.93 36.24 0.91

UNET Prior 35.57 0.93 34.65 0.91 33.65 0.89

Indirect 36.12 0.92 35.36 0.91 34.43 0.89

Grey 39.26 0.96 38.39 0.95 37.36 0.94

PAT D US 35.29 0.91 34.37 0.89 33.32 0.86

L2 36.67 0.92 36.37 0.9 35.93 0.89

TV 37.04 0.94 36.71 0.93 36.24 0.91

UNET Prior 35.57 0.93 34.65 0.91 33.65 0.89

Indirect 36.12 0.92 35.36 0.91 34.43 0.89

Grey 39.26 0.96 38.39 0.95 37.36 0.94

Note: The results are from the breast dataset of four patients used for testing.
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, Structural Similar-
ity Index.

methods. According to Table 6, Greybox outperformed
the TV algorithm in terms of PSNR and SSIM for all
four patients, except for patient C at R = 20× in the
PSNR metric.Similarly,Table 7 shows that Greybox was
superior to the TV algorithm for most cases.

5.2 Prostate and brain data

To evaluate the effectiveness of Greybox across differ-
ent datasets, the Greybox algorithm was trained and
tested on the Prostate dataset for an undersampling rate
of 8× and on the brain dataset for an undersampling rate
of 20×. As an empirical rule in deep learning, more the
training data, better is the performance of the network
generally. As the data was limited, traditional 60-20-20
% split (approximately) was chosen for training, valida-
tion and testing data. Reducing the training or validation
samples will lead to drop in performance due to two fac-
tors. Firstly, the diversity in training data will reduce and
hence there are more chances that unseen structures

TABLE 3 This table shows the 3D (volume) computation of
PSNR and SSIM for Vp maps reconstructed using different
reconstruction algorithms for different undersampling rates R.

Pat
No. Method

R = 8× R = 12× R = 20×

PSNR SSIM PSNR SSIM PSNR SSIM

PAT A US 25.78 0.65 24.7 0.61 23.63 0.57

L2 26.35 0.59 25.81 0.55 24.95 0.51

TV 27.65 0.76 27.22 0.71 26.25 0.63

UNET Prior 26.3 0.75 25.4 0.73 24.68 0.7

Indirect 27.83 0.72 27.71 0.7 27.2 0.68

Grey 28.99 0.8 28.06 0.77 27.14 0.73

PAT B US 24.64 0.63 23.67 0.6 22.59 0.55

L2 25.64 0.61 25.12 0.55 24.72 0.52

TV 26.45 0.73 26.02 0.68 25.48 0.63

UNET Prior 25.51 0.76 24.75 0.74 24 0.71

Indirect 24.94 0.69 24.27 0.67 23.88 0.66

Grey 26.93 0.78 26.24 0.74 25.47 0.7

PAT C US 24.07 0.65 23.06 0.6 21.82 0.55

L2 24.57 0.59 24.04 0.55 23.3 0.51

TV 24.95 0.7 24.55 0.65 23.81 0.59

UNET Prior 24.41 0.73 23.52 0.7 22.49 0.67

Indirect 24.09 0.66 23.5 0.64 22.83 0.61

Grey 25.88 0.76 25.17 0.73 24.24 0.68

PAT D US 25.69 0.6 25.02 0.58 24.22 0.54

L2 26.05 0.56 25.86 0.54 25.03 0.49

TV 28.37 0.73 27.9 0.69 27.16 0.63

UNET Prior 27.32 0.7 26.78 0.68 26.13 0.66

Indirect 23.53 0.64 22.21 0.59 21.56 0.58

Grey 28.53 0.75 27.93 0.72 27.17 0.67

Note: The results are from the breast dataset of four patients used for testing.
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, Structural Similar-
ity Index.

can be present in test data. Secondly, having a smaller
validation data might lead to bias in selecting the best
network. This can happen if the validation dataset is
not diverse enough. For example, if all the samples in
validation dataset have large round tumours, then the
selected network might not perform well on small, irreg-
ular tumours. From experiments performed on breast
dataset and results tabulated in Table 4 and Table 5
it was inferred that the performance of TV was better
than FCSA based indirect method in estimating both
tracker kinetic parameters. Therefore, on Prostate and
Brain dataest, FCSA was not used for comparison.

