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A novel approach that can more effectively use the structural information provided by the traditional imaging
modalities in multimodal diffuse optical tomographic imaging is introduced. This approach is based on a prior
image-constrained-ℓ1 minimization scheme and has been motivated by the recent progress in the sparse image
reconstruction techniques. It is shown that the proposed framework is more effective in terms of localizing the tumor
region and recovering the optical property values both in numerical and gelatin phantom cases compared to the
traditional methods that use structural information. © 2012 Optical Society of America
OCIS codes: 170.0170, 170.3010, 170.6960, 100.3190, 170.5280, 110.4190.

Diffuse optical tomography in combination with the
traditional imaging modalities, such as Magnetic Reso-
nance Imaging (MRI), computed tomography (CT), and
ultrasound, has been shown to have a distinct advantage
when compared to the diagnostic information provided
by each one separately [1,2]. Usage of structural informa-
tion provided by the traditional imaging modalities to
guide and improve the diffuse optical image characteris-
tics has been an active area of research.
Two prominent reconstruction methods that use struc-

tural information are soft-priors, which uses the structur-
al information in the regularization, and hard-priors,
which constrains the number of optical parameters to
be reconstructed to be equal to the number of distinct
tissue types determined by the traditional imaging mod-
alities [2]. In scenarios where the traditional imaging
modalities are known to give false positives in cancer
imaging, the hard-priors based approach becomes pro-
hibitive to be used, as its solutions are biased toward
structural information [1,2]. The approach that is com-
monly deployed in these cases is soft-priors, which
can provide more flexibility in the usage of structural
information [1,2].
The soft-priors based approach employs traditional ℓ2-

norm-based regularization to stabilize the solution [2], re-
sulting in smoothened reconstructed image features as it
constrains the solution to have any sharp changes [3]. To
overcome this limitation, in this Letter, we propose a
prior image-constrained ℓ1-norm-based (PIC-ℓ1) regulari-
zation for effective usage of structural information.
This work has been motivated by the recent studies of

the prior image-constrained compressed sensing ap-
proach for perfusion CT, which was proven to be effec-
tive in providing high signal to noise ratio (SNR) images
with limited projection data [4]. In our case, the prior im-
age refers to the structural information provided by the
traditional imaging modality without the tumor informa-
tion. For example, in the case of breast imaging this could
be, knowing only the adipose/fatty and fibro-glandular
tissue region information. The performance of PIC-ℓ1 is
compared with the traditional methods for numerical
breast phantom and experimental gelatin phantom cases

to show the effectiveness of the proposed method. The
discussion in here is limited to the two-dimensional con-
tinuous-wave (CW) case as the emphasis is on showing
the effectiveness of the proposed method without the tu-
mor information in the prior image.

The near-infrared (NIR) light propagation in thick
tissues, such as breast, is modeled using the diffusion
equation (DE), and for the CW case [5] it is given by

−∇:D�r�∇Φ�r� � μa�r�Φ�r� � Qo�r�; (1)

where Φ�r� is the photon fluence at a given position r
and Qo�r� is the isotropic light source at position r.
μa�r� denotes the spatially varying optical absorption
coefficient (parameter to be estimated) with units of
mm−1 and D�r� is the optical diffusion coefficient
(assumed to be known) and is given by 1 ∕�3�μa � μ0s��
with μ0s representing the reduced scattering coefficient.
Typically the finite-element-based method is deployed
to solve DE along with a type-III boundary condition that
accounts for the refractive-index mismatch [5]. The
sampled version of Φ�r� at detector locations forms
the modeled data (G�μa�).

