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Multimodality NIR spectroscopy systems offer the possibility of region-based vascular and molecu-
lar characterization of tissue in vivo. However, computationally efficient 3D image reconstruction
algorithms specific to these image-guided systems currently do not exist. Image reconstruction is
often based on finite-element methods �FEMs�, which require volume discretization. Here, a bound-
ary element method �BEM� is presented using only surface discretization to recover the optical
properties in an image-guided setting. The reconstruction of optical properties using BEM was
evaluated in a domain containing a 30 mm inclusion embedded in two layer media with different
noise levels and initial estimates. For 5% noise in measurements, and background starting values
for reconstruction, the optical properties were recovered to within a mean error of 6.8%. When
compared with FEM for this case, BEM showed a 28% improvement in computational time. BEM
was also applied to experimental data collected from a gelatin phantom with a 25 mm inclusion and
could recover the true absorption to within 6% of expected values using less time for computation
compared with FEM. When applied to a patient-specific breast mesh generated using MRI, with a
2 cm ductal carcinoma, BEM showed successful recovery of optical properties with less than 5%
error in absorption and 1% error in scattering, using measurements with 1% noise. With simpler
and faster meshing schemes required for surface grids as compared with volume grids, BEM offers
a powerful and potentially more feasible alternative for high-resolution 3D image-guided NIR
spectroscopy. © 2007 American Association of Physicists in Medicine. �DOI: 10.1118/1.2795832�
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I. INTRODUCTION

NIR tomography is evolving as a potential complement to
conventional imaging modalities such as MRI, mammogra-
phy and ultrasound.1–6 NIR imaging has the ability to pro-
vide information on the vascular and molecular architecture
of tissue noninvasively which can be used for diagnosis of
breast cancer.7–9 However, the fundamental limitation of NIR
imaging as a standalone modality is its poor spatial resolu-
tion arising from high scattering of light in tissues. Hence, its
clinical utility may be limited without additional information
from other imaging methods. There is interest in using MRI
together with NIR for breast cancer diagnosis and tracking
response to therapy.1,6 An integrated system with NIR as a
complement to MRI could yield additional contrast-
enhancing features that may reduce false-positives and the
number of follow-up invasive procedures. At the same time,
high resolution MRI can guide the optical NIR image recon-
struction. In this framework, NIR tomography would func-
tion as image-guided spectroscopy where suspicious regions
are isolated by MR and the NIR spectroscopy is used to
characterize the optical properties of these volumes of inter-
est.

Algorithms that incorporate anatomical structure from an-
other imaging modality such as MRI have been reported10–15

and can be classified as those that use either soft or hard
priors. Soft priors invoke a regularization term to implement

MR region information and reconstruct all pixels in the
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mesh.10,13,14 The approach has been considered in
deterministic10 and Bayesian12 settings based on linear and
nonlinear iterative inverse solutions. It is easily applied in
two dimensions but becomes much more time consuming
and severely under-determined in three dimensions due to
the large number of unknowns. It is possible to improve the
efficiency of the scheme through a Moore–Penrose
inversion16 but the problem is still computationally intensive.
Hard priors involve the reconstruction of piecewise constant
regions where the optical images are constrained to have a
structure predefined by MRI.15–17 The technique assumes the
domain to consist of several homogeneous regions where the
optical properties are updated uniformly such that the num-
ber of degrees of freedom in the reconstruction is dramati-
cally reduced which stabilizes the estimation. This is espe-
cially beneficial in three dimensions because the number of
unknowns can be reduced from many thousands of points
�nodes� to a few piecewise constant regions �typically lim-
ited to the adipose, fibroglandular, and tumor/cyst composi-
tion of the breast�. The assumption that each tissue type is
homogeneous is idealized, but hard priors produce an accu-
rate characterization of the average properties in each region
even when the individual tissue constituents are complex in
shape and size.17 The approach has been implemented in 3D
FEM models and shown to recover nearly 100% of the ex-
pected tumor contrast in small inclusions.16 While hard pri-

ors provide a simple and powerful technique for incorporat-
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ing MRI structure, they have typically been implemented in
numerical FEM and finite difference methods �FDM� where
the entire domain is discretized into volume meshes with at
least 15 000 nodes ��4 mm resolution�.

Here, we evaluate the potential of the boundary element
method �BEM� to model light propagation in tissue and form
the basis of an image reconstruction algorithm. The BEM is
especially applicable when the imaging domain is homoge-
neous or consists of a small number of homogeneous subdo-
mains, which is exactly the case in region-based image-
guided NIR spectroscopy. An important advantage of the
BEM is that it requires only surface meshes18 as opposed to
volume discretization of the entire domain as with FEM.
This makes meshing a significantly simpler task because sur-
face triangulation is much faster to generate and more reli-
ably produced than volumetric discretization.

While optical imaging has experienced significant ad-
vances over the past two decades, the ability to perform 3D
image reconstruction on a routine basis remains a formidable
task. Several research groups use FEM and FDM11,19–22 be-
cause these methods are relatively easy to deploy in two
dimensions but become very time consuming in three dimen-
sions. The BEM provides a convenient way of dealing with
the meshing task by exploiting a surface discretization,
which only involves triangular elements, as compared to tet-
rahedrons that fill the entire volume for the FEM. Adaptive
meshing with spatially varying node patterns could reduce
the number of nodes required to a certain extent but adds
another level of complexity to the problem formulation,
whereas meshing with varying resolution is substantially
easier in the BEM. For example, the surface of a small tumor
could be discretized independently to have higher resolution
compared with the outer breast surface. Even though the
BEM uses dense matrices, which are computationally inten-
sive to solve, as compared to the sparse FEM structure, the
total number of nodes in the BEM mesh is substantially
smaller than its FEM counterpart.