5.2.1 Prostate data

For training the proposed Greybox algorithm,10 patients
were used as training data, 5 for validation and three for
testing. The network was trained in the same manner
as for breast data, and the algorithm was tested for R
= 8×. Figures of merit, PSNR and SSIM, were utilized
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TABLE 4 This table shows the mean and standard deviation of PSNR and SSIM for Ktrans maps reconstructed using different
reconstruction algorithms for different undersampling rates R.

Pat No. Method

R = 8× R = 12× R = 20×
PSNR SSIM PSNR SSIM PSNR SSIM

PAT A US 34.54 ± 0.90 0.90 ± 0.01 33.58 ± 0.90 0.88 ± 0.01 32.63 ± 0.86 0.86 ± 0.01

L2 36.12 ± 0.59 0.89 ± 0.02 35.74 ± 0.66 0.87 ± 0.02 35.73 ± 0.82 0.87 ± 0.02

TV 38.37 ± 0.83 0.96 ± 0.01 37.85 ± 0.73 0.95 ± 0.01 37.09 ± 0.74 0.93 ± 0.01

UNET Prior 35.70 ± 0.94 0.93 ± 0.01 34.61 ± 0.90 0.92 ± 0.01 33.54 ± 0.81 0.90 ± 0.01

Indirect 37.88 ± 0.81 0.93 ± 0.01 37.08 ± 0.73 0.92 ± 0.01 36.44 ± 0.84 0.91 ± 0.01

Grey 39.97 ± 0.92 0.97 ± 0.00 38.98 ± 0.92 0.97 ± 0.00 38.03 ± 0.91 0.95 ± 0.01

PAT B US 37.02 ± 0.56 0.91 ± 0.01 36.08 ± 0.59 0.88 ± 0.01 35.03 ± 0.66 0.86 ± 0.01

L2 37.93 ± 0.89 0.92 ± 0.02 38.06 ± 0.78 0.91 ± 0.02 37.85 ± 0.74 0.89 ± 0.01

TV 39.07 ± 0.73 0.95 ± 0.01 39.08 ± 0.79 0.94 ± 0.01 38.92 ± 0.86 0.93 ± 0.01

UNET Prior 37.78 ± 0.65 0.93 ± 0.01 37.06 ± 0.63 0.92 ± 0.01 36.35 ± 0.64 0.91 ± 0.01

Indirect 39.22 ± 1.76 0.94 ± 0.02 38.37 ± 1.91 0.93 ± 0.02 37.85 ± 1.96 0.93 ± 0.02

Grey 41.18 ± 1.32 0.96 ± 0.00 40.59 ± 1.22 0.96 ± 0.00 39.95 ± 0.98 0.95 ± 0.00

PAT C US 35.33 ± 0.57 0.91 ± 0.01 34.40 ± 0.57 0.89 ± 0.01 33.36 ± 0.64 0.86 ± 0.01

L2 36.42 ± 0.97 0.90 ± 0.02 36.03 ± 0.93 0.89 ± 0.02 35.99 ± 0.75 0.88 ± 0.01

TV 37.12 ± 0.80 0.94 ± 0.01 36.79 ± 0.79 0.93 ± 0.01 36.32 ± 0.81 0.91 ± 0.01

UNET Prior 35.62 ± 0.67 0.92 ± 0.00 34.70 ± 0.68 0.91 ± 0.00 33.71 ± 0.72 0.89 ± 0.01

Indirect 36.23 ± 1.01 0.91 ± 0.01 35.43 ± 0.79 0.90 ± 0.01 34.53 ± 0.92 0.89 ± 0.01

