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Abstract

Purpose:To propose an automated approach for detecting and classifying
Intracranial Hemorrhages (ICH) directly from sinograms using a deep learning
framework. This method is proposed to overcome the limitations of the con-
ventional diagnosis by eliminating the time-consuming reconstruction step and
minimizing the potential noise and artifacts that can occur during the Computed
Tomography (CT) reconstruction process.

Methods:This study proposes a two-stage automated approach for detecting
and classifying ICH from sinograms using a deep learning framework. The
first stage of the framework is Intensity Transformed Sinogram Sythesizer,
which synthesizes sinograms that are equivalent to the intensity-transformed
CT images. The second stage comprises of a cascaded Convolutional Neural
Network-Recurrent Neural Network (CNN-RNN) model that detects and classi-
fies hemorrhages from the synthesized sinograms. The CNN module extracts
high-level features from each input sinogram, while the RNN module provides
spatial correlation of the neighborhood regions in the sinograms. The proposed
method was evaluated on a publicly available RSNA dataset consisting of a
large sample size of 8652 patients.

Results:The results showed that the proposed method had a notable
improvement as high as 27% in patient-wise accuracies when compared to
state-of-the-art methods like ResNext-101, Inception-v3 and Vision Transformer.
Furthermore, the sinogram-based approach was found to be more robust to
noise and offset errors in comparison to CT image-based approaches. The
proposed model was also subjected to a multi-label classification analysis
to determine the hemorrhage type from a given sinogram. The learning pat-
terns of the proposed model were also examined for explainability using the
activation maps.

Conclusion:The proposed sinogram-based approach can provide an accurate
and efficient diagnosis of ICH without the need for the time-consuming recon-
struction step and can potentially overcome the limitations of CT image-based
approaches. The results show promising outcomes for the use of sinogram-
based approaches in detecting hemorrhages, and further research can explore
the potential of this approach in clinical settings.
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FIGURE 1

1 | INTRODUCTION

Intracranial Hemorrhage (ICH) is a critical and life-
threatening condition leading to a high fatality rate
and impairments. The causes of ICH might be direct
or indirect, which include trauma (accidents), stroke,
vascular malformation, high blood pressure, illegal sub-
stances, and blood coagulation abnormalities.! It is vital
to design a rapid and accurate Computer Aided Diag-
nosis (CAD) system that would aid neurologists or
radiologists and improve the survival rate. X-ray-based
Computed Tomography (CT) scan is the most often uti-
lized imaging modality for ICH diagnosis because of its
wide availability, short acquisition time, and its ability to
distinguish skull fractures and hemorrhages in the brain
efficiently?3

In X-ray CT imaging, a sinogram is first generated by
obtaining the raw projections of an anatomical slice of
interest from numerous angles. One axis of the sino-
gram represents the angle of the X-ray detector, while
the other axis represents the distance from the rotation
center in the detector row. These projections are unin-
terpretable for humans because the information about
each spatial location is distributed throughout the sino-
gram. The reconstruction methods, such as analytical
and iterative methods, are used to convert sinograms
into CT images to make this data understandable* A
few examples of raw sinograms and their reconstructed
CT images are shown in Figure 1.

Sinograms inherently contain all the information found
in reconstructed CT images, even though they do
not explicitly include anatomical details suitable for
human interpretation. In addition, with the use of dif-
ferent reconstruction techniques, there is a risk of
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A few examples of raw sinograms and corresponding CT images. The first row shows raw projections (sinograms), and the

second row shows the corresponding CT images (brain window is displayed for better visualisation). The hemorrhages are contoured in red
colour. CT, computed tomography.

experiencing a variety of information loss, including
interpolation-related resolution loss and artifacts from
beam hardening, scattering, and motion.> Additionally,
the reconstruction algorithms cause noise in the CT
images depending on the technique used® Sinogram
acquisition is quick and simple, but reconstruction is
computationally difficult and time-consuming, taking
up to 10 min to compute/® The above limitations
of CT reconstruction approaches motivated the cur-
rent proposal to use sinograms directly for ICH
detection.

Convolutional Neural Networks (CNNs) have recently
been investigated for medical applications due to their
superior performance compared to conventional algo-
rithms in many applications. Most of the methods in
the literature use reconstructed CT images for ICH
detection. Different CNN architectures are initially used
to identify each type of haemorrhage?'%-'2 For the
identification and classification of hemorrhages, only
a few papers have recommended using 3D CNN
architectures.'®>~'6 The accuracy of identifying and cat-
egorizing hemorrhages in CT scans was significantly
increased by combining CNN and a Recurrent Neural
Network (RNN)."7:18

Vision Transformer (ViT) is a recent neural net-
work architecture for computer vision tasks that has
attracted considerable interest due to its ability to cap-
ture fine-grained details and long-range dependencies
in images.'® ViT replaces convolutional layers with a
self-attention mechanism, enabling the model to attend
to different parts of the input and extract relevant fea-
tures. ViT has achieved state-of-the-art performance
on benchmark datasets and can be adapted to vari-
ous vision tasks. Despite being a recent breakthrough
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in computer vision tasks, vision transformers have not
been extensively studied in the medical image domain.