The BEM has been applied for image reconstruction in
electrical impedance tomography23 and in impedance moni-
tored cryosurgery.24 This also has been studied computation-
ally for optical tomography, to recover shape and optical
coefficients in head models.25 In this latter effort, the authors
recovered the shape of a perturbation and its optical proper-
ties under the assumptions that the background values are
known exactly and there was no noise in the measurements.
Because the problem was geared toward reconstructing
shapes of perturbations, the optical parameters were not ex-
pected to be recovered accurately. In the work presented
here, the shapes of perturbations such as tumors are known a
priori and the focus is on BEM-based reconstruction of the
optical properties in different regions. This makes the prob-
lem less computationally expensive and able to handle noisy
measurement data with more accurate parameter estimation.
The rationale for implementing the boundary element
method in this manner is for its direct applicability to 3D
image recovery for MR-guided NIR systems.

This article outlines the implementation and results ob-

tained from a BEM forward model to the diffusion equation
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for light propagation. It includes a comparison with existing
finite element models in a multiregion imaging domain. The
behavior of the BEM algorithm when subjected to various
levels of measurement noise is presented along with an
evaluation of its sensitivity to initial estimates of the recon-
struction parameters. The reconstruction algorithm has been
applied to experimental data from a phantom with an inclu-
sion to recover the optical properties of the medium. Prelimi-
nary reconstruction results are tested on a patient-specific
breast mesh generated from an MRI of a subject with a 2 m
infiltrating ductal carcinoma to examine the performance
with real patient data.

II. METHODS

II.A. BEM-based forward model to diffusion equation

The forward model is represented by the diffusion equa-
tion involves obtaining the light flux outgoing from different
surfaces, using known optical properties for the interior of
these regions. The diffusion approximation to the radiative
transport equation assumes that the interior photon irradiance
is highly scattered and nearly uniform in all directions, and
therefore its angular distribution is effectively described by
the single isotropic fluence parameter, �.26 This equation is
valid under the assumption that scatter dominates over
absorption, which is true in the case of most tissues, includ-
ing the human breast, in the wavelength region of
650−1350 nm.27 This differential equation is written as26,28

− � · D�r� � ��r,�� + ��a�r� +
i�

c
���r,�� = q0�r,�� �1�

where ��r ,�� is the isotropic fluence at modulation fre-
quency � and position r, D�r� is the diffusion coefficient,
�a�r� is the absorption coefficient, c is the speed of light in
the medium, and q0�r ,�� is an isotropic source. The diffu-
sion coefficient can be written as

D�r� =
1

�3��a�r� + �s��r���
, �2�

where �s��r� is the reduced scattering coefficient. When tis-
sue is assumed to consist of homogeneous regions �as shown
in the 2D illustration in Fig. 1�, D�r� is constant in each zone
and for a particular frequency, �, we can write

��a�r� +
i�

c
� = kl

2,

where kl is constant in subdomain l.29,30 Hence, Eq. �1� can
be expressed in the form of a modified Helmholtz equation

� . Dl � � − kl
2� = − q0�r,�� , �3�

where kl is the wave number.
The boundary element formulation for the modified

Helmholtz equation has been well detailed in literature18 and
hence the formulation for the diffusion equation under the
assumption of known piecewise constant regions can be de-
rived. The details of this derivation are presented in the Ap-

pendix, since the formulation is fairly intense mathemati-
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cally. The breast imaging domain will typically consist of
3–4 tissue regions obtained from MRI, namely adipose and
fibroglandular layers in normal tissue and additionally, ma-
lignant and benign tumor tissue in women with abnormali-
ties. The numerical BEM framework �as detailed in the Ap-
pendix� then has to be modified to incorporate continuity
conditions across these internal boundaries as shown in the
Appendix.

II.B. BEM-based reconstruction of tissue optical
properties

Image reconstruction is based on the BEM forward model
to the diffusion equation for multiregion imaging domains as
described above. The reconstruction procedure solves an in-
verse problem to determine the NIRS tissue vascular chro-
mophore concentrations of oxyhemoglobin �HbO2�, de-
oxyhemoglobin �Hb� and water and cellular estimates of
scatter amplitude and scatter power from the boundary mea-
surements of intensity and phase after light transmittance
through tissue. This also leads to derived estimates of total
hemoglobin ��HbT�= �HbO2�+ �Hb�� and oxygen saturation
�StO2= �HbO2� / �HbT� in percent� as well as scatterer size
and density calculated, from scatter amplitude and power
using Mie theory.31 Images of these quantities have been
conventionally obtained by reconstructing optical properties
at multiwavelengths initially followed by a spectral fit to
estimate the chromophore concentrations and scatter param-
eters. Typically, image reconstruction is achieved through an
iterative procedure where an objective function consisting of
the difference between the measured and the modeled data is
minimized. In our case, the least-squares functional to be
minimized is32

