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Toward Real-Time Availability of 3D Temperature Maps
Created with Temporally Constrained Reconstruction

Nick Todd,"'* Jaya Prakash,” Henrik Odéen,’ Josh de Bever,* Allison Payne,"
Phaneendra Yalavarthy,” and Dennis L. Parker'

Purpose: To extend the previously developed temporally con-
strained reconstruction (TCR) algorithm to allow for real-time
availability of three-dimensional (3D) temperature maps capa-
ble of monitoring MR-guided high intensity focused ultrasound
applications.

Methods: A real-time TCR (RT-TCR) algorithm is developed
that only uses current and previously acquired undersampled
k-space data from a 3D segmented EPI pulse sequence, with
the image reconstruction done in a graphics processing unit
implementation to overcome computation burden. Simulated
and experimental data sets of HIFU heating are used to evalu-
ate the performance of the RT-TCR algorithm.

Results: The simulation studies demonstrate that the RT-TCR
algorithm has subsecond reconstruction time and can accu-
rately measure HIFU-induced temperature rises of 20°C in 15
s for 3D volumes of 16 slices (RMSE = 0.1°C), 24 slices
(RMSE = 0.2°C), and 32 slices (RMSE = 0.3°C). Experimental
results in ex vivo porcine muscle demonstrate that the RT-TCR
approach can reconstruct temperature maps with 192 x 162
x 66 mm 3D volume coverage, 1.5 x 1.5 x 3.0 mm resolution,
and 1.2-s scan time with an accuracy of =0.5°C.

Conclusion: The RT-TCR algorithm offers an approach to
obtaining large coverage 3D temperature maps in real-time for
monitoring MR-guided high intensity focused ultrasound treat-
ments. Magn Reson Med 71:1394-1404, 2014. © 2013 Wiley
Periodicals, Inc.
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INTRODUCTION

Performing non-invasive thermal therapy procedures
under the guidance of magnetic resonance imaging pro-
vides the ability to obtain real-time temperature measure-
ments for monitoring and controlling the treatment (1-6).
While many MRgHIFU applications have been success-
fully carried out with imaging that uses a multislice two-
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dimensional (2D) approach (6,7), such monitoring has
several drawbacks that leave room for improvement.
Multislice 2D imaging cannot cover the entire ultrasound
beam path, leaves gaps between slices, and cannot be
interpolated to finer voxel spacing in the slice direction.
For applications such as transcranial MR-guided high in-
tensity focused ultrasound (MRgHIFU), optimal monitor-
ing requires three-dimensional (3D) temperature maps
with large volume coverage and high spatiotemporal re-
solution in order to accurately track the rapid heating at
the focus while simultaneously monitoring for heating
that may occur at bone-tissue interfaces in the near- and
far-fields of the ultrasound beam (8—10).

Extending MR temperature imaging to include large
volume 3D coverage is a difficult problem as the tradeoff
among spatial resolution, temporal resolution, and vol-
ume coverage is inherent in MRI. Investigators have used
both single-shot and segmented echo-planar-imaging
(EPI) (11,12) to rapidly acquire several slices distributed
over the 3D volume of interest, for example, in orthogo-
nal planes through the HIFU focus (13) or divided
between covering the focus and covering a region in the
near-field (14). Another approach being investigated
“sweeps” a 2D slice over the 3D volume of interest and
incorporates predictions from a thermal model to gener-
ate 3D temperature maps (15,16). The approach of Mei
et al. uses a truly 3D sequence combined with a reduced
field-of-view (FOV) excitation and data undersampling
with an UNFOLD reconstruction (17). Each approach
improves upon the amount of coverage achieved, but
none is able to fully monitor the entire 3D volume of
interest.