There have been very few studies that propose the
use of sinograms to detect abnormalities. A study on
the detection and characterization of blood vessels from
sinograms using deep learning models is proposed.?°
A recent study used intensity windowed sinograms cre-
ated from windowed CT scans to examine the viability
of using sinograms rather than CT scans to detect
abnormalities?’ CT images and sinograms are indeed
different representations of the same underlying data.
CT images represent tissue attenuation, while sino-
grams represent accumulated attenuation along the
X-ray path through the body. The windowing techniques
can be applied to CT images to selectively highlight
the specific regions of interest while suppressing oth-
ers. However, the same approach cannot be applied
to the sinogram domain. Similarly, neural networks can
be employed to synthesize sinograms by preserving
information relevant to specific tissues and discarding
irrelevant information. To the best of our knowledge, no
method has been proposed so far to synthesize a sino-
gram that is equivalent to a windowed CT scan. Further,
RNN-based methods that consider neighborhood infor-
mation have not been explored so far in the context of
sinogram-based detection of abnormalities.

This work presents, for the first time, an end-to-end
deep learning model for the detection of ICH directly
from sinograms. The primary contribution is to propose a
deep learning model to synthesize intensity-transformed
sinograms from the acquired raw sinograms. The sec-
ond contribution is the development of a cascaded deep
learning model based on CNN and RNN to detect the
presence of ICH in sinograms. This cascading model
ensures that information from the adjacent slices is inte-
grated with the current slice to reduce false predictions.
The performance of the proposed model is compared
with the state-of -the-art architectures. Finally, the robust-
ness of the proposed sinogram-based approach versus
the existing CT-based approach to offset and Poisson
errors are also analyzed.

The rest of the paper is organized as follows: sec-
tion 2.1 presents the details of the dataset and the
experimental setup used for evaluations. Section 2.2
presents the details of the proposed method. Section 3
presents the results and ablation studies, as well as
experiments on the robustness analysis. Section 4 pro-
vides a detailed discussion of results, and finally, the
conclusion is presented in section 5.

2 | MATERIALS AND METHODS
2.1 | Dataset and experimental setup

The current study uses a subset of data from the huge
publicly available dataset shared by the Radiological

Society of North America (RSNA) that contains brain
CT scans with intracranial hemorrhages (ICH).?? Since
the raw sinograms are not explicitly provided in this or
any other publicly available dataset, synthetic sinograms
were generated from CT scans using the Radon trans-
form with parallel beam geometry. To accomplish this,
a CUDA implementation of the Radon transform, called
Torch Radon? is used. Although modern CT machines
use more advanced scanning geometries like helical fan
beam or cone beam, this study aimed to explore the
feasibility of utilizing sinograms over CT scans for hem-
orrhage detection regardless of the geometry used in
sinogram generation. This work could be extended to
other acquisition geometries in the future®*

The dataset used for evaluation consists of a total
of 361838 CT slices (8652 subjects). These subjects
are categorized into five types of hemorrhages: Epidural
Hematoma (EDH) with 170 subjects, Intraparenchymal
Hemorrhage (IPH) with 2832 subjects, Intra Ventricu-
lar Hemorrhage (IVH) with 2165 subjects, Subarachnoid
Hemorrhage (SAH) with 2810 subjects, and Subdural
Hematoma (SDH) with 4017 subjects. Out of the entire
dataset, 267 279 slices (6122 subjects) are used for
training, 25 783 slices (765 subjects) are used for vali-
dation, and the remaining 24 786 slices (765 subjects)
are used for testing. Additionally, 1000 healthy subjects
are included in the testing phase for patient-wise anal-
ysis. Therefore, it roughly corresponds to grouping the
entire data in the ratio of 7:1:2 among the training, val-
idation, and testing respectively. In order to ensure that
all slices from any given subject are part of only one of
the three groups, the random grouping of data is made
subject-wise and not slice-wise.

The dimension of each CT slice is 512x512. All
images are down-sampled by 2 to meet the memory
constraints. Sinograms are generated with one projec-
tion for each degree from CT slices with dimensions
256 x 256, as shown in Figure 1. The dimension of the
resulting sinograms is 360 x 362. All implementations
are performed on a workstation with NVIDIA Quadro
RTX 8000 graphics card, and 96 GB of RAM. Adam
optimizer with a learning rate of 0.1 is used for train-
ing the proposed method. The training is performed for
20 epochs for all the experiments, and the best model
is saved. Each epoch took around 45 min on a 48 GB
GPU. To have a fair comparison, all models were trained
to 20 epochs and a stopping criterion where the model
stops when there is no decrease in validation loss for five
epochs. The training stopped at around 10-12 epochs
for all experiments.