�2 = �
j=1

M

�� j
meas − � j

cal�2, �4�

where M is the total number of measurements at each wave-
length, and � j

meas and � j
cal are the measured and calculated

FIG. 1. �a� 2D illustration of a circular domain consisting of three homoge-
neous subdomains, �a is the absorption coefficient, and �s� is the reduced
scattering coefficient.
fluence, respectively, at the boundary for each measurement
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point j. The iterative procedure we used is based on New-
ton’s method which has been applied successfully in several
inverse problems.20,33,34 Assuming that a solution for the op-
tical properties exists, close to an initial estimate �0, the
Gauss–Newton method generates a new search direction or
update as

I � � = �� , �5�

where �� refers to the change in boundary data. In Eq. �5�, I

is the Jacobian, the matrix containing the sensitivity of the
boundary data to a change in optical property �a and diffu-
sion coefficient D given by I= �I�a

;ID� and �� is the update
in the optical properties defined as ��= ���a ;�D�. Multiply-
ing Eq. �5� by IT and rearranging lead to

�� = �ITI�−1IT � � . �6�

We solved Eq. �6� iteratively to obtain the update in opti-
cal properties, which minimizes the difference between the
measured and calculated data as indicated in Eq. �4�. The
Jacobian was calculated using a perturbation approach to ap-
proximate the required derivatives by perturbing either �a or
D in each region in turn and calculating the resulting change
in the boundary measurements. The structure of the Jacobian
has been detailed previously.35 We implemented Eq. �6� to
reconstruct iteratively for the optical properties based on a
stopping criterion of a change in projection error �given by
the functional in Eq. �4� of less than 2% between successive
iterations. Regularization was added for data with noise due
to the ill-conditioned nature of the Hessian matrix �ITI� in
Eq. �6�. The regularization is based on a modified
Levenberg–Marquardt method,32 and the starting value for
the regularization was chosen empirically based on previous
experience in this area36 and reduced successively with itera-
tions.

II.C. Image reconstruction with FEM

The results from the BEM forward model and image re-
construction have been compared with those obtained from
our FEM approach, which has been detailed and tested in
multiple simulation and phantom studies.16,20,37,38 The
region-based scheme assuming piecewise constant subdo-
mains has also been implemented using the FEM forward
model where all nodes in a region have been updated simul-
taneously thereby substantially reducing the rank of the re-
construction basis. The FEM reconstruction uses Newton’s
method as described in the previous section, essentially solv-
ing the same Eq. �6�. The Jacobian was also calculated using
the perturbation approach for consistency in the comparison
with the BEM. The stopping criterion was for change in
projection error to be no less than 0.5% between successive
iterations, and regularization was used to counter the ill-
conditioned nature of the problem.39 Both models use the
same assumption that the imaging domain contains piece-
wise constant regions and use the same framework for solv-
ing the inverse problem. The differences in reconstructed re-
sults are mainly attributable to the discretization of the

domain.
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III. RESULTS

III.A. BEM-based forward model

Implementation of the boundary element forward model
on a single homogeneous region �not shown here� produced
results comparable to the finite element method, using 27%
of the nodes, since only discretization of the boundary was
required. The RMS difference in intensity between the two
solution techniques was 0.0002 suggesting near perfect
agreement between the models. Figure 2 shows results from
implementation of the BEM in a two-region problem. A do-
main containing a single spherical inclusion of diameter 30
mm located off-center at �0,−15,0� in a cylinder of diameter
86 mm and height 40 mm �shown in Fig. 2�a�� was meshed
to obtain both surface and volume discretizations. Meshing
was carried out using NETGEN, a freely available software
package that allows surface and volumetric meshing40,41 and
automatically changes the mesh resolution near edges and
curved surfaces depending on the grading desired, given the
maximum mesh size. The surface grid contained triangles on
the surfaces of the cylinder and the spherical anomaly �as
shown in Fig. 2�b��, whereas the volume grid contained tet-
rahedrons throughout the volume of the cylinder such that
the nodes belonging to the spherical inclusion were tagged
separately to contain different optical properties. The inclu-
sion had optical properties in 2:1 contrast with the back-
ground which had optical properties of �a=0.006 mm−1 and
�s�=1.0 mm−1. Forward data were generated using both
BEM and FEM test grids. As shown previously,42 the FEM
solution is equivalent to Monte Carlo simulation in highly
scattering regime, and the model used here has been tested
previously20,35 in simulations and experiments. In order to
generate accurate forward data using the FEM mesh, a high
resolution test grid containing 68 360 nodes and 365 540 tet-
rahedrons was used. The BEM surface grid contained 3015
nodes and 6022 triangles. The imaging geometry was as-
sumed to be a circular ring of source-detectors with 16
source-detector positions and 15 measurements collected per
source location for a total of 240 measurements, as shown in
Fig. 2�c�.