Our group has previously published an approach to
solving the problem of obtaining large coverage 3D tem-
perature measurements, which we call temporally con-
strained reconstruction (TCR) (18-20). The method uses
a 3D segmented EPI sequence that acquires under-
sampled data over the 3D volume of interest. The under-
sampled data are reconstructed with a compressed-
sensing like approach that enforces data fidelity and con-
strains excessively rapid temporal changes. The method
was shown to achieve accurate temperature measure-
ments with 1.5 x 1.5 x 3.0 mm spatial resolution, 1.7 s
temporal resolution, and 288 x 162 x 78 mm volume
coverage (20). However, a major limitation to the
approach as currently implemented is that it could not
achieve real-time availability of the temperature images
and was therefore limited to retrospective applications.
This limitation stemmed from the fact that the recon-
struction algorithm utilized the entire 4D k-space data
set as input and employed an iterative gradient descent
minimization approach that took several minutes to
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This work extends the TCR method to make real-time
availability of the reconstructed temperature images pos-
sible. We refer to the updated algorithm as real-time TCR
(RT-TCR). The RT-TCR algorithm only uses acquired k-
space data up to the current time and takes advantage of
graphics processing unit (GPU) computing to obtain the
reconstructed temperature maps within subsecond la-
tency time. Simulation studies are performed to assess
the accuracy of the RT-TCR method as a function of data
acquisition volume relative to temperature rate of
change, and also as a function of noise. Experimental
HIFU studies are presented for cases of ex vivo porcine
muscle heating and ex vivo transcranial applications.

METHODS
Real-Time TCR Algorithm

The original TCR algorithm uses the entire 4D data set to
reconstruct images, m, from k-space data, d, by itera-
tively minimizing a cost function (20):

N
m = arg min <||WF(m’)—d||§ + O‘Z ||Vtm;||§) [1]

where F(m') is the Fourier Transform, W is a binary func-
tion that represents which phase encoding lines have
been acquired, m’ is the image sequence estimate, o is a
spatially varying free parameter, and the sum is over the
N pixels in the image data set. The two terms in the cost
function impose penalties on deviations from the
acquired data and excessively rapidly changes in time,
allowing convergence of the undersampled k-space data
to an alias-free image. The cost function is minimized
using a gradient descent algorithm with fixed step size
and 100 iterations (18).

To achieve real-time availability of the temperature
maps, the RT-TCR algorithm is modified and extended
from the original TCR algorithm in three ways: (1) the
computation time is reduced by a combination of imple-
menting the code in a GPU environment and truncating
the size of the data matrix in both space and time; (2)
only information from current and past time frames are
used as input to the cost function; (3) temperature infor-
mation from several time frames of this reconstructed
image data is used to create an estimate the temperature
of the current time frame and also update the tempera-
ture estimation of previous time frames.

GPUs have been widely used in medical imaging with
successful applications covering image computing, visu-
alization, and analysis (21-24). To implement the TCR
algorithm in a GPU environment, it was rewritten from
the original MATLAB™ (Mathworks, Inc.)-based version
using open-source packages, namely CUFFT and
CUBLAS in the CUDA software platform, and then
wrapped to form MATLAB executable (mex) files. The
GPU implementation was done on an NVIDIA Quadro
6000 with 448 cores. To further reduce the computation
time, the data matrix passed to the algorithm is truncated
in the x- and z-directions in image space (read-out and
slice), such that only a small region around the HIFU
focal zone is reconstructed using the RT-TCR algorithm.
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The remaining regions, where temperatures are either
static or change significantly more slowly, are recon-
structed with a sliding window approach. The data trun-
cation is done by adding the most recently acquired k-
space data to the previous k-space frames in a sliding
window fashion, transforming to image space, truncating
the x- and z-directions, and transforming back to k-space.
Truncation is not done in the y-direction because the
undersampling is done in the phase-encode direction.

The RT-TCR algorithm reconstructs the current time
frame based only on current and past information, but
also updates that time frame as “future” information
becomes available. The first step to reconstructing the
current time frame, t, is to use the acquired k-space data
from frames ¢-P through t as input for the cost function
of Eq. 1, where P is twice the reduction factor (P = 12
throughout this work). With this subset of data, the TCR
algorithm is run in its original form to create an estimate
of the complex images for time frames t-P to t. Because
the TCR algorithm relies on temporal gradient informa-
tion, it is known that the image estimates for the most
recent time frames will be suboptimal, with a bias to-
ward underestimating the extent of the temporal changes
that are occurring.