Grey 39.43 ± 0.64 0.96 ± 0.00 38.53 ± 0.65 0.94 ± 0.00 37.42 ± 0.75 0.94 ± 0.01

PAT D US 35.19 ± 0.65 0.86 ± 0.01 34.56 ± 0.66 0.84 ± 0.01 33.96 ± 0.69 0.82 ± 0.01

L2 39.24 ± 0.45 0.92 ± 0.00 38.72 ± 0.71 0.91 ± 0.01 38.21 ± 0.67 0.90 ± 0.01

TV 41.98 ± 0.68 0.97 ± 0.00 41.42 ± 0.78 0.96 ± 0.00 40.75 ± 0.79 0.95 ± 0.01

UNET Prior 36.20 ± 0.75 0.91 ± 0.01 35.65 ± 0.73 0.89 ± 0.01 35.17 ± 0.73 0.88 ± 0.01

Indirect 36.00 ± 0.65 0.87 ± 0.01 34.78 ± 1.11 0.85 ± 0.02 33.90 ± 1.00 0.83 ± 0.02

Grey 43.45 ± 0.66 0.97 ± 0.00 42.53 ± 0.69 0.97 ± 0.00 41.34 ± 0.75 0.96 ± 0.00

Note: The results are from the breast dataset of four patients used for testing.
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, Structural Similarity Index.

for objective comparison of performance and the results
were tabulated in Table 8 for Ktrans and Table 9 for Vp.
From the former,one can see that in terms of both PSNR
and SSIM, the Greybox algorithm performs better than
other methods and from TV by an average margin of ≈
1dB (≈ 2dB for Vp) in terms of PSNR and 0.03 for Vp
points in terms of SSIM. In the case of estimation of Vp,
one can see from Table 9 that for patients ‘B’ and ‘C’,
Greybox performed better than other methods in terms
of both PSNR and SSIM. However, for patient ‘A’, UNET
gave better results in terms of PSNR. Moreover, similar
to the case of the breast dataset, the percentage recov-
ery in Ktrans estimate from any algorithm is more than
Vp.

5.2.2 Brain data

For training Greybox algorithm on brain dataset, 10
patients data was used for training, 5 for validation and
four for testing. The network was trained in the same
manner as for breast data, and the algorithm was tested

for R = 20×. Figures of merit, PSNR and SSIM, were
utilized for objective comparison of performance and
the results were tabulated in Table 10 for Ktrans and
Table 11 for Vp. From the former, in terms of both
PSNR and SSIM, the Greybox algorithm outperforms
other methods, and from TV by an average margin of
≈ 2.5 dB in terms of PSNR and 0.03 points in terms
of SSIM. Moreover, the standard deviation of Greybox
based reconstruction is the least in terms of PSNR and
SSIM among all the estimation algorithms (apart from
undersampled reconstruction). In the case of estimation
of Vp, one can infer from Table 11 that the same trend
as observed for Ktrans holds good. The brain TK maps
reconstructed using different reconstruction algorithms
are visually illustrated in Figure 7 from three patients.
Figure 7 i shows the reconstructed Ktrans maps and
Figure 7 ii shows the reconstructed Vp maps.By inspect-
ing the images, it is inferred that TV and L2 based direct
reconstruction were corrupted by specular noise both
in background and in the brain region. Moreover, these
two techniques show hyperpermeability compared to
ground truth. The UNET was not able to capture all the



GREYBOX 15

TABLE 5 This table shows the mean and standard deviation of PSNR and SSIM for Vp maps reconstructed using different reconstruction
algorithms for different undersampling rates R.

Pat No. Method

R = 8× R = 12× R = 20×
PSNR SSIM PSNR SSIM PSNR SSIM

PAT A US 25.82 ± 0.56 0.64 ± 0.01 24.74 ± 0.54 0.60 ± 0.01 23.66 ± 0.54 0.57 ± 0.02

L2 26.41 ± 0.72 0.59 ± 0.04 25.87 ± 0.79 0.55 ± 0.05 25.01 ± 0.72 0.51 ± 0.04

TV 27.76 ± 1.00 0.75 ± 0.02 27.32 ± 0.96 0.70 ± 0.02 26.35 ± 0.99 0.62 ± 0.03

UNET Prior 26.34 ± 0.65 0.74 ± 0.01 25.44 ± 0.60 0.72 ± 0.01 24.71 ± 0.57 0.70 ± 0.01