2.2 | Proposed method

The proposed sinogram-based ICH detection method
is a two-stage end-to-end deep learning method and
is summarized in Figure 2. The first stage, referred to

85U80|7 SUOWIWOD A0 3|edldde aup Aq peusenob ae ssppiie YO ‘8sn Jo se|ni 1oy AriqiT8uljuO A8]IM UO (SUOTpUoD-pue-sLIelALI0D A8 | 1M Afelq 1 eut|UO//:SANY) SUORIPUOD pue swie | 81 8ss *[20z/c0/2T ] uo Ariqiauliuo A1 epby Jo Aisenun Aq +T.9T dw/z00T 0T/I0p/wo A8 | 1M Aleiq Ul uo-widee//Sdny Woly papeo|umod ‘€ ‘v20z ‘602rELYZ



FULLY AUTOMATED SINOGRAM-BASED DEEP LEARNING MODEL FOR DETECTION

MEDICAL PHYSICS——24

W\

Presence of

Detection Module hemorrhage

CT Scanner Sinogram

w3

/
Intensity Transformed j W1
! —{ Sinogram Synthesizer C )— CNN r—{ RNN
N (ITSS)
I 'l W2

< YES
NO

Section II B

Section IT A

FIGURE 2 The key modules of the proposed method for automated detection of intracranial hemorrhage from the sinogram data. The

details of each module are given in the sections indicated in the figure.

as the “Intensity Transformed Sinogram Synthesizer’
(ITSS), generates intensity-transformed sinograms that
correspond to the intensity windowed CT scans of the
brain, subdural, and soft tissues. The second stage,
referred to as the detection module, is a cascaded com-
bination of CNN and RNN. More details of both these
modules are presented in the rest of this section.

221 | ITSS

In general, the intensity range of a CT image is
[-1000, 1000] Hounsfield Units (HU).?° In order to visu-
alize or highlight a specific hemorrhage, a few intensity
windows are explicitly chosen instead of dealing with the
whole range of intensities. Radiologists typically focus
on three different ranges of HU values to detect vari-
ous types of ICH in head CT scans: [0, 80] HU for the
brain, [80, 200] HU for the subdural, and [40, 380] HU for
the soft tissue. Notice that the windowing operation is a
non-linear transform due to the clipping of HU values
within the specified lower and upper limits. Application
of such windowing to the CT scans improves the con-
trast between the regions of interest and the rest of
the image. Further, it has been demonstrated that the
use of windowed CT scans instead of the original CT
scans significantly improves the diagnostic accuracy of
CT-based deep learning methods.®

However, in the case of sinograms, the intensity
windowing cannot be directly applied for the reasons
discussed in the preceding section.

There are no works so far attempting to synthesize
sinograms that are similar to windowed CT scans. One
of the key objectives of this paper is to propose a
model that can synthesize intensity-transformed sino-
grams without the need for the CT reconstruction phase.
To this end, we propose a U-Net-based ensemble deep
learning model to synthesize sinograms corresponding
to the three intensity windows mentioned above.

U-Net architecture’® is one of the widely used
encoder-decoder models in medical imaging. It was ini-
tially proposed for performing segmentation; it was later
extended to other applications like image denoising,?’

image restoration?® and image super-resolution.?®
Inspired by its success in other applications, we propose
a U-Net-based ensemble architecture for synthesizing
intensity-transformed sinograms.

Figure 3 shows the proposed ensemble architec-
ture of the ITSS module. Each branch of this module
takes the raw sinogram as an input and outputs a
sinogram equivalent to the specific windowing of the
brain, subdural and soft tissue. To this end, the base-
line U-Net model is modified to have three-level encoder
and decoder blocks with [32,64,128] filters in each
level. Each encoder level consists of two consecutive
sequences of 3 x 3 Convolution, Rectified Linear Unit
(ReLU) activation, and batch normalization. It is followed
by a 2 x 2 max-pooling, where the spatial dimensions of
feature maps are reduced by half. In a similar manner,
the decoder block has 2 x 2 transpose convolution at
first and is concatenated with the corresponding feature
map from the encoder block through a skip connection.
The inclusion of skip connections addresses the chal-
lenge of retaining features from earlier layers, which can
be lost as the network becomes deeper. Subsequently,
two consecutive sequences of 3 x 3 convolutions are
applied, concluding with a RelLU activation function.
To enhance network generalization, a dropout layer is
added at the end of each stage.

In order to generate the target sinograms (ground
truth) for the training phase, a CT image is first recon-
structed from the raw sinogram. The three windowed CT
images corresponding to the brain, subdural and soft tis-
sue are obtained by applying appropriate windowing to
the generated CT image. Finally, the sinograms corre-
sponding to the above three windowed CT scans are
generated through the Radon transform. These three
resulting sinograms are considered as the target images
to be synthesized by the proposed network for the
given input raw sinogram. Notice that the process men-
tioned above is needed only during the training phase
for the ground truth generation. Thus after the training
phase, the windowed sinograms are directly synthesized
without performing CT image reconstruction, intensity
windowing on the CT image, and the application of
Radon transforms.
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FIGURE 3 The proposed ITSS Module (a) Sinogram synthesis (b) The U-Net configuration. ITSS, intensity transformed sinogram

synthesizer.

The proposed loss function is a weighted combina-
tion of Mean Structural SIMilarity (MSSIM) and Mean
Square Error (MSE) appropriate for generating the
transformed sinograms and is given by:

Loss =T % MSSIM + (1 —T) % MSE, (1

where the value of T is empirically set to 0.75. The
MSSIM is a perceptual metric that quantifies visual
perception through luminance, contrast, and structure
across all pixels between the synthesized and the target
images.®? The mathematical expression for computing
MSSIM is given by:

1 Yo 2uu’ + Ci)(20] 0% + Cy)
MSSIM = — S <
M S (1] + 1+ Ci)e] +07 +Cy)

, (2

where 1] and i are the local means, o] and o° are the
standard deviations computed on a 11 x 11 window. The

subscript j indicates the pixel number, while the super-
script indicates whether the value is computed for the
targetimage (T) or the synthesized image (S).C4 and C,
are the constants included to avoid instability of the frac-
tion. Specifically, C1 = (K{L)? and C, = (K,L)? where L
is the dynamic range of the pixel values (255 for 8-bit
gray-scale images), K; = 0.01 and K, = 0.03.