The remaining steps of the RT-TCR algorithm are
designed to create temperature maps that partially over-
come this underestimation bias. An example for recon-
struction of simulated data is shown in Figure 1 where
the dashed black line shows the true temperature, the
blue lines in the top row show the temperature informa-
tion obtained from the original TCR algorithm, and the
red lines in the bottom row show how that information is
combined to obtain the RT-TCR temperatures. The upper-
most blue dots in the top row represent the temperatures
that would be calculated if only the original TCR algo-
rithm were used with present and past data. It can be seen
that these underestimate the true temperature changes.
The blue connecting lines represent the temperature tem-
poral derivatives that are calculated to reconstruct the RT-
TCR temperatures. Consider the reconstruction of time
frame 22 (Fig. 1c,i) where k-space data from frames 10
through 22 are used in the original TCR algorithm to cre-
ate the complex image data and TCR temperatures. Four
pieces of TCR temperature information are used to create
the RT-TCR temperature estimate: the current TCR esti-
mate of the temperature at frame 22 (T = 3.05°C) and the
previous TCR estimate of the temperature at frame 21 (T
= 1.45°C) are used to calculate the most recent tempera-
ture derivative (0 lag d7/dt); similarly, the current TCR
estimate of the temperature at frame 21 (T = 2.10°C) and
the previous TCR estimate of the temperature at frame 20
(T = 0.0°C) are used to calculate the next most recent tem-
perature derivative (1 lag d7/dt). The RT-TCR estimate of
the temperature for the current frame 22 is created by
summing these temperature derivatives (Tgrr.tck = 1.6°C
+ 2.1°C = 3.7°C), and the updated RT-TCR estimate of the
temperature for the past time frame 21 is also created by
summing the appropriate temperature derivatives (Try-
TCR — 21°C]

The process continues to reconstruct frames 23 and
beyond, where the RT-TCR temperature estimate is always
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FIG. 1. Explanation of the RT-TCR algorithm. Simulated temperature versus time plots shown, with the true temperature in dashed

black, temperature and temperature temporal derivative information

obtained from the original TCR algorithm shown in blue on the top

row, and the RT-TCR temperatures shown in red on the bottom row. The RT-TCR temperatures are calculated using the d7/dt informa-
tion from the original TCR algorithm and are updated as new information comes in.

a summation of the temperature temporal derivative terms
calculated from the original TCR algorithm. Only informa-
tion from the five previous time frames is used in the RT-
TCR estimation as older information from the sixth previ-
ous time frame and before contributes negligibly. The final
RT-TCR temperatures are therefore obtained after a five-
time frame lag. The plots in Figure 1h—1 show how the RT-
TCR algorithm is able to provide a good estimate of the
current temperature in real-time, and also how the tem-
perature estimates of previous time frames are updated as
new information comes in until they are as good as would
be obtained from using the entire 4D data set in the origi-
nal TCR algorithm.

For the original TCR algorithm to reconstruct a data set
with 192 x 108 x 30 image matrix and all 77 time frames,
it took 236 s on a 12-core computer with Dual Intel Xeon
Processor X5650, 2.66 GHz processing speed, and 64 GB
of RAM. For the RT-TCR to reconstruct one-time frame
from this set, it was truncated to an image matrix size of
10 x 108 x 13, used the 13 most recent time frames and
took 0.25 s with the GPU implementation on an NVIDIA
Quadro 6000 with 448 cores running at 574 MHz, and 6
GB of RAM on the GPU. It took 0.35 s to transfer the data
from the scanner computer to the GPU machine, 0.02 s to
do the necessary pre-processing steps, and 0.10 s for the
post-processing. The total reconstruction time of 0.72 s is
less than the data acquisition time for one undersampled
time frame in the examples presented here.

Simulation Studies

Simulation data sets were created to mimic under-
sampled k-space data from a 3D segmented EPI acquisi-
tion. Four-dimensional temperature distributions were
simulated at 0.5 mm isotropic spatial resolution and 30
ms temporal resolution using the beam intensity pattern
from a phased array HIFU transducer (described below)
and the Pennes Bioheat Equation (25) (thermal properties

assumed to be density = 1000 kg/m®, specific heat =
3800 J/kg/°C, thermal conductivity = 0.5 W/m/°C, perfu-
sion = 0 kg/m®/s, maximum specific absorption rate
6.7 x 10° W/m?®). These original temperatures were con-
sidered truth for all simulation studies. To test the RT-
TCR algorithm, the simulated temperatures were con-
verted into k-space data using the standard proton reso-
nance frequency (PRF) shift relation between
temperature and phase (26,27) and a constant image
magnitude. This fully sampled k-space data was trun-
cated in frequency space to downsample the spatial reso-
lution to 1.0 x 1.0 x 3.0 mm. The data was then
sampled using a 3D segmented EPI approach, as
described in the earlier TCR article (20). For every 30 ms
time step, nine lines of k-space were sampled from the
current time frame into the undersampled k-space data
matrix. This was repeated until all k-z phase encodes
had two echo trains of data each, giving one under-
sampled time frame. For example, a 16-slice 3D volume
with 108 k-y phase encodes and an EPI factor of 9 would
receive 288 total k-x lines over a time span of 0.96 s,
spread evenly in the k-y direction and fully sampled in
the k-x and k-z directions, for a data reduction factor of
6. The simulated image parameters were: 1.0 x 1.0 x 3.0
mm resolution; 128 x 108 x Z imaging matrix (where Z
= 16, 24, and 32 slices); TR = 30 ms; TE = 10 ms; EPI
factor = 9; 6x undersampling; 0.96, 1.44, and 1.92 s per
undersampled time frame for the 16, 24, and 32 slice
volumes.