Indirect 27.87 ± 0.61 0.70 ± 0.01 27.68 ± 0.63 0.68 ± 0.01 27.17 ± 0.70 0.66 ± 0.02

Grey 29.03 ± 0.64 0.79 ± 0.01 28.11 ± 0.62 0.76 ± 0.01 27.18 ± 0.59 0.72 ± 0.01

PAT B US 24.65 ± 0.31 0.63 ± 0.01 23.68 ± 0.33 0.59 ± 0.01 22.60 ± 0.34 0.55 ± 0.01

L2 25.70 ± 0.74 0.60 ± 0.07 25.16 ± 0.62 0.55 ± 0.06 24.75 ± 0.53 0.52 ± 0.04

TV 26.48 ± 0.49 0.72 ± 0.02 26.05 ± 0.45 0.67 ± 0.01 25.50 ± 0.46 0.62 ± 0.01

UNET Prior 25.52 ± 0.31 0.75 ± 0.00 24.77 ± 0.41 0.73 ± 0.00 24.02 ± 0.43 0.70 ± 0.01

Indirect 25.37 ± 1.98 0.68 ± 0.02 24.68 ± 1.93 0.66 ± 0.02 24.29 ± 1.93 0.65 ± 0.02

Grey 26.95 ± 0.32 0.77 ± 0.01 26.25 ± 0.37 0.73 ± 0.01 25.48 ± 0.35 0.69 ± 0.01

PAT C US 24.11 ± 0.59 0.64 ± 0.01 23.10 ± 0.56 0.59 ± 0.01 21.86 ± 0.58 0.54 ± 0.01

L2 24.12 ± 0.61 0.55 ± 0.03 23.80 ± 0.66 0.52 ± 0.03 23.33 ± 0.54 0.51 ± 0.02

TV 24.98 ± 0.56 0.68 ± 0.02 24.59 ± 0.54 0.64 ± 0.02 23.85 ± 0.61 0.58 ± 0.02

UNET Prior 24.44 ± 0.54 0.72 ± 0.00 23.56 ± 0.59 0.69 ± 0.01 22.54 ± 0.68 0.66 ± 0.01

Indirect 24.22 ± 1.05 0.65 ± 0.01 23.60 ± 0.91 0.62 ± 0.01 22.93 ± 0.94 0.60 ± 0.01

Grey 25.90 ± 0.43 0.75 ± 0.01 25.23 ± 0.42 0.72 ± 0.01 24.26 ± 0.48 0.67 ± 0.01

PAT D US 25.83 ± 1.22 0.60 ± 0.03 25.15 ± 1.20 0.57 ± 0.03 24.35 ± 1.20 0.54 ± 0.03

L2 26.16 ± 1.14 0.55 ± 0.03 25.94 ± 0.88 0.53 ± 0.03 25.15 ± 1.13 0.48 ± 0.03

TV 28.51 ± 1.27 0.72 ± 0.03 28.06 ± 1.31 0.68 ± 0.03 27.32 ± 1.36 0.62 ± 0.04

UNET Prior 27.43 ± 1.05 0.70 ± 0.02 26.89 ± 1.10 0.68 ± 0.02 26.25 ± 1.14 0.65 ± 0.02

Indirect 23.82 ± 1.84 0.62 ± 0.03 22.47 ± 1.66 0.58 ± 0.03 21.80 ± 1.56 0.56 ± 0.03

Grey 28.64 ± 1.10 0.74 ± 0.02 28.04 ± 1.09 0.71 ± 0.02 27.29 ± 1.16 0.66 ± 0.03

Note: The results are from the breast dataset of four patients used for testing.
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, Structural Similarity Index.

TABLE 6 Results of the two-tailed Welch test on the PSNR and SSIM values of the TV and Greybox algorithm-reconstructed Ktrans maps
for various undersampling rates (R) for four patients’ breast data.

Pat
No. Metric

R = 8× R = 12× R = 20×
TV Grey p-value Sig? TV Grey p-value Sig? TV Grey p-value Sig?