The measurements at the detector locations for a single
source are plotted in terms of log of amplitude in Fig. 2�d�
and phase �in degrees� in Fig. 2�e� as a function of theta,
where theta is the angle of the detector location from the
source at the same plane. As expected, the intensity de-
creases substantially with distance away from the source.
The results from the BEM forward model are comparable to
the FEM generated measurements. The RMS difference in
the intensity of the two solutions over all sources was found
to be 4.8�10−5. The difference in the two models is possibly
due to differences in discretization. Phase shows a constant
offset between the two models, likely due to different source
implementations �Gaussian for FEM and point source for
BEM�. For the BEM, the source term is exactly integratable
when a point description is used, as implemented here. Note

that a Gaussian source integral for BEM would require vol-
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ume discretization, which detracts from the most significant
advantage of the BEM, namely, the need for only surface
meshing.

In order to find the variation in forward data for varying
resolution of meshes, the forward models for BEM and FEM
were computed on three cases with varying mesh resolutions.
Cases 1, 2, and 3 had resolutions of 1.5, 2, and 3 mm for
FEM and 3, 4, and 5 mm for BEM meshes. All meshes were
created with NETGEN as described above. The reason for the
differing resolutions between BEM and FEM is that the tu-
mor shape is significantly affected by the resolution of the
volumetric mesh for FEM and hence higher resolution was
required to accurately define the inclusion. This is not the
case for BEM since the mesh itself describes the surface of
the inclusion rather than its volume, and hence the shape is
not affected to the same extent by the mesh resolution. The
number of nodes for each of the test grids, along with nodes
belonging to the inclusion is shown in Table I. The fraction
of nodes belonging to the tumor is consistently higher in the
BEM mesh. The accuracy of the forward model was quanti-
fied in terms of the RMS difference in data between the most
accurate data obtained, assumed to be the forward data from
the finest FEM mesh �case 1�, and the current data for each
of the cases from BEM and FEM. BEM was found to be
more accurate at a smaller resolution compared with FEM
consistently for all cases. This is in agreement with results
from Fedele et al.29 Figure 3 shows the overall time of com-
putation for both models including the meshing time and the
forward model computation. BEM showed a 44% to 72%
improvement in computational time over FEM.

In order to characterize the computational time and
memory required by the BEM as a function of mesh resolu-
tion, five different meshes were used for the same two-region
domain described above �shown in Fig. 2�a�� at varying reso-
lutions. All computations were performed on a 90 node/330
cpu Beowulf/Linux cluster with 8 GB of DDR memory per
node. The memory required for the forward model was the
amount �in megabytes� required to store the matrix K �given
in Eq. �3��. This is plotted on a log-log scale, as a function of
the number of nodes �N� in the mesh, in Fig. 4�a�. A curve-fit
shows the logarithm of memory to scale linearly with loga-
rithm of N with a slope of 1.99 such that memory scales as
�N2 as expected. The time of computation �TOC� to run the
forward model is plotted as a function of the node number on
a log-log scale in Fig. 4�b�. A curve-fit to the data-points
indicates that the time scales as N2.83. These results agree
with expectation, since the number of scalar operations in
inversion should theoretically scale with the order of N3 �or
N2

log 7, to be more precise�.43

The corresponding volumetric meshes generated for Table
I were used to calculate memory and computational time for
FEM forward model. A similar plot of memory required to
store the stiffness matrix for FEM with respect to N, showed
memory required scaling as a power function of N1.02. This
agreed with the expected theory of sparse matrix storage to
scale linearly with order N .43 Indeed BEM was found to be

more memory intensive: However the ease of obtaining sur-
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faces and the ability to provide accurate results with coarser
representations as shown by the RMS errors compensate for
this.

III.B. Reconstruction of optical properties in two-
region models

The reconstruction of optical properties using the BEM

FIG. 2. �a� 3D imaging domain containing a spherical inclusion in a cylindri
BEM surface mesh is shown. The size of the mesh is given in Table I �ca
Comparison of the intensity at the measurement points from the FEM and B
of the FEM mesh is shown in Table I, case 1. �e� Comparison of phase for
forward model was implemented as described in Sec. II B.
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The accuracy of the reconstructions was evaluated using data
generated on the imaging domain in Fig. 2�a� with 16 source-
detector positions and 15 measurements collected per source
location for a total of 240 measurements. This geometry is
based on the NIR optical imaging system based at
Dartmouth.44 The phantom inclusion had 2:1 contrast with
respect to background �background properties were �a

−1 −1

omain was created for testing multiregion problem. �b� Cross section of the
�c� Source-detector configuration for the imaging geometry is shown. �d�
odels on the test domain �RMS difference=0.00005� is displayed. The size

wo models is shown.
cal d
se 1�.
EM m
the t
=0.006 mm , �s�=1.0 mm �. The forward mesh used to
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generate the data contained 4462 nodes and 8916 triangles
and required 2.9 s for meshing. Different levels of random
Gaussian distributed noise were added to the simulated data,
and the optical properties were reconstructed using a differ-
ent mesh containing 3015 nodes and 6033 triangles. The re-
sults are tabulated in Table II for �1� no noise in the data, �2�
1% noise in amplitude and 0.5° in phase, and �3� 5% noise in
amplitude and 1° in phase. Only the recovered values in the
inclusion are shown: The background value was always re-
covered, independent of the initial property estimates, with a
mean error less than 2.5%. The starting estimate was varied
from the background value to close to the true value and to
an over-estimate of the true value. The error in the recovered
estimates increased as the initial guess deviated from the
background values. In experimental measurements, the ini-
tial estimate is obtained using a data calibration method �de-
scribed in the next section�, which typically yields a starting
guess close to the background values. Hence starting values
equal to background values �referred to as case 1, row 1 in
Table II for all noise levels� along with 5% noise in measure-
ments presents the most realistic setting for reconstruction.
The average error for all noise conditions for case 1 was
1.4% in absorption and 12.2% in scattering.