The first simulation study was designed to assess the
performance of the RT-TCR algorithm as a function of
achievable volume coverage relative to the HIFU-induced
temperature rate of change. Data sets were simulated to
achieve a 20°C temperature rise over 60 s, 30 s, and 15 s,
which corresponded to temperature rates of change of
1.7°C/s, 2.1°C/s, and 2.8°C/s at the onset of heating.
Undersampled k-space data sets created from these
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temperatures were reconstructed using the RT-TCR algo-
rithm for 16-slice, 24-slice, and 32-slice volumes. The
metrics used to evaluate the RT-TCR performance were
temperature root mean square error (RMSE) over all vox-
els experiencing greater than 2°C temperature rise and
maximum temperature at the conclusion of heating. For
comparison, these metrics were also calculated for a ba-
sic sliding window reconstruction of the data.

The second simulation study was designed to assess
the performance of the RT-TCR algorithm as a function
of noise. The 24-slice, 20°C temperature rise in 30 s data
set was used. Zero-mean Gaussian random noise was
added to the undersampled k-space data at increasing
levels, with different realizations of the same noise level
added to the real and imaginary parts of k-space. Five
noise levels were chosen such that a sliding window
reconstruction of the noisy k-space data produced tem-
perature maps with temperature standard deviations of
0.25°C, 0.5°C, 1.0°C, 1.5°C, and 2.0°C, as measured over
an ROI consisting of a 5 x 11 x 5 region of unheated
voxels and all time frames. The noisy k-space data was
reconstructed with the RT-TCR algorithm and a standard
sliding window reconstruction, with noise generation
and reconstruction repeated 25 times for each noise
level. The same metrics of temperature RMSE and maxi-
mum temperature were used for evaluation.

Experiments

All HIFU heating experiments were carried out in a Sie-
mens TIM Trio MRI scanner (Siemens Medical Solu-
tions, Erlangen, Germany) using an MRI-compatible
phased array transducer (256 elements, 1 MHz fre-
quency, 13 cm radius of curvature, Imasonic, Besancon,
France and Image Guided Therapy, Pessac, France).
Imaging for all experiments was done with a 3D seg-
mented EPI gradient echo sequence, with even under-
sampling done as described in the previous article (20).
In the first set of experiments, HIFU heating was done
on an ex vivo pork muscle sample at three different soni-
cation power and duration combinations: 18 acoustic
watts for 60 s, 36 W for 30 s, and 72 W for 15 s. The tem-
perature rates of change at the onset of heating for these
powers were 1.1°C/s, 2.2°C/s, and 3.1°C/s. For each
power level, the heating was repeated twice under iden-
tical circumstances. In the first instance, imaging param-
eters were chosen such that the 3D volume could be
fully sampled at adequate temporal resolution. These
fully sampled data sets were reconstructed with the
standard Fourier Transform approach and used to com-
pute temperature maps that were considered to be truth.
In the second instance, larger 3D volumes were acquired
at an undersampling factor of 6 x and reconstructed with
the RT-TCR algorithm. Each pair of identical heating
runs was performed at the same location in the sample.
To avoid tissue damage in the sample, the focal zone
was translated by approximately 1 cm in between
the three pairs of runs and the starting temperature of
the sample (~15°C) was low enough such that negligible
thermal dose accrued during HIFU heating. The metrics
used to evaluate the RT-TCR temperatures were tempera-
ture RMSE over all voxels experiencing greater than 2°C
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temperature rise and maximum temperature at the con-
clusion of heating. The same metrics for a sliding win-
dow reconstruction of the undersampled data were also
calculated for comparison. Imaging parameters for the
fully sampled data were: 1.5 x 1.5 x 3.0 mm resolution,
128 x 72 x 12 imaging matrix (10 slices plus 20% slice
oversampling), TR = 25 ms, TE = 10 ms, EPI Factor = 9,
flip angle = 20°, bandwidth = 738 Hz/pixel, 2.4 s per
scan. Imaging parameters for the undersampled data
were: 1.5 X 1.5 x 3.0 mm resolution, 128 x 108 x 24
imaging matrix (22 slices plus 9% slice oversampling),
TR = 25 ms, TE = 10 ms, EPI factor = 9, flip angle =
20°, bandwidth = 738 Hz/pixel, 6x undersampling, 1.2 s
per undersampled time frame.