PAT
A

PSNR 38.37 39.97 1.36e−09 Yes 37.85 38.98 1.26e−06 Yes 37.09 38.03 3.29e−05 Yes

SSIM 0.96 0.97 3.03e−10 Yes 0.95 0.97 2.73e−11 Yes 0.93 0.95 3.64e−11 Yes

PAT
B

PSNR 39.07 41.18 9.89e−08 Yes 39.08 40.59 1.47e−05 Yes 38.92 39.95 0.000459 Yes

SSIM 0.95 0.96 3.37e−11 Yes 0.94 0.96 1.52e−11 Yes 0.93 0.95 1.99e−13 Yes

PAT
C

PSNR 37.12 39.43 3.64e−18 Yes 36.79 38.53 2.32e−13 Yes 36.32 37.42 6.02e−07 Yes

SSIM 0.94 0.96 1.63e−14 Yes 0.93 0.94 1.69e−13 Yes 0.91 0.94 1.01e−14 Yes

PAT
D

PSNR 41.98 43.45 1.11e−04 Yes 41.42 42.53 0.003 Yes 40.72 41.34 0.11 No

SSIM 0.97 0.97 2.24e−04 Yes 0.96 0.97 0.0006 Yes 0.95 0.96 0.01 Yes

Note: The probability that the performance gap between these two strategies was caused by chance is indicated here by the symbol p. If p ≤ 0.05, the null hypothesis
is rejected and there is a significant difference in the performance of both approaches. The “Sig?” column indicates whether or not the performance difference has
been statistically significant.
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, Structural Similarity Index Measure.
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TABLE 7 Results of the two-tailed Welch test on the PSNR and SSIM values of the TV and Greybox algorithm-reconstructed Vp maps for
various undersampling rates (R) for four patients’ breast data.

Pat No. Metric

R = 8× R = 12× R = 20×
TV Grey p-value Sig? TV Grey p-value Sig? TV Grey p-value Sig?

PAT A PSNR 27.76 29.03 2.26e−07 Yes 27.32 28.11 3.44e−04 Yes 26.35 27.18 2.06e−04 Yes

SSIM 0.75 0.79 3.58e−14 Yes 0.70 0.76 2.21e−18 Yes 0.62 0.72 1.93e−21 Yes

PAT B PSNR 26.48 26.95 4.93e−04 Yes 26.05 26.25 0.10 No 25.50 25.48 0.892674 No

SSIM 0.72 0.77 1.65e−13 Yes 0.67 0.73 4.60e−19 Yes 0.62 0.69 2.78e−24 Yes

PAT C PSNR 24.98 25.90 1.46e−09 Yes 24.59 25.23 2.69e−06 Yes 23.85 24.26 4.56e−03 Yes

SSIM 0.68 0.75 1.84e−18 Yes 0.64 0.72 4.88e−24 Yes 0.58 0.67 1.35e−23 Yes

PAT D PSNR 28.51 28.64 0.794 No 28.06 28.04 0.970 No 27.32 27.29 0.95 No

SSIM 0.72 0.74 0.082 No 0.68 0.71 0.0181 Yes 0.62 0.66 2.00e−03 Yes

Note: The probability that the performance gap between these two strategies was caused by chance is indicated here by the symbol p. If p ≤ 0.05, the null hypothesis
is rejected and there is a significant difference in the performance of both approaches. The “Sig?” column indicates whether or not the performance difference has
been statistically significant.
Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, Structural Similarity Index Measure.

TABLE 8 Mean and standard deviation of PSNR and SSIM for
Ktrans maps reconstructed using different reconstruction algorithms
for an undersampling rate R = 20× on three patients prostate data.