To compare the performance of the BEM reconstruction
with FEM-based reconstruction, a volume mesh for the do-
main was created using NETGEN

40,41 and contained 68 360
nodes and 365 540 tetrahedrons and required 404 s for mesh-
ing. Forward data were generated on this mesh, and 5% ran-
dom Gaussian noise was added. The starting values equaled

TABLE I. Number of nodes in surface and volume m
geometry shown in Fig. 2�a�.

BEM

Case Node Triangle Node in inclusion Node T

1 3015 6022 320 68360
2 1703 3398 187 32820
3 1077 2146 120 9045

FIG. 3. Comparison of the total time of computation �meshing+forward
model� required by BEM and FEM for three different cases of varying
resolution of mesh is plotted. The size of the meshes for the three cases is

shown in Table I.
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the background values, and the reconstruction for the optical
properties was performed using a mesh containing 32 820
nodes and 175 002 tetrahedrons. Figure 5�a� shows the com-
parison of the recovered values for the absorption and scat-
tering coefficients along with the computational time re-
quired by both FEM and BEM for processing. BEM and
FEM show comparable recovery of optical properties. BEM
was slightly more accurate in recovery of absorption �1.5%
compared to 4% error� and less accurate in scattering �12%
compared to 4%�. It is expected that the use of spectral
priors45 will improve the scattering estimates. Overall, BEM
took less time with an improvement of 28% in the time of

s created at different resolutions for the two-region

FEM RMS error

edron Node in inclusion BEM FEM

540 3932 4.8�10−5 -
002 1862 8.07�10−6 3.42�10−5

40 491 4.23�10−5 9.65�10−4

FIG. 4. �a� Logarithm of memory �in megabytes� required by the BEM
forward model for the two-layer geometry as a function of the logarithm of
the number of nodes �N� in the mesh. The curve fit shows that memory
scales as N1.99. �b� Logarithm of the time of computation �TOC� for the
forward model as a function of the mesh size �in terms of logarithm of node
number N�. A fit to the data-points illustrates a linear fit with slope of 2.83
indicating that TOC scales as N2.83. The computation time is based on a
circular ring imaging geometry with 16 sources with 15 detectors per
eshe

etrah

365
175
447
source.
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computation. The convergence with BEM was faster �four
iterations� whereas FEM converged more slowly taking 20
iterations.

III.C. Experimental validation of BEM

In order to test the BEM reconstruction with experimental
measurements, we used amplitude and phase data collected
from a cylindrical phantom with a single inclusion. The
phantom was made of gelatin with whole blood for absorp-

TABLE II. Reconstructed values of absorption coefficient ��a� and reduced
scattering coefficient ��s�� in a 30mm inclusion for various levels of mea-
surement noise in measurements starting estimates. The expected values are
�a=0.012 mm−1 and �s�=2.0 mm−1. The overall % error is the average of
the errors in estimation of absorption and scattering.

Without noise
Starting value Reconstructed value Overall

�a �mm−1� �s� �mm−1� �a �mm−1� �s� �mm−1� % Error

0.006 1.00 0.012 2.43 11.4
0.010 1.00 0.014 2.23 13.3
0.015 1.50 0.014 2.19 13.9

With noise: 1% noise in intensity and 0.5° in phase
Starting value Reconstructed value Overall

�a �mm−1� �s� �mm−1� �a �mm−1� �s� �mm−1� % Error

0.006 1.00 0.012 2.42 11.2
0.010 1.00 0.014 2.22 13.2
0.015 1.50 0.014 2.17 13.7

With noise: 5% noise in intensity and 1° in phase
Starting value Reconstructed value Overall

�a �mm−1� �s� �mm−1� �a �mm−1� �s� �mm−1� % Error

0.006 1.00 0.012 2.24 6.8
0.010 1.00 0.014 2.19 12.1
0.015 1.50 0.014 2.14 12.7

FIG. 5. �a� Comparison of the recovered absorption and scattering coeffi-
cient �in mm−1� using BEM and FEM for the imaging domain shown in Fig.
2�a�, as compared to the true values. The time of computation �TOC� is also
shown for both methods: BEM showed an improvement in the computa-

tional time over FEM.
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tion and titanium dioxide for scatter.46 Two such gelatin
phantoms with diameters of 82 mm were formed from the
same mixture. One was maintained in its homogeneous state
while the other had a 25 mm hole created 10 mm from the
boundary. Figure 6�a� shows a photograph of the two phan-
toms. The hole in the second phantom was filled with a sa-
line solution containing 3% porcine blood �the hematocrit
level of the blood was measured with a clinical co-oximeter
so that the absorption was known� with 0.75% Intralipid for
scattering. The scattering was expected to be nearly homo-
geneous because 0.75% Intralipid was measured to be simi-
lar in scattering as the background gelatin. The measurement
geometry is the same as described in Sec. III B and provided
240 measurements of amplitude and phase. Figure 6�b�
shows the source-detector configuration. The NIR frequency
domain tomography system located at Dartmouth44 was used
to collect these measurements at the periphery of the phan-
tom in a single plane located along the center of the phan-
tom.