The second HIFU heating experiment was done to
demonstrate the utility of the RT-TCR method for moni-
toring transcranial MRgHIFU procedures. A plastic rep-
lica of a human skull was embedded in an agar mold,
with the HIFU focus targeted 6.5 cm into the phantom
from the skull surface. Phase aberration correction of the
ultrasound beam was not performed. Two 3D imaging
slabs were acquired simultaneously in interleaved fash-
ion, one covering the focal zone and one covering the
region where the near-field of the ultrasound beam path
intersected the skull surface in order to capture any heat-
ing that may occur at the inner skull/agar interface. The
temperatures at the focal zone are expected to rise rap-
idly, and therefore these were reconstructed with the
RT-TCR algorithm. However, temperature changes on the
skull surface were expected to occur much more slowly
and therefore a sliding window reconstruction was used
and assumed to be adequate for capturing these changes.
The imaging parameters were: 1.5 x 2.0 X 2.5 mm reso-
lution, 192 x 121 x 32 imaging matrix (14 slices per slab
plus 14% slice oversampling for each slab), TR = 30 ms,
TE = 12 ms, EPI factor = 11, flip angle = 15°, bandwidth
= 744 Hz/pixel, 5.5x undersampling, 1.9 s per under-
sampled time frame.

RESULTS
Simulation

Temperature versus time plots are shown in Figure 2 for
the nine different data sets simulated at different ultra-
sound powers, heating durations, and imaging volumes.
Truth is shown in black, the RT-TCR temperatures that
would be obtained without any lag time in red, and the
final RT-TCR temperatures in green. Note that the plots
for “RT-TCR, 0 lag” show for each time step the tempera-
tures that would be reconstructed in real-time and that
any “past” time frames have not been updated. Similarly,
the plots for “RT-TCR, Final” show for all time steps the
final RT-TCR temperatures after all updating has been
done. The RT-TCR temperatures obtained in real-time
cannot quite follow the abrupt changes in temperature
when the heating is turned on and off, even when the
time of ultrasound switching on/off is known a priori.
As expected, this lagging behavior increases with both
volume coverage and the true temperature rate of change.
For slower rates of change or less volume coverage, the
RT-TCR temperatures with 0 lag are able to follow truth
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FIG. 2. Simulation results showing temperature versus time plots for the voxel in the center of the HIFU focal zone. Three heating rates
(20°C rise in 15, 30, and 60 s) and three data volume sizes (16, 24, and 32 slices) were considered. The true simulated temperatures
are plotted in black; the temperatures obtained from the RT-TCR algorithm without any lag in red; and the final temperatures obtained

from the RT-TCR algorithm in green.

reasonably well, and the final RT-TCR temperatures are
able to match truth well for all cases.

More simulation results from the three 24-slice data
sets are shown in Figure 3. The first column shows the
true temperature maps at peak heating for each heating
duration. The next two columns show temperature dif-
ferences over all time frames for a vertical line of data
through the center of the focal zone (as noted by the
dashed yellow line). The dashed black lines represent
times that the ultrasound is being turned on and off. It
can be seen that the RT-TCR temperatures will slightly
underestimate the true temperature at the onset of heat-
ing and slightly overestimate it after the conclusion of
heating. These are the times when the temperature gradi-
ent in time is changing the most rapidly.

A summary of the RMSE and maximum temperature met-
rics are presented in Table 1 for all nine simulated cases.