Pat No. Method

R = 8×
PSNR SSIM

PAT A US 37.55 ± 1.13 0.92 ± 0.02

L2 39.99 ± 2.45 0.96 ± 0.02

TV 40.76 ± 2.59 0.97 ± 0.01

UNET 38.64 ± 1.95 0.94 ± 0.02

Grey 41.85 ± 2.57 0.98 ± 0.01

PAT B US 36.66 ± 0.71 0.90 ± 0.02

L2 38.66 ± 2.37 0.95 ± 0.03

TV 39.57 ± 2.46 0.96 ± 0.02

UNET 37.43 ± 1.56 0.94 ± 0.02

Grey 40.39 ± 1.96 0.97 ± 0.01

PAT C US 37.34 ± 0.91 0.90 ± 0.02

L2 40.84 ± 2.09 0.96 ± 0.01

TV 41.99 ± 2.13 0.96 ± 0.01

UNET 38.33 ± 1.22 0.93 ± 0.02

Grey 42.42 ± 1.99 0.98 ± 0.01

Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, Structural Similarity
Index Measure.

details during the reconstruction, however, using it as
prior in the proposed Greybox algorithm improves the
reconstruction performance.

Similar to Figure 5 and Figure 6, Figure 8 shows
the error maps for Ktrans parameter Figure 8i and Vp
for Figure 8 ii estimate. From both subfigures, it can
be seen that the proposed Greybox provides more
accurate reconstruction.

TABLE 9 Mean and standard deviation of PSNR and SSIM for
Vp maps reconstructed using different reconstruction algorithms for
an undersampling rate R = 20× on three patients prostate data.

Pat No. Method

R = 8×
PSNR SSIM

PAT A US 31.45 ± 1.78 0.80 ± 0.04

L2 28.59 ± 2.31 0.82 ± 0.06

TV 29.02 ± 2.44 0.86 ± 0.05

UNET 32.41 ± 2.59 0.89 ± 0.03

Grey 31.72 ± 2.40 0.88 ± 0.03

PAT B US 29.32 ± 0.87 0.74 ± 0.02

L2 29.26 ± 1.90 0.80 ± 0.04

TV 29.98 ± 1.86 0.84 ± 0.04

UNET 30.48 ± 0.94 0.88 ± 0.03

Grey 31.97 ± 1.42 0.88 ± 0.04

PAT C US 30.73 ± 1.55 0.73 ± 0.05

L2 30.21 ± 2.49 0.82 ± 0.06

TV 31.21 ± 2.59 0.85 ± 0.03

UNET 32.02 ± 1.93 0.88 ± 0.03

Grey 33.74 ± 2.15 0.89 ± 0.03

Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, Structural Similarity
Index Measure.

5.3 Runtime

For Ktrans and Vp map estimate of a single axial slice,
the runtime of several reconstruction strategies men-
tioned in this study were reported in Table 12 (rounded
off to nearest second). The neural network reconstructs
the TK maps the fastest, and the Greybox algorithm
is the slowest, as can be seen from the table. This is
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F IGURE 7 Reconstructed Ktrans (i) & Vp (ii) maps for one representative slice each, of three brain cancer patients for R = 20×. The
patient number was provided on top of each column. The reconstruction methods were indicated at the start of each row: I. Fully sampled data,
II. Undersampled data with zero paddings, III. L2 (no regularization) based direct reconstruction, IV. Direct TV regularized direct reconstruction, V.
UNET based denoising prior, VI. Proposed Greybox based direct reconstruction. From (i), it is clear that both TV and L2 reconstruction shows
hyperpermeability in the Ktrans maps and also suffer from specular noise. Moreover, from the Vp maps in (ii), it can be observed that the TV and
L2 reconstruction results have more background and in-brain specular noise than the proposed Greybox algorithm [Digital copy in the full
brightness of the screen is recommended for the viewing of these images].

because each cycle of the Greybox algorithm requires
loading the network twice (once for each parameter).
More synchronized network integration with the iterative
minimization approach can cut down on this time. Nev-
ertheless, the gain in parameter estimate quality makes
the runtime difference acceptable.