MSE computes the square of the intensity differ-
ences between the synthesized and the target images
averaged across all pixels and is given by:

M
1
MSE = o Z}(/,T —I5)2 (3)
=

where II.T and II.S are respectively the intensity values of

the " pixel in the target and synthesized images.

The sinograms synthesized by this ITSS module
are given as inputs to the deep learning-based ICH
detection module described in the following subsection.

85U80|7 SUOWIWOD A0 3|edldde aup Aq peusenob ae ssppiie YO ‘8sn Jo se|ni 1oy AriqiT8uljuO A8]IM UO (SUOTpUoD-pue-sLIelALI0D A8 | 1M Afelq 1 eut|UO//:SANY) SUORIPUOD pue swie | 81 8ss *[20z/c0/2T ] uo Ariqiauliuo A1 epby Jo Aisenun Aq +T.9T dw/z00T 0T/I0p/wo A8 | 1M Aleiq Ul uo-widee//Sdny Woly papeo|umod ‘€ ‘v20z ‘602rELYZ



FULLY AUTOMATED SINOGRAM-BASED DEEP LEARNING MODEL FOR DETECTION

MEDICAL PHYSICS——22

Slice M Slice M

! Presence of

Slice M
\ 3 Blocks

Slice N+l

»n—

<
Q
2
m
o
2
3]
a
o
Q
(=]
=

Inception Block

Slice N-1 Conv block

Global Average | Slice N-1

1
hemorrhage
Slice N+1 Slice N+1 &

l
l

SliceN 3 Slice N

Slice N-1
_—) Sigmoid

|
l

Pooling !

v

L

Slice 1

A
- —| Bi-GRU “'_J\ Bi-GRU ]4——J| Bi-GRU ]- -
- _| Bi-GRU ‘<—-l Bi-GRU ]<—-| Bi-GRU ‘- -
o =[ Bi-6rU |«—{ Bi-GRU [« BiGRU [ = -

Slice 1 . . . Slice 1

J L J

r
CNN

-+
RNN

FIGURE 4 The proposed model for the detection of ICH. The architectural details of the inception block are presented in Figure 5. ICH,

intracranial hemorrhages.

Inception Block

Avg Pool

\ 4
‘Conv I x l| lConv 1% l| lConv I x l| |C0nv 1x 1| 3x3

Conv3x3 ‘ConvaS‘ ‘Conv7x7 Conv 1 x 1

ooy

Conv3x3 lConv 5 5% 5‘ ‘Conv e

, | L J

Y
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2.2.2 | Detection module

The proposed module aims to improve the accuracy
of ICH detection by not only extracting the appropriate
high-level features but also by incorporating the relevant
information from the neighborhood slices. To this end,
this paper proposes a cascaded CNN-RNN architecture
as shown in Figure 4.

The CNN part of the proposed architecture is
inspired by the inception block that was first pro-
posed in GoogleNet2! The architecture of the inception
block is shown in Figure 5. It contains a convolu-
tional block followed by three dense inception blocks.
The basic idea of the inception block is to extract
information at different scales by convolving with ker-
nels of different sizes and fuse the resulting feature
maps to obtain better representations of the image.
Each inception block has three convolutional kernels
3x3, 5x5, and 7x7. Two such blocks are com-
bined together and termed as dense inception block.
Each dense inception block is followed by a batch

normalization layer and a leaky RelLU activation
function.

Notice that the CNN part of the proposed archi-
tecture provides the probability of the presence of
hemorrhage based on the information of the current
slice alone. The false positives obtained in the individ-
ual slice-wise predictions can be reduced further by
additionally incorporating the information from the adja-
cent slices through the feature vector obtained at the
last layer of the CNN. For this purpose, the CNN mod-
ule is cascaded with an RNN module. It can be noted
from Figure 4 that while the CNN module extracts one
feature map for each slice, the RNN module is fed
with the feature maps extracted from all slices of a
patient.

Gated Recurrent Units (GRU) are one of the widely
used RNNs that were initially proposed for language
processing tasks®? and later extended to image pro-
cessing tasks®® due to their improved accuracies and
computational efficiency. Since the slices above and
below the current slice of interest can potentially share
information about the hemorrhage in the current slice,
we use Bidirectional GRU (Bi-GRU).>* The last convo-
lutional layer of the CNN gives a feature vector of size
120 for each slice. The feature vectors of all slices of a
patient’s scan are then fed to the three Bi-GRU layers as
illustrated in Figure 4. It is followed by a dropout layer of
0.2 and a sigmoid activation function for binary classifi-
cation. The number of filters in the three Bi-GRU layers
is setto 256. Inspired by the existing deep learning meth-
ods for detection, we chose to use binary cross-entropy
between the predicted and the ground truth labels as the
loss function. The Bidirectional Long Short-Term Mem-
ory (Bi-LSTM) is another widely used RNN model in the
literature3® Bi-LSTM is also evaluated in this paper in
place of Bi-GRU during the ablation study presented in
section 3.4.
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FIGURE 6 Sample result of ITSS module: TS, SS and the error are presented in rows one, two and three respectively. ITSS, intensity
transformed sinogram synthesizer; TS, target sinograms; SS, synthesized sinograms.