The results from the simulation noise study are
shown in Figure 4 and Table 2. Figure 4 shows tem-
perature maps at the peak of heating from the 24-slice,

30-s heating data set. The true temperatures are shown
in the first row, RT-TCR temperatures with 0 lag time
shown in the second row, and the final RT-TCR tem-
peratures shown in the third row. Increasing amounts
of added noise are shown in the columns. The RMSE
and maximum temperature results are summarized in
Table 2. The RT-TCR algorithm does cause some
amplification of noise. The RMSE values for the RT-
TCR data with 0 lag are slightly more than double the
RMSE values when random noise was added to the
true temperatures. For the final RT-TCR temperatures,
the RMSE values are approximately 40% greater than
the RMSE values from the noisy true temperatures.
Note that the noisier temperatures at the top and bot-
tom of these RT-TCR temperature regions are from
edge effects due to the truncated data set that is
passed to the RT-TCR algorithm (only 20 pixels in the
read-out direction). An appropriate level of data trun-
cation would have to be chosen to avoid these noise
effects contaminating important regions.
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FIG. 3. Left column: true temperature maps from 24-slice simulated data sets. Middle column: temperature difference between the true
temperatures and RT-TCR temperatures with 0 lag for a line of voxels through the hotspot over time. Right column: temperature differ-
ence between the true temperatures and final RT-TCR temperatures for the same line over time. Dashed black lines indicate ultrasound

on/off.

Experiment

Temperature versus time plots from the three ex vivo
pork muscle HIFU heating experiments are shown in
Figure 5. Fully sampled temperature data acquired with
only 12 slices and a 2.4-s time step are considered to be
truth and are shown in black. The 24-slice data acquired
with k-space undersampling and reconstructed with the
RT-TCR algorithm are shown in red for the RT-TCR tem-
peratures with 0 lag and in green for the final RT-TCR
temperatures. The RMSE and maximum temperatures are
summarized in Table 3 for all three heating runs. As
with the simulated data results, the 0 lag RT-TCR tem-
peratures at the center of the focal zone cannot quite fol-
low the most abrupt changes in temperature when the
ultrasound is turned on and off, but are able to match
the true temperatures when they are changing less rap-
idly. This lagging behavior can especially be seen right

Table 1

after the ultrasound is turned on in the 36 W and 72 W
cases for the 0 Lag RT-TCR temperatures. When the
entire focal zone is considered, the RT-TCR temperatures
follow the fully sampled temperatures closely for all
three heating cases, with the RMSE remaining below 1°C
for both the RT-TCR temperatures with 0 lag and the
final RT-TCR temperatures. Figure 6 shows coronal and
transverse views through the 3D temperature volumes for
the 36 W heating case at the peak of heating.

A transverse view of the experimental set up for the
second HIFU heating experiment is shown in Figure 7.
The two imaging slabs are oriented in the coronal direc-
tion, one to cover heating at the ultrasound focus and one
to cover heating that may occur at the skull/agar interface.
Temperature maps from the peak of heating are shown in
Figure 8. The left images show three orthogonal views
through the 3D volume slab covering the ultrasound

Root Mean Square Error and the Maximum Temperature From all Nine Simulated Data Sets Reconstructed with the RT-TCR Algorithm

and a Basic Sliding Window Approach

16 Slices 24 Slices 32 Slices
15s 30s 60 s 15s 30s 60 s 15s 30s 60 s
RMSE (°C)
RT-TCR, 0 lag 0.1 0.1 0.1 0.2 0.1 0.1 0.3 0.2 0.2
RT-TCR, final 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Sliding window 0.5 0.3 0.3 0.7 0.5 0.4 0.9 0.6 0.5
Max temp (°C)
Truth 19.8 20.0 20.0 19.6 19.7 19.9 19.6 19.7 19.9
RT-TCR, 0 lag 20.1 19.9 20.0 20.0 19.9 20.0 20.1 20.0 20.0
RT-TCR, final 20.1 19.9 20.0 20.0 19.6 20.0 20.1 19.5 20.0
Sliding window 18.2 19.4 19.7 171 18.7 19.5 16.3 18.3 19.4
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FIG. 4. Simulation results showing temperature maps of peak heating for the 30-s heating, 24-slice data set with varying levels of noise
added. Zero-mean Gaussian noise was added to achieve temperature standard deviations of 0.25°C, 0.5°C, 1.0°C, 1.5°C, and 2.0°C in
a non-heated region. Maps are shown for the original simulated temperatures, the temperatures obtained from the RT-TCR algorithm
without any lag, and the final temperatures obtained from the RT-TCR algorithm.

focus, where the HIFU hotspot can be seen. This data
were reconstructed with the RT-TCR algorithm and the
final RT-TCR temperatures are shown. The right image is
a 2D projection of the temperature rise measured on the
inner surface of the skull/agar interface using information
from the lower 3D imaging slab. The segmentation for the
projection image included voxels from the agar that were
directly adjacent to the skull in order to display the region
with the most heating; however, temperature rises due to
heat diffusion extend a few millimeters from the skull sur-
face. The circular pattern of the temperature rise indicates
where the conical ultrasound beam path intersects the
skull surface. Note that the temperature scales are differ-
ent for the two images.