6 DISCUSSION

The experimental results indicate that the performance
of UNET when employed as a denoiser-based prior is
not satisfactory in comparison to the L2, TV , or indirect

FCSA-based parameter estimation.The reasons for this
suboptimal performance are the complexity of the net-
work’s task and the limited size of the dataset. The task
of the network is intricate, as it is required to estimate
tracker kinetic parameters from input maps generated
from undersampled data with a diverse range of degra-
dation levels resulting from 2×–20× undersampling
using only one set of trained parameters. The limited
availability of samples for each organ presents a sig-
nificant challenge in training the network. However, the
results demonstrate that even with a poorly performing
network, the parameter estimation can be significantly
improved by utilizing the network as a prior. This method
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F IGURE 8 Figures shows the error maps for reconstructed Ktrans (i) & Vp (ii) maps for one representative slice each, of three brain cancer
patients for R = 20×. The patient number was provided on top of each column. The reconstruction methods were indicated at the start of each
row: I. Undersampled data with zero paddings, II. L2 (no regularization) based direct reconstruction, III. Direct TV regularized direct
reconstruction, IV. UNET based denoising prior, V. Proposed Greybox based direct reconstruction. From both figures, it can be seen that Greybox
reconstruction has the least error. [Digital copy in the full brightness of the screen is recommended for the viewing of these images].

not only surpassed the Indirect reconstruction based TK
estimation but also direct TV based estimation.Figure 3
and Figure 5 show that while the UNET was unable
to recover high-frequency components, it was able to
better recover low-frequency smooth areas, which sig-
nificantly improved performance when used as a prior.
This is also demonstrated in experiments performed
in Refs. [36, 37]. Therefore, using even an imperfectly
trained UNET regularizer improves the reconstruction
of low-frequency components. The reason direct esti-
mation techniques perform better than indirect iterative
techniques is that in indirect techniques, each image is
reconstructed independently, and small inaccuracies in
the reconstruction of individual images can cascade into
larger cumulative errors at each step of further compu-
tations. In contrast, direct techniques directly optimize
the objective function for TK parameters to minimize
the cost. Another feature of the proposed algorithm is
that unlike other networks for solving deep prior-based
inverse problems,such as,30,31,34 and,29 which were also
trained on small datasets, this algorithm is capable of

reconstructing parameter maps for multiple undersam-
pling rates in the range of 2–20× by solving a non-linear
blind inverse problem.

The clinical utility of this algorithm is two-fold. First,
it can be utilized in clinical scanners to directly esti-
mate TK parameters from undersampled data. Through
experimental results and existing literature,22,23,32 it has
been demonstrated that direct estimation of TK param-
eters is more accurate than indirect iterative estimation.
The adoption of this technique in clinical practice has
the potential to improve the accuracy of estimated maps.
Secondly, the prior can be trained on a local in-house
dataset at the clinical site, as the proposed Greybox
algorithm has shown significant improvement in perfor-
mance by training on a small dataset. Additionally, this
algorithm can also be applied to other non-linear blind
medical image reconstruction problems, such as Dif-
fuse Optical Tomography50 and Electrical Impedance
Tomography.51

The present study also has inherent limitations. The
most important limitation of this study is its retrospective
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TABLE 10 Mean and standard deviation of PSNR and SSIM for
Ktrans maps reconstructed using different reconstruction algorithms
for an undersampling rate R = 20× on four patients brain data.

Pat No. Method

R = 20×
PSNR SSIM

PAT A US 31.33 ± 1.05 0.77 ± 0.07

L2 31.11 ± 4.46 0.65 ± 0.25

TV 36.62 ± 2.61 0.92 ± 0.04

UNET 33.78 ± 1.66 0.89 ± 0.03

Grey 39.01 ± 1.23 0.95 ± 0.01

PAT B US 35.58 ± 2.00 0.87 ± 0.04

L2 37.49 ± 1.40 0.88 ± 0.03

TV 40.99 ± 0.89 0.94 ± 0.01

UNET 37.19 ± 1.35 0.93 ± 0.02

Grey 42.43 ± 0.92 0.96 ± 0.00

PAT C US 34.07 ± 1.28 0.85 ± 0.04

L2 32.75 ± 4.64 0.77 ± 0.13

TV 37.04 ± 3.98 0.92 ± 0.03

UNET 35.54 ± 2.07 0.91 ± 0.02

Grey 39.87 ± 1.57 0.95 ± 0.00

PAT D US 31.70 ± 1.01 0.80 ± 0.06

L2 32.15 ± 3.55 0.68 ± 0.18

TV 36.65 ± 2.21 0.91 ± 0.04

UNET 34.61 ± 1.92 0.90 ± 0.03

Grey 39.22 ± 0.86 0.95 ± 0.00

Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, Structural Similarity
Index Measure.