The inverse problem of estimating μa for the soft-
priors case is posed as a minimization problem with
the objective function [1,2] as

Ω1 �
1
2
∥y − G�μa�∥

2
� λ1

2
∥L�μa − μa0�∥

2
(2)

with y representing the experimental data and μa0 as the
prior estimate of the μa using a calibration procedure.
The regularization parameter here is represented by
λ1(>0) with L denoting the Laplacian matrix, which is
a smoothing operator that contains the region informa-
tion with entries as 1 on the diagonal, Lij � −1 ∕n at
the off-diagonal entries when i and j belong to the same
region containing n number of nodes, and 0 elsewhere
[2]. The iterative update equation for minimizing
Eq. (2) is given by [2]

Δμa � �JTJ� λ1LTL�−1JTδ (3)
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with δ � y − G�μa� as the data-model misfit and J repre-
senting the Jacobian (� dG�μa� ∕dμa). Note that when L
is equal to the identity matrix, the resulting reconstruc-
tion procedure is an ℓ2-norm-based standard reconstruc-
tion procedure without any prior information.
For the proposed PIC-ℓ1 reconstruction method, the

objective or cost function [4] for the update Δμa can
be written as

Ω � α∥ψ1�Δμa − μpra �∥1 � �1 − α�∥ψ2�Δμa�∥1
s:t: JΔμa � δ; (4)

where Δμa is the unknown (with respect to which above
equation is minimized), μpra is the prior image with struc-
tural priors, and ψ1;2 are two sparsifying transformations
[here, discrete cosine transform (DCT)]. The parameter α
�0 ≤ α ≤ 1� dictates the dependency on the prior image,
with α being 0 representing the conventional ℓ1-norm-
based algorithm without any usage of prior information
and α being 1, denoting the correction to the prior image
[4]. In this Letter, α � 0.8 was used in all cases. Equiva-
lently the minimization given in Eq. (4) could be written
as (also known as the unconstrained variant [4])

Ω2 � α∥ψ1�Δμa − μpra �∥1 � �1 − α�∥ψ2�Δμa�∥1
� λ2

2
∥JΔμa − δ∥22; (5)

where λ2 is a regularization parameter (>0). Equation (5)
is minimized using a simple Newton’s method, requiring
the computation of the gradient and Hessian of the cost
function.
The ℓ1-norm is the sum of absolute values and is not a

smooth function, making the gradient or the Hessian of
the cost function not well defined for all values of Δμa.
Instead, we approximate the ℓ1-norm with a smooth func-
tion by using the relation ∥μa∥1 ≈

����������������������������
Δμ�aΔμa � β

p
, where β

is a smoothing parameter [6], which is typically chosen as

a small value (here, 1e-7). With this approximation, one
can construct a diagonal matrix ΛjΔμa with entries
defined as ΛijΔμa � �����������������������������������������������ψΔμa��i �ψΔμa�i � β

p
[6], where

ψ � ψ1 � ψ2 (DCT). Differentiating Eq. (5) with respect
to the unknown (Δμa) yields

∇Ω2jΔμa � αψT �ΛjΔμa−μ
pr
a
�−1ψ�Δμa−μpra �

��1−α�ψT �ΛjΔμa�−1ψ�Δμa�� λ2JT �JΔμa−δ�:
(6)

Now, the update equation that minimizes Eq. (5)
becomes

Δμt�1
a � Δμta −H−1jΔμta∇Ω2jΔμta . (7)

The t in here represents the inner iteration number and
the (linear) Hessian approximation (H) is given as [4]

HjΔμa � αψT �ΛjΔμa−μ
pr
a
�−1ψ

� �1 − α�ψT �ΛjΔμa�−1ψ � λ2JTJ. (8)

Similar to earlier case [Eq. (3)], the computed Δμa is
added to the current μa for recomputation of J and δ.

Initially, a numerical experiment with derived struc-
tures from human breast in a typical MRI-NIR exam is
conducted. The target μa distribution is given in the
top-left corner of Fig. 1(a). There are three types of tissue
regions, namely fatty (μa � 0.01 mm−1 and μ0s �
1.0 mm−1; region number: 0), fibro-glandular (μa �
0.015 mm−1 and μ0s � 1.0 mm−1; region number: 1), and
tumor (μa � 0.02 mm−1 and μ0s � 1.0 mm−1; region num-
ber: 2). The data acquisition set up had 16 light collection/
delivery fibers that were arranged in an equispaced fash-
ion; when one acts as a source, others become detectors,
resulting in total 240 intensity measurements. A fine
mesh consisting of 4876 nodes (corresponding to 9567
triangular elements) is used for generating experi-
mental data, and a coarser mesh with 1969 nodes