A cross section of the surface mesh created with NETGEN

for this imaging domain is shown in Fig. 6�c�. The mesh
contained 2154 nodes and 4300 elements, which were de-
ployed to produce a spatial resolution of 4 mm with moder-
ate mesh grading. The measured data at 785 mm was cali-
brated using a homogeneous fitting algorithm to estimate the
initial values of the absorption and scattering and scale the
measurements to match the source strength in the BEM for-
ward model. The procedure modifies raw data to account for
systematic instrumentation-based offsets related to interfiber
variations, source strength �i.e., multiplexing imprecision�,
and fiber-tissue coupling issues. A homogeneous fitting
algorithm47 is used to determine the bulk optical properties
��a and �s�� for which calculated data best matches the mea-
sured data from the homogeneous calibration phantom. The
details of this procedure can be found elsewhere.47 The mea-
sured and calibrated data are plotted in Figs. 6�d� and 6�e�.
Using the calibrated measurements along with the surface
mesh created for this geometry, the optical properties were
reconstructed for the background and inclusion using the
BEM. The initial estimates for the reconstruction �obtained
from the fitting algorithm� as well as the reconstructed values
are shown in Table III. The expected value in the inclusion
was calculated from the measured hemoglobin and known
extinction coefficients, to be 0.0086 mm−1 at 785 mm. The
recovered value of absorption in the inclusion is accurate to
within 6%. The expected background optical properties were
estimated to be 0.0049 mm−1 for absorption and 0.82 mm−1

for scatter using measurements from the gelatin phantom
maintained in the homogeneous state �shown in the top of
Fig. 6�a��. The reconstructed background in the phantom
matches these results well. The reconstruction did not need
regularization and converged in three iterations, requiring a
total of 90 min.

For comparison, the FEM model was also used to recon-
struct this data set. A volumetric mesh of the phantom con-
taining 43 889 nodes and 237 045 tetrahedral elements was
generated at 2 mm resolution with moderate mesh grading.

Data calibration followed the same procedures, and back-
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FIG. 6. �a� Photograph of two gelatin phantoms imaged with a frequency domain NIR tomography system. One was maintained in its homogeneous state while
the other had an inclusion drilled and filled with a solution of Intralipid and 3% porcine blood in saline. Measurements from the latter were used to test the
BEM reconstruction. �b� Surface mesh of the phantom generated with NETGEN. �c� Logarithm of the measured and calibrated intensity from the phantom. The
calibration was based on an homogeneous fitting algorithm used to account for model-data mismatch. The calibrated data were used as the input to the
reconstruction. �d� Phase of measured and calibrated data. �e� Logarithm of the projection error �the least-squares norm of the difference between measured
and model data� as a function of iteration for the BEM and FEM reconstructions. BEM gives a lower projection error �better fit to data� compared with FEM.

The reconstructed results are given in Table III.

Medical Physics, Vol. 34, No. 11, November 2007
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ground values were estimated that were comparable to those
obtained with the BEM �first and third rows of Table III�.
Using the region-based FEM reconstruction described in
Sec. II C on the calibrated measurements, the optical proper-
ties of the background and inclusion were recovered. The
reconstructed values are also listed in Table III. The FEM
model recovered the absorption in the inclusion with a com-
parable error of 6%, converging in three iterations and with-
out regularization, in 113 min. A comparison of the projec-
tion error change with iteration for the BEM and FEM
reconstructions is presented in Fig. 6�f�: Both methods show
a decreasing trend. BEM gives a lower projection error at the
last iteration when compared with FEM.

III.D. Reconstruction of optical properties on patient-
specific mesh

In order to evaluate the reconstruction of optical proper-
ties in irregular imaging domains, a two-region mesh was
constructed from an MR breast exam of a 29 year old subject
with a 20 mm infiltrating ductal carcinoma. Specifically, 3D
surfaces of the outer breast and the tumor were created from
35 MR slices of 512�512 resolution. Figure 7�a� shows a
single slice of the MRI indicating the tumor location. Seg-
mentation of the outer surface and the tumor was accom-
plished through the thresholding and region-growing tech-
niques available in the Mimics™ modeling software
�Materialise Inc., Leuven, Belgium48�. Using the 3D seg-
mented shapes, surface meshes were generated with NETGEN

with a total of 2857 nodes, 318 of which were on the tumor
surface. The tumor was meshed with a higher resolution than
the outer breast boundary in order to preserve its shape. A
contrast of 2:1 was assumed to represent the tumor relative
to the background, which was assigned the optical properties
�a=0.006 mm−1 and �a�=1.0 mm−1. Simulated forward
data �240 measurements from 16 source locations and 15
detectors per source� was generated on this patient-specific
mesh. Figure 7�c� shows the fluence distribution for a single
source on this mesh. Random Gaussian noise 1% in intensity
and 0.5° in phase was added to this data set. The results from

TABLE III. Initial and reconstructed optical property values obtained from
BEM and FEM inversions of experimental data collected from a gelatin
phantom. Initial estimates were determined with an homogeneous fitting
algorithm using the respective models. The expected value for absorption in
the inclusion is 0.0086�mm−1�. The background values are expected to be
�a=0.0049�mm−1� and �s�=0.82�mm−1� based on measurements in the ho-
mogeneous gelatin phantom shown in the top of Fig. 5�a�.