3 | EXPERIMENTS AND RESULTS

In this section, we first present the results of each mod-
ule of the proposed method, followed by the ablation
studies. Then we present a study of the robustness
of sinogram-based detection and CT-based detection
of abnormalities to offset errors and to the Poisson
noise. We also present a study of the adaptability of the
proposed model from parallel-beam geometry to cone-
beam geometry. Finally, we examine the interpretability
of the deep learning model in learning the patterns
of sinograms.

3.1 | Results of ITSS module

The ability of the proposed ITSS module to synthesize
the sinograms is evaluated both qualitatively and quan-
titatively by comparing the results with the ground truth
sinograms generated directly from the windowed CT
scans. Figure 6 visually presents a sample result for the
synthesized sinograms, ground truth, and the errors in
the synthesized sinogram for all three windows of the
brain. It can be noted that the sinograms generated from
the proposed synthesizer are very similar to the ground
truth sinograms.

In order to assess the generality of the synthesizer,
the quantitative evaluation is performed separately on
slices with and without hemorrhages. MSE, PSNR and
MSSIM are used for the evaluation. As discussed in sec-
tion 2.2.1, the higher the values of MSSIM and PSNR,
the better the accuracy of the synthesized sinograms.
Similarly, small values of MSE indicate more accurate
results. Table 1 presents the results for all three win-
dows. It can be noted that the proposed synthesizer
performed well in terms of all three metrics with MSE in
the range of 0.1%—2.2%,PSNR of 17-32 dB,and MSSIM
of 90%—97%. It can also be noted that the proposed
module synthesized the sinograms with and without
hemorrhages equally well.

3.2 | Results of detection module

The performance of the proposed detection module
was compared with other popular deep learning models:
ResNeXt-101,%6 Inception-v33! and Vision Transformer
(ViT)."? ResNeXt is a part of the ResNet family of
neural network models. It is known for its increased
expressiveness and accuracy, which is achieved by
using Split-Transform-Aggregate blocks that allow com-
plex feature representations. Inception-v3 architecture,
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TABLE 1
windows.

Quantitative evaluation of intensity transformed sinogram synthesizer module on slices with and without hemorrhages for three

Slices with hemorrhage

Slices without hemorrhage

Windowing type ~ MSE PSNR (dB) MSSIM (%) MSE PSNR (dB) MSSIM (%)
Brain 0.0067 22.90 93.53 0.0041 26.95 93.01
Subdural 0.0221 17.20 90.36 0.0120 21.74 90.72
Soft tissue 0.0023 28.29 96.80 0.0014 31.95 96.28

Abbreviations: MSE, Mean Square Error; PSNR, Peak Signal-to-Noise Ratio; MSSIM; Mean Structural SIMilarity.

TABLE 2
and inside the brackets, respectively.

Evaluation of the proposed and state-of-the-art detection methods. Patient-wise and slice-wise results are mentioned outside

Accuracy (%)

Sensitivity (%) Specificity (%)

ResNeXt-101 [37]
Inception-V3 [32]
ViT [19]

Proposed Method

55.73 (89.45)
68.70 (91.71)
57.22 (85.04)
95.50 (94.30)

98.86 (70.87)
98.14 (68.29)
94.71 (98.18)
93.16 (87.81)

26.42 (92.64)
48.69 (95.73)
26.90 (94.33)
97.10 (96.83)

Abbreviation: ViT, Vision Transformer.
Highest values are highlighted in bold.

on the other hand, is designed to handle multi-scale
information in the input data and is computationally
efficient for image classification tasks. ViT is a recent
neural network model that uses self-attention mecha-
nisms to process input data, and it has shown promising
results for image classification and other vision tasks.
The inputs to all these methods are the synthesized
sinograms obtained from the ITSS module.

Table 2 presents both slice-wise and patient-wise
quantitative results for the proposed and existing meth-
ods. It can be noted from slice-wise evaluations that the
proposed method has resulted in an accuracy of 94.3%,
with an improvement of around 3% compared to the best
result from the existing methods. Similarly, the slice-wise
sensitivity and specificity for the proposed method are
87.8% and 96.8% with an improvement of around 19%
and 1%, respectively, compared to the best results from
the existing methods.

Notice from the patient-wise evaluation results in
Table 2 that the proposed method achieves an over-
all accuracy of 95.5%, showcasing an improvement of
approximately 27% compared to the best result from
the existing methods. The sensitivity and specificity val-
ues for the proposed method are respectively 93.2%
and 97.1%. While there is a decrease in sensitivity by
around 5.7% and 1.5% compared to the ResNeXt-101
and ViT, respectively, the specificity has increased by
around 70.7%. Similarly, while there is a decrease in
sensitivity by around 5% compared to the Inception-V3,
the specificity has increased by around 48.4%. This indi-
cates that the proposed method is effective in detecting
the condition in individual patients and can help mini-
mize the risk of false positives and false negatives. The

significant improvements in the overall accuracy and
specificity of the proposed method can be attributed
to the drastic reduction in the false negatives due to
the cascading of the RNN network with the CNN net-
work. It can be noted that while Vision Transformers
(ViTs) have achieved success in various computer vision
applications, they did not perform well when applied to
sinogram data. This is because sinogram data lacks
spatial information, making it difficult for the vision trans-
former to capture spatial relationships between different
parts of the image. In contrast, CT images contain
spatial information and are better suited for vision
transformer.