Fig. 1. (Color online) (a) Reconstructed μa distributions using reconstruction methods described in this Letter with numerically
generated 1% noisy data using the target image (top-left). (b) The one-dimensional cross-sectional plot along the dashed line given in
the target image for the reconstructed images in (a). The regularization parameters that were used are 80, 40, 20, and 50 for PIC-ℓ1,
Laplacian, ℓ1-norm-based, and ℓ2-norm-based reconstruction methods, respectively.
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(corresponding to 3753 triangular elements) was used in
the reconstruction. The numerically generated data using
fine mesh was added with 1% uniformly distributed Gaus-
sian noise to mimic the experimental case. The optical
properties of the fatty region were used as homogenous
initial guesses to the reconstruction procedures de-
scribed earlier. The iterative procedure was stopped
once ∥δ∥2 did not improve by more than 2% when
compared to the previous iteration.
Totally four reconstruction methods were considered

for reconstruction of the numerical data, namely pro-
posed PIC-ℓ1 [Eq. (7)], Laplacian-based soft-priors
[Eq. (3)], ℓ1-norm-based method [Eq. (7), with α � 0,
no priors], and ℓ2-norm-based method [Eq. (3) with
L � I, no priors]. The reconstructed μa images are given
in Fig. 1(a), where corresponding to each image the re-
construction method used is given on top of each distri-
bution. The regularization parameter values that were
used are given in the caption of Fig. 1, as they provided
the best possible solutions. Note that the prior image
(μpra ) is computed for PIC-ℓ1 using the hard-priors ap-
proach [2] with only fatty and fibro-glandular regions,
and the resulting image is also given in Fig. 1(a).
As seen from Fig. 1, the performance of ℓ1- and ℓ2-

based reconstruction methods without structural infor-
mation has been poor (especially in spatial resolution
characteristics) compared to PIC-ℓ1 and Laplacian based
soft-priors method. Among the later two, the perfor-
mance of PIC-ℓ1 was higher in terms of localizing the
tumor and providing better contrast recovery [see
Fig. 1(b)].
Next, a gelatin cylindrical phantom (height 25 mm and

diameter 86 mm) that mimics the breast tissue was
fabricated using mixtures of water (80%), gelatin
(20%), India ink for absorption, and TiO2 for scattering
[7]. The two-dimensional cross section showing the dis-
tribution of μa is given in the top-left corner of Fig. 2(a).
The region labeled as ‘0’ has the optical properties of
μa � 0.0065 mm−1 and μ0s � 0.65 mm−1 (mimicking fatty
layer) and had a thickness of 10 mm. The fibro-glandular
layer was labeled as region ‘1’ had a diameter of 76 mm
with optical properties of μa � 0.01 mm−1 and
μ0s � 1.0 mm−1. The tumor region labeled as ‘2’ had a dia-
meter of 16 mm with optical properties of μa �
0.02 mm−1 and μ0s � 1.2 mm−1. A mesh having 1785 nodes
corresponding to 3418 linear triangular elements was
used for the reconstruction. The data was collected in
the Dartmouth-NIR system at 785 nm. Similar to the ear-
lier case, it was assumed that only μa is unknown and the
prior image (considering only regions: 0 and 1) is com-
puted using hard-priors. Here, only PIC-ℓ1 and Laplacian
based soft-priors reconstruction methods were used as
they were proven to be effective compared to others

in the numerical experimental case. The reconstruction
results are given in Fig. 2. It is also evident from this case
that the localization of tumor region is better with the
PIC-ℓ1 reconstruction method and the recovered μa va-
lues for the tumor region are more close to target values.

In conclusion, we have presented a novel approach for
usage of structural prior information in a diffuse optical
image reconstruction framework and proven that the
proposed method is more effective in localizing the tu-
mor and providing better contrast recovery compared
to its counterparts.
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Fig. 2. (Color online) Similar effort as Fig. 1 for the case of
gelatin phantom data, except only PIC-ℓ1 and Laplacian based
reconstruction methods were used. The corresponding regular-
ization parameters that were used are 10 and 20.
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