DISCUSSION

This work is aimed at solving the problem of attaining
large coverage temperature maps with the spatial and tem-

monitoring of MRgHIFU procedures. We have taken the
approach of using a 3D segmented EPI pulse sequence,
combined with k-space data undersampling and a con-
strained reconstruction algorithm. In a previously pub-
lished article, this approach was shown to be successful
when the entire 4D k-space data set was available as input
to the TCR reconstruction algorithm. However, in order to
be clinically useful, the temperature information must be
available in real-time. This article describes an approach
to extending the TCR approach to a real-time TCR imple-
mentation where the problems of reconstruction computa-
tion time and use of only current and past k-space data
are overcome. The RT-TCR algorithm was tested with both
simulated and experimental data. Experimental results
demonstrate that the RT-TCR approach can reconstruct
temperature maps with 192 x 162 x 66 mm contiguous
3D volume coverage, 1.5 x 1.5 x 3.0 mm resolution, and
1.2-s scan time with an accuracy of approximately *+0.5°C.

The first step in achieving real-time availability of the

poral resolution necessary for accurate real-time temperature maps was reducing the computation time of
Table 2
Twenty-Four-Slice, 30 s Heating Simulated Data Set with Five Levels of Noise Added
Noise level
0.25°C 0.50°C 1.00°C 1.50°C 2.00°C
RMSE (°C)
Truth + noise 0.3 £ 0.0 0.5 £ 0.0 1.0 = 0.0 1.5 =0.0 2.0 £ 0.0
RT-TCR, 0 lag 0.6 + 0.0 1.1 +0.0 2.3 +£0.0 3.4 0.0 4.6 = 0.0
RT-TCR, final 0.3 = 0.0 0.7 = 0.0 1.4 £0.0 21 +0.0 2.8 £ 0.1
Sliding window 0.6 = 0.0 0.9 £ 0.0 1.6 = 0.0 2.3 £0.0 3.1 £ 0.1
Temp STD (°C)
Sliding window 0.3 = 0.0 0.5+ 0.0 1.0 £ 0.0 1.5 0.0 2.0 = 0.0
RT-TCR, 0 lag 0.5 = 0.0 0.9 £ 0.0 1.9 =0.0 2.8 £ 0.0 3.8 £0.0
RT-TCR, final 0.2 + 0.0 0.4 +0.0 0.9 = 0.0 1.3 0.0 1.7 = 0.0
Max temp (°C)
Truth 19.7 19.7 19.7 19.7 19.7
Truth + noise 19.8 = 0.3 19.6 = 0.5 19.6 + 1.2 192 =14 19.5 = 21
RT-TCR, 0 lag 20.1 = 0.5 19.9 = 0.8 19.5 = 21 20.0 £ 3.5 19.3 = 4.3
RT-TCR, final 19.8 = 0.4 19.5 £ 1.2 19.0 £ 1.2 201 £ 24 19.3 = 4.3
Sliding window 18.9 = 0.3 18.8 = 0.8 185 + 1.5 19.3 = 2.1 18.0 = 3.1

Twenty-five reconstructions performed at each noise level, with the mean and standard deviation reported for RMSE and maximum

temperature.



Real-Time TCR

1401

' ——Fully Sampled ||
——RT-TCR, 0 Lag
——RT-TCR, Final

60s, 18 W

30}
~ 25|
P
320
o
2 15]
=1
©
o 10F
§
~ 5
0
a 0 10 20
30}’
~ 25|
o
FIG. 5. Experimental results from the 520-
ex vivo pork muscle HIFU heating g
showing temperature versus time plots o 15|
for the voxel at the center of the focus. %
Fully sampled temperatures shown in g, 10+
black, RT-TCR temperatures with 0 lag £
in red, and final RT-TCR temperatures '1: 5
in green.