3.3 | Multi-label classification of
hemorrhages

It is often observed that multiple hemorrhages of var-
ious types can be present in the brain CT scans. This
is known as a multi-label classification problem. Our
proposed model is trained to classify five types of hem-
orrhages like EDH, IPH, IVH, SAH, and SDH. The training
dataset includes samples for each of the five types
of hemorrhages; however, the number of samples with
EDH is much lower than those of the other classes. The
following minor modifications are made to our proposed
model in order to adapt it as a multi-label hemorrhage
classifier. The dense layer at the end is adjusted to
have six units corresponding to the number of hemor-
rhage classes. Additionally, the loss function is changed
to class-weighted binary cross-entropy, which takes into
consideration the class imbalance in the training data.
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FIGURE 7 Ablation Study: ROC curves are presented for
varying numbers of channels (1C, 3C) and different Recurrent
Neural Networks (Bi-LSTM, Bi-GRU).

These modifications allowed our model to classify mul-
tiple types of hemorrhages effectively. Alternative loss
functions, such as focal loss, can also be considered to
improve performance further.

Table 2 shows the performance of a proposed model
for classifying different types of hemorrhages based
on metrics like accuracy, sensitivity, specificity, precision,
and Area Under Curve (AUC). The overall performance
of the proposed approach for detecting any ICH type
was reasonably good, with an AUC of 80.69% and accu-
racy of 76.92%. However, when considering individual
ICH types, the results varied widely. The results show
that the model performs well for detecting IPH, IVH, SAH,
and SDH, with AUCs ranging from 65.49% to 78.21%
and accuracies ranging from 85.75% to 96.44%. The
performance of the model for detecting EDH is sub-
optimal, with an AUC of 55.73% and a sensitivity of
only 11.76%. This is primarily due to class imbalance
present in the training data. Overall, the results suggest
that the deep learning-based approach shows promise
for detecting and classifying different types of ICH.

3.4 | Ablation studies
We first analyze the detection accuracy when using a
raw sinogram versus using synthesized sinograms. Sec-
ondly, the impact of cascading an RNN network to the
CNN network in the proposed detection module is stud-
ied. Finally, the effect of using Bi-LSTM in place of the
currently used Bi-GRU is also evaluated.

Figure 7 presents ROC curves for all the aforemen-
tioned combinations, and the following observations

can be made from them. The use of three-channel
synthesized sinograms with a CNN detection module
(denoted as “CNN+3C” in the figure) has significantly
improved the results compared to feeding the same
detection module with the raw sinograms (denoted as
“CNN+raw”). The best results are obtained by cas-
cading the CNN network with Bi-GRU and feeding it
with the 3-channel synthesized sinograms (denoted as
“CNN+3C+Bi-GRU"). The use of Bi-LSTM (denoted as
“CNN+3C+Bi-LSTM”) in place of Bi-GRU has given
almost similar results, with slightly better results with Bi-
GRU.

3.5 | Robustness analysis

This subsection evaluates the robustness of sinogram-
based detection versus CT-based detection to the offset
errors in the projection angles and also to the Poisson
noise in the image acquisition. A brief description of
these two errors is first presented and is followed by the
evaluation results.

Offset Error: Offset error in sinograms refers to sys-
tematic errors in the measurement of the position of the
detected photons or the projection angles. This occurs
due to mechanical or electronic misalignment of the
detectors or the gantry,and it can result in a shift or tilt in
the sinogram data. During the CT reconstruction phase,
offset errors can result in artifacts such as ghosting,
streaking, or blurring of the image®’

Error due to Poisson Noise: There is usually noise
added during the sinogram acquisition due to ran-
dom fluctuations in the number of photons received
by the detector and is typically modeled with Pois-
son distribution3” These noise levels can be higher,
particularly in regions with lower signal intensities.

Notice that the proposed sinogram-based detection
module can also be adapted to perform CT-based
abnormality detection by simply feeding it with win-
dowed CT scans instead of sinograms. Hence, in order
to compare the robustness of sinogram versus CT-
based approaches, the same detection module is first
trained separately with the noise-free sinograms and the
corresponding CT scans. Later, for testing the sinogram-
based detection module, two test sets of sinograms are
generated by introducing an offset of 0.1°,and by adding
a Poisson noise with a mean of 0.1. The CT images
reconstructed from those two sets of sinograms are
used as testing data for CT-based detection.