nature. All experiments were performed on single coil
simulation due to the unavailability of raw data.Whereas
in clinics, multicoil acquisition is widely adapted. This
limitation affects both the reconstruction performance
and the highest undersampling rate tested in this study.
The next limitation is that the prior is dataset depen-
dent like most deep learning architectures. This will
necessitate training a different model for different body
organs. Another major limitation is that hyperparame-
ters such as 𝜆 that were used to weight the regularizer
must be tuned empirically. These regularization param-
eters can be trained using Deep Learning; however, it
will restrict the number of iterations of the minimiza-
tion algorithm, as is the case in many unrolled deep
learning-based schemes.29–31,34 Finally, the run-time of
proposed Greybox is higher in its vanilla implementation,
because the iterative reconstruction part of the algo-
rithm runs on Matlab and the prior estimation part runs
on Python. It can be significantly improved by utilizing
C/C++ based libraries.

7 CONCLUSION

This study presented a hybrid algorithm for the direct
estimation of TK parameters Ktrans and Vp from under-

TABLE 11 Mean and standard deviation of PSNR and SSIM for
Vp maps reconstructed using different reconstruction algorithms for
an undersampling rate R = 20× on four patients brain data.

Pat No. Method

R = 20×
PSNR SSIM

PAT A US 24.34 ± 1.41 0.64 ± 0.07

L2 24.67 ± 2.03 0.63 ± 0.06

TV 26.32 ± 1.60 0.63 ± 0.02

UNET 25.11 ± 2.11 0.79 ± 0.05

Grey 27.48 ± 1.49 0.78 ± 0.04

PAT B US 27.67 ± 1.99 0.75 ± 0.07

L2 28.73 ± 1.58 0.72 ± 0.04

TV 29.95 ± 0.90 0.65 ± 0.01

UNET 28.61 ± 1.05 0.84 ± 0.03

Grey 30.83 ± 1.11 0.81 ± 0.03

PAT C US 26.01 ± 1.64 0.73 ± 0.05

L2 26.63 ± 2.59 0.68 ± 0.05

TV 27.52 ± 1.88 0.65 ± 0.01

UNET 26.18 ± 1.98 0.82 ± 0.02

Grey 28.52 ± 1.38 0.78 ± 0.03

PAT D US 24.17 ± 1.39 0.64 ± 0.08

L2 25.08 ± 1.99 0.63 ± 0.06

TV 26.46 ± 1.45 0.62 ± 0.02

UNET 25.52 ± 1.60 0.80 ± 0.04

Grey 27.85 ± 1.27 0.76 ± 0.04

Abbreviations: PSNR, peak signal-to-noise ratio; SSIM, Structural Similarity
Index Measure.

TABLE 12 Reconstruction time for Ktrans & Vp for a single slice
data for the algorithms discussed in this work.

Method Reconstruction time (s)

L2 62

TV 65

UNET 0.02

Grey 75

Note: The reported run times were rounded off to the nearest second.

sampled k-t data. The proposed algorithm, named
“Greybox,” solves a nonlinear inverse problem using a
pre-trained neural network as a prior. The proposed
Greybox algorithm was tested on a breast dataset
with undersampling rates of 8×, 12×, and 20× on four
patients, using PSNR and SSIM as metrics. The results
showed that the proposed Greybox algorithm outper-
formed the existing direct reconstruction methods, as
demonstrated by Welch’s test on the reconstruction
results from the data of four patients. The generalizabil-
ity of the proposed Greybox algorithm was also tested
on brain and prostate DCE-MRI data with undersam-
pling rates of 20× and 8×, respectively,on four and three
patients. The same trend of improved performance was
observed in these cases. A detailed explanation of the
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observations and limitations of the proposed approach
was also presented.
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