Using BEM:
BEM

�a �mm−1�
B/G

�a �mm−1�
Inclusion

�s� �mm−1�
B/G

�s� �mm−1�
Inclusion

Initial estimate 0.0050 - 0.82 -
Recovered values 0.0047 0.0091 0.81 0.71
Using FEM:
FEM

�a �mm−1�
B/G

�a �mm−1�
Inclusion

�s� �mm−1�
B/G

�s� �mm−1�
Inclusion

Initial estimate 0.0055 - 0.86 -
Recovered values 0.0053 0.0081 0.88 0.81
the BEM image-reconstruction for the optical properties are

Medical Physics, Vol. 34, No. 11, November 2007
shown in Table IV. No regularization was required for the
reconstruction and the algorithm converged in three itera-
tions after 2.9 h of computation time.

IV. DISCUSSION

Based on the encouraging results presented here, it ap-

FIG. 7. �a� MR image of a patient with infilterating ductal carcinoma �indi-
cated by the white anomaly�. �b� 3D surface meshes representing the outer
and tumor surfaces �not to scale� constructed from the MR image data.
Measurements were simulated on this domain assuming 2:1 contrast be-
tween tumor and background. �c� Logarithm of the intensity at the boundary
nodes for the BEM model. Reconstructed results for measurements gener-
ated on this domain with 1% noise are listed in Table IV.
pears that the BEM may offer significant advantages in 3D
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image reconstruction. Indeed, computationally efficient tools
are needed, to make well-resolved 3D NIR imaging feasible
through preservation of tissue boundaries made available
from high-resolution structural imaging of tissues The BEM
approach to inversion provides an effective and efficient
technique for solving the complex image reconstruction
problem for NIR systems guided by regionized recovery of
interior property parameters. The computational resources
required by BEM compare favorably with FEM �Fig. 3� in a
two-region imaging domain. This is particularly important
because of the considerable added complexity associated
with volume �required by FEM� relative to surface �required
by BEM� mesh generation from medical images. Currently,
the difficulty in obtaining volumetric meshes from MR im-
ages of clinical patients, tagging these meshes with material
properties to allow region-based recovery of optical proper-
ties, and processing them at high resolution presents chal-
lenges to 3D FEM image reconstruction from a clinical
workflow perspective. Even if a volume mesh could be suc-
cessfully obtained, preserving the boundary information in
the interior of the breast is difficult and will depend on the
meshing technique used. If a volumetric mesh is created be-
fore assigning material properties to interior tissue layers, as
is commonly the case, the shape of the interior structures will
be significantly affected by the resolution of the mesh. This
results in incorrect segmentation, leading to errors in
reconstruction11 for meshes without sufficient resolution, and
suffers from high computational burden for high-resolution
meshes. Adaptive meshing offers a potential alternative.
However, while many commercial software packages offer
the capability of adaptively meshing simple domains, many
of these fail in complex domains containing the fingerlike
fibroglandular structures observed in the breast tissue �Fig.
7�a��. The shape of the boundaries can be preserved much
more easily when using surfaces allowing more accurate rep-
resentation of the imaging domain. Volume meshing is a
complicated problem and by moving to surface-based dis-
cretization for the parameter-reduction problem using the
BEM approach, as in the case of image-guided spectroscopy,
it is possible to gain significantly in computational efficiency,
accuracy, and feasibility.

The main disadvantage associated with BEM is that it
uses full matrices compared with FEM, which uses sparse
matrices. The size of the mesh for BEM is smaller than for
FEM, so this compensates for the matrix computational bur-

TABLE IV. Reconstructed values of the outer �region 1� and tumor �region 2�
layers using BEM for the patient-specific domain shown in Fig. 6 with 1%
noise in measurements. The values were recovered accurately with less than
5% error in absorption and 1% error in scattering.

�a �mm−1�
B/G

�s� �mm−1�
Tumor

�a �mm−1�
B/G

�s� �mm−1�
Tumor

True values 0.006 1.0 0.012 2.0
Initial estimate 0.006 1 0.006 1.0
Recovered values 0.006 1.0 0.0126 1.98
den; however this advantage reduces as the surface to vol-
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ume ratio increases. The complexity of the BEM problem
also increases with the number of subregions, and this
method is ideally suited when the domain is limited in the
number of homogeneous zones to reconstruct for. In the set-
ting of breast imaging, this can be approximated to 2–4 lay-
ers when including adipose, fibroglandular, malignant, and/or
benign lesions providing a realistic scenario to apply BEM.

Field solutions generated using BEM were nearly identi-
cal to those obtained with FEM. Specifically, an RMS differ-
ence of 0.00005 was found in the two solutions for a two-
region imaging domain, and this difference is likely due to
differences in the mesh creation and the source implementa-
tion, rather than fundamental accuracy differences between
the two methods. The BEM forward model was also used
along with an iterative Newton’s method to reconstruct the
optical properties in a two-region domain. For a 30 mm in-
clusion, the properties could be recovered accurately with
less than 14% error overall for different initial estimates,
from measurements with up to 5% noise. In comparison to
FEM results for the 5% noise case, BEM showed improve-
ment in absorption recovery �mean error of 1.4% when com-
pared with 4% from FEM� while taking lesser time for com-
putation �=0.72� time for FEM computation� .