Table 4 summarizes the robustness analysis results
for both approaches. It can be noticed that the change
in detection accuracy in the sinogram-based approach
is very minimal, with less than 0.5% for both offset and
Poisson errors. In the case of CT based approach, the
detection accuracies are reduced significantly by 2% for
Poisson noise and 3% for offset error.
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TABLE 3 Multi-label classification results for all intracranial
hemorrhage subtypes in terms of accuracy, AUC, sensitivity and
specificity on the test set for the proposed model

Accuracy Sensitivity  Specificity

ICHtype AUC (%) (%) (%) (%)

Any 80.69 76.92 86.05 75.34
EDH 55.73 99.45 11.76 99.70
IPH 65.49 96.34 31.40 99.60
IVH 78.12 96.44 58.36 97.88
SAH 74.11 85.75 61.24 86.97
SDH 78.21 88.67 66.11 90.31

Abbreviations: EDH, epidural hematoma; ICH, intracranial hemorrhages; IPH,
intraparenchymal hemorrhage; IVH, intra ventricular hemorrhage; SAH, sub-
arachnoid hemorrhage; SDH, subdural hematoma.

TABLE 4 Robustness analysis of computed tomography and
sinogram-based detection to Poisson noise and offset errors in terms
of accuracy.

CT-based Sinogram-based
detection detection
Initial result 94.41 % 94.30 %

Offset error 92.20 % (1 2.21 %)

91.55 % (| 2.86 %)
Abbreviation: CT, Computed Tomography.

94.12 % (10.15 %)

Poisson noise 94.20 % (10.10 %)

3.6 | Extension to fan-beam geometry
The evaluations performed so far are on the sino-
grams generated from the parallel-beam geometry. The
objective of this subsection is to analyze the adaptability
of our proposed network trained on sinograms from
parallel-beam geometry to fan-beam geometry. The
equivalent sinograms for the testing data associated
with fan-beam are generated using the publicly avail-
able Tomographic Iterative GPU-based Reconstruction
(TIGRE) toolbox.2®

The network that was originally trained on parallel-
beam geometry is directly used without any additional
training for evaluating the detection accuracy on fan-
beam geometry-based test data. It is found that the
accuracies obtained for fan-beam geometry are com-
parable to those achieved with parallel-beam geometry.
This result is as expected since sinograms associated
with both parallel-beam and fan-beam are very similar in
terms of their image characteristics. The conversion of
fan-beam to parallel-beam requires rearranging of the
rays. Thus, both of them contain the same information.

The CT machines have recently evolved towards
cone-beam geometry. While fan-beam CT utilizes a fan-
shaped X-ray beam and rotating detectors, cone-beam
CT uses a cone-shaped X-ray beam and rotating detec-
tors. The primary difference between these geometries
is in the projection dimension: fan-beam CT captures
1D projection data, whereas cone-beam CT acquires
2D projection data during the scanning process. Notice

that although cone-beam geometry-based CT acqui-
sition is made, its equivalent parallel-beam geometry
sinograms can be obtained through appropriate rebin-
ning of data, as discussed in [39, 40]. Hence, the
proposed model that is trained on parallel-beam geom-
etry can still be adapted to cone-beam geometry-based
image acquisition with appropriate rebinning of data
and training.

3.7 | Interpretability

This subsection provides the results of interpretabil-
ity by showing that the attention of the proposed
method is towards the most relevant regions of the sino-
gram that highlight the hemorrhage to enable accurate
automated detection of ICH. To this end, the Gradient-
weighted Class Activation Map (Grad-CAM)*'! obtained
in the penultimate layer of the CNN architecture is
visually analyzed.

The first and second rows of Figure 8 respectively
present sample results for IVH and IPH. The raw sino-
grams and the windowed CT scans with injuries overlaid
are respectively shown in columns (a) and (b). The sino-
grams generated for the spatial masks containing those
hemorrhages alone are presented in column (c). The
synthesized sinograms obtained from the ITSS module
are shown in column (d). Finally, column (e) presents
Grad-CAM heat maps obtained from the penultimate
layer of the CNN architecture. It can be noticed by com-
paring results in columns (a), (c), and (d) that, in the
synthesized sinograms, a distinct contrast can be seen
in the regions associated with the hemorrhages, which
are otherwise not visible in the raw sinograms. It can also
be noted from columns (c) and (e) that the proposed
deep learning method is indeed able to automatically
give more importance (weight) to the regions in the
sinograms that correspond to a given hemorrhage.

4 | DISCUSSION

Deep learning-based analysis of images for various
tasks of detection and classification of pathologies,
mimicking the function of a radiologist, has seen tremen-
dous growth in the last few years. These data-driven
methods that use reconstructed images have been
largely successful due to the latent space representation
offered by neural networks. Latent space is an impor-
tant idea since “deep learning”relies on it to understand
data characteristics and simplify data representations
to identify patterns. The power of neural networks lies
in their ability to create this latent space and per-
form the task. The developments so far have relied on
image data, which requires an additional step of image
reconstruction after sinogram acquisition. The image
reconstruction step can take as much as 10 min, even
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FIGURE 8

Interpretation of the detection results on sinograms through Grad-CAM heatmaps. Each row presents results for different types

of hemorrhages. Column (a) shows the raw sinograms. Column (b) shows the reconstructed CT images with the contours of hemorrhages
overlaid. Column (c) illustrates the sinograms generated for the hemorrhage mask alone. Column (d) shows synthesized sinograms. Column (e)
shows the Grad-CAM heat-maps.Grad-CAM, Gradient weighted class activation map.

though the image acquisition can be completed in less
than 2 min. As sinograms are challenging for humans
to interpret, our method uses neural network-based
analysis for ICH detection directly from sinograms.
It mainly consists of two modules: ITSS and detec-
tion module.

ITSS module is a novel contribution where a U-Net-
based deep learning model is proposed to synthesize
sinograms equivalent to windowed CT scans. The syn-
thesizer has shown good performance both visually and
quantitatively in terms of PSNR, MSE and MSSIM. We
notice that, while the raw sinograms are not human inter-
pretable, distinct contrast patterns associated with the
hemorrhage can be seen in the synthesized sinograms.
Further, the Grad-CAM heat maps have confirmed that
the proposed detection algorithm is able to focus on the
injury-related areas in the sinogram automatically.

The proposed detection module contains a cascade
of CNN and RNN architectures. While the CNN architec-
ture learns slice-wise probabilities of the hemorrhage,
the Bi-GRU-based RNN architecture further incorpo-
rates the relevant information from the neighborhood
slices. This is the first work to use RNNs in the con-
text of sinogram-based injury detection. The proposed
CNN-RNN method has resulted in an overall patient-
wise accuracy of 95.5%, with a significant improvement
of over 27% compared to the best results from the
existing methods. Compared to the recent vision trans-
former architecture, the proposed model based on
CNN has demonstrated excellent performance. The
attention mechanism used in vision transformers is com-
putationally expensive, leading to a large number of

parameters, indirectly resulting in the requirement of a
significant amount of training data for effective learning.
More importantly, vision transformers are not transla-
tion invariant by design. Thus, they may not be effective
at capturing local features in the sinograms to provide
the classification required. Experiments performed in
this work showed that vision transformers might not be
effective for the task at hand, where sinograms were
utilized as input to the model.

Robustness analyses of sinogram-based detection
and CT-based detection approaches are also per-
formed. It is found that compared to CT-based hemor-
rhage detection, sinogram-based detection is relatively
more robust to offset errors in projection angles and
also to the noise during the image acquisition. Thus, the
results in this paper have demonstrated that the accu-
racy of sinogram-based detection methods is not only
on par with CT-based methods but also more robust to
offset and noise errors. It can be noted that as noise
increases in the images, the accuracy of the model
may deteriorate. Since the current work is focused on
evaluating the model’s performance on sinogram-based
methods over CT-based methods, we did not investigate
computing the extreme limits of noise.

In addition to detecting the presence of a certain
condition, the proposed method includes a multi-label
classification analysis to classify the type of hemor-
rhages in a given sinogram. The results show that
the proposed model accurately distinguishes various
types of hemorrhages, providing valuable information
for guiding treatment decisions and monitoring patient
outcomes. The activation maps are used to visualize
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and interpret the areas in the sinogram that are most
relevant to the classification decision, which improves
transparency and trust in the model’'s predictions. The
proposed methods will hopefully take us one step closer
to creating more straightforward scanner hardware to
quickly detect important findings, which is the need in
emergency medicine for timely intervention.

The proposed approach can potentially enhance the
clinical workflow as an efficient triage tool. For example,
it can be used to rapidly analyze the acquired sino-
grams of each patient in less than a second for the
detection of ICH. The cases identified as positive for
ICH can then be prioritized for CT reconstruction and
for immediate further assessment by the clinical expert.
It can thus enable quick diagnosis and treatment plan-
ning.Leveraging the power of deep learning, this method
enables rapid detection of critical findings directly from
sinograms, eliminating the need for time-consuming CT
image reconstruction.

The current evaluations have certain limitations due
to the unavailability of data. Firstly, because of the
lack of availability of raw sinogram data, they are
currently generated by applying the inverse Radon
transform to CT data. In future work, we plan to
perform evaluations directly on the acquired raw sino-
grams. Secondly, the current study did not include the
detection of ICH directly from 2D projections obtained
from cone-beam geometry due to the unavailability of
ground truth, and we plan to study the same in future
work.

5 | CONCLUSION

In this work, new deep-learning method is proposed for
detecting and classifying ICH directly from sinograms
without requiring cumbersome CT image reconstruction
procedures. As sinograms are difficult to interpret by
humans, the proposed method is the first of its kind to
utilize the neural network-based analysis of sinograms
to detect hemorrhages. It mainly consists of two mod-
ules:ITSS and detection module. ITSS module is a novel
contribution where a deep learning model is proposed
to synthesize sinograms equivalent to windowed CT
scans. The proposed detection module contains a cas-
cade of CNN and RNN architectures. While the CNN
architecture learns slice-wise probabilities of the hem-
orrhage, the Bi-GRU-based RNN architecture further
incorporates the relevant information from the neighbor-
hood slices. The proposed method achieves an overall
patient-wise accuracy of 95.5%, reflecting a substan-
tial improvement of over 27% compared to the best
results from existing methods. The method also per-
forms well in classifying the type of hemorrhages. It is
found that compared to CT-based hemorrhage detec-
tion, sinogram-based detection is relatively more robust
to offset errors in projection angles and also to the

noise during the image acquisition. The proposed meth-
ods will hopefully take us one step closer to creating
more straightforward scanner hardware to quickly detect
important findings, which is the need in emergency
medicine for timely intervention.
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