BEM reconstruction was applied to experimental data col-
lected from a gelatin phantom with a single inclusion. The
recovered absorption was accurate to within 94% of the ex-
pected value of the inclusion, and demonstrated similar con-
trast recovery as FEM, with a 25% improvement in the time
of computation. Scattering should have been homogeneous:
BEM reconstructed a contrast of 10% similar to the trend
observed with FEM. The use of spectral priors is expected to
improve the accuracy of scatter recovery9 and will be exam-
ined in future studies. Both methods used identical imaging
domains and Newton’s method without regularization; hence
the differences in the reconstructed values are probably due
to differences in mesh resolution.

The potential of BEM to recover properties within irregu-
lar geometries was examined through a patient-specific mesh
generated from breast MR images. The mesh contained a 20
mm tumor segmented from the MRI. Using simulated mea-
surements with 1% noise, we successfully reconstructed the

FIG. 8. Flow-chart used to solve a multiregion forward problem. Matrices A,
B, Q, and K are defined in Eqs. �A5� and �A8�. The outer boundary condi-
tion �BC� is type III and all internal boundaries have BCs defined by Eq.
�A7�.
optical properties with less than 5% error in absorption and
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1% error in scattering. The FEM reconstruction on this
patient-specific mesh was not evaluated due to the practical
difficulties associated with the mesh generation and process-
ing at high resolution. This is an example of a case where the
geometric complexity of the breast would limit the use of
FEM to accurately recover the optical properties because of
the very high resolution required to represent the geometry
whereas the need of only a surface mesh makes the problem
much more tractable by using BEM.

BEM provides a feasible and efficient method for region-
based 3D reconstruction of optical properties for image-
guided-NIRS. While the complexity of the BEM problem
will increase with the number of subregions defined within
the imaging domain, it provides a valuable approach to im-
aging at millimeter resolution. In future investigations, we
will extend the image reconstruction to more regions and
apply it to clinical data. It may be possible to speed up the
reconstruction procedure using an analytical formulation for
the Jacobian matrix49 and this will be attempted in the future.
We will also explore the direct reconstruction of functional
parameters through the use of spectral constraints along with
data from multiwavelengths.
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APPENDIX: DETAILS OF BEM FORMULATION

The Green’s function for the modified Helmholtz equation
satisfies

Dl�
2G�r,ri� − kl

2G�r,ri� = − ��r − ri� , �A1�

and has the general solution50

Gi�r,ri� =

exp�− kl	r − ri	

Dl

�
4�Dl	r − ri	

, in three dimensions..

�A2�

The boundary element formulation for Eq. �3� can be shown
to be

ci�i +� Dl
�Gi

�n
� −� Dl

��

�n
Gi = �q0,Gi , �A3�

where ci=� �

4� , three dimensions�, � is the solid angle en-
closed by the boundary at node i,50 and � is the integral over
the boundary. Discretizing Eq.�A3� through the linear basis
function 	 such that

� = �
i=1

N

�i	i and Dl
��

�n
= �

i=1

N

Dl
��i

�n
	i,
where N is the number of nodes, produces
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ci�i + �
i=1

N

�i� Dl
�Gi

�n
	 jds − �

i=1

N

Dl
��i

�n
� Gi	 jds

= �q0,Gi . �A4�

In matrix form, Eq. �A4� becomes

�A���i� − �B��Dl
��i

�n
� = �Qi� , �A5�

where

Ai,j = ci�ij +� Dl
�Gi

�n
	 jds ,

Bij =� Gi	 jds ,

Qi = �q0,Gi .

We have used a point source representation of q0 placed one
scattering distance inside the outer boundary. This simplifies
the source term integral, which becomes analytic.29 Equation
�A5� is the discretized forward model, which is implemented
with a type III boundary condition on the outer boundary a
given by

�aI +
DI



� ��

�n
�

aI

= 0, �A6�

where 
 is the term incorporating the refractive index mis-
match at the boundary.

Multiregion problems

For a three-region problem, as depicted in Fig. 1, the con-
tinuity conditions for boundary m �any internal interface�
separating regions l and l−1 are written as

�m�l−1� = �ml,

�A7�

D�l−1�� ��

�n
�

m�l−1�
= − Dl� ��

�n
�

ml

.

Figure 8 shows a flow-chart for solving the multiregion for-
ward problem where matrices A and B are defined in Eq.
�A5� and matrix K for a three-region problem, written as

Kx=b, has the form
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�
�A11I + 
B11I� A12I − B12I 0 0

�A21I + 
B21I� A22I − B22I 0 0

0 A22II B22II A23II − B23II

0 A32II B32II A33II − B33II

0 0 0 A33III B33III

�
��

�1I

�2I

DI� ��

�n
�

2I

�3II

DII� ��

�n
�

3II

� =�
Q1I

Q2I

0

0

0
� . �A8�

The subscripts 1, 2, and 3 denote the outer and inner nested
boundaries of the regions shown in Fig. 1�a�. This relation-
ship reveals that K is a banded matrix, which can easily be
extended to any number of regions. The matrix relationship
can be suitably derived for non-nested regions as well. The
source contribution was assumed to exist only in the outer-
most region.
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