°

30 50 70 100

40 60 80 9
Time (sec)
30s, 36 W ——Fully Sampled

——RT-TCR, 0 Lag
——RT-TCR, Final ||

10 20

o

Temperature Rise (°C)
- e N (3% ] w
o o «w o u o

)

30 50 100

40 60 70 80 90
Time (sec)
158, 72 W ——Fully Sampled

——RT-TCR, 0 Lag
——RT-TCR, Final ||

20

7]

10

the iterative TCR algorithm. This was done by reducing
the amount of data passed to the algorithm as input and
implementing the code in a GPU framework. The reduc-
tion in the amount of spatiotemporal data passed to the
TCR algorithm accounted for the majority of the compu-
tation time savings. However, data reduction by itself
was not sufficient and the GPU implementation provided
the necessary additional time savings. With the systems
used in this work, the GPU version provided approxi-
mately a 3.5x speed up over the conventional CPU
implementation for the same amount of data. The combi-
nation of data reduction and GPU implementation
allowed the RT-TCR to produce the temperature maps in

30 40 50

60 70 80 90 100
Time (sec)
Table 3
Ex Vivo Pork Muscle Experimental Data
15s, 72 W 30s,36W 60s, 18 W
RMSE (°C)
RT-TCR, 0 lag 0.5 0.4 0.7
RT-TCR, final 0.4 0.4 0.5
Sliding window 0.8 0.5 0.6
Max temp (°C)
Fully sampled 29.2 24.3 17.4
RT-TCR, 0 lag 27.2 24.2 18.0
RT-TCR, final 28.2 24.5 18.0
Sliding window 24.6 23.3 17.6

Root mean square error and the maximum temperature for all
three data sets reconstructed with the RT-TCR algorithm and a
basic sliding window approach.
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RT-TCR, 0 Lag
Transverse
Fully Sampled RT-TCR, 0 Lag Fully Sampled FIG. 6. Temperature maps of the
Coronal Coronal Transverse 36 W, 30-s experimental HIFU

0.72 s, a time that includes data transfer, the running of
the original TCR algorithm with 100 iterations, and the
RT-TCR algorithm pre- and post-processing steps. While
not as fast as simply doing a traditional Fourier Trans-
form reconstruction, this lag time is less than one acqui-
sition step and should be adequate for most monitoring
and temperature-based feedback needs. As computing
power increases, this processing time will reduce even
further.

The second component of the extension to achieve
real-time temperature availability was to adapt the TCR
algorithm such that only information up to the currently
acquired k-space time frame was used in the reconstruc-
tion. The TCR algorithm employs a constraint in the tem-
poral direction and therefore uses a second derivative in
time in the minimization process. This temporal second
derivative is best estimated when “future” data is avail-
able. Therefore, for a data series consisting of, for exam-
ple, 13 time frames, the TCR reconstruction of the 7th
frame will be very good, but the reconstruction of the
13th frame will not be as good. The RT-TCR algorithm
improves the current temperature estimate, which is
known to be suboptimal, by using information from the
previous frames, which are known to be better estimates
of truth. The RT-TCR algorithm also updates the temper-
ature history as new information comes in, such that the
final RT-TCR temperatures will be equivalent to the orig-
inal TCR algorithm that uses all information from the
entire 4D data set.

One drawback to the RT-TCR algorithm is that this
approach of using “past” temperature information to
improve the estimate of the current time frame com-
pounds errors due to noise. As currently implemented,
the RT-TCR algorithm uses information from the five
previous time frames to improve the estimate of the cur-
rent time frame. The combination of five equally noisy
temperature maps would be expected to result in a /5x
increase in noise error. This is somewhat mitigated by
the fact that the temporal constraint in the TCR algo-
rithm acts to smooth random noise in time. For example,
when noise was added to the simulated data at a level

heating in ex vivo pork muscle.
Coronal and transverse slices
through the 3D temperature vol-
umes of the 10-slice fully
sampled temperatures and the
22-slice undersampled tempera-
tures reconstructed with the RT-
TCR algorithm (0 lag).

that produced a 1°C temperature STD in sliding win-
dow-reconstructed temperatures, the temperature STD
for the RT-TCR temperatures with 0 lag averaged 1.9°C,
and the final RT-TCR temperatures had a temperature
STD of 0.9°C. For all noise levels, the temperature STD
of the final RT-TCR temperatures was less than that of
the sliding window temperatures.

Another limitation of the RT-TCR algorithm, and the
TCR approach in general, is that it cannot handle situa-
tions where movement is occurring inside the field of
view. The temporal constraint assumes that the object
being imaged is fixed in time and motion will lead to

3D Imaging Slabs

T R P PP P

FIG. 7. Transverse view of the experimental set up for the
through-skull HIFU heating experiment. A plastic human skull
model is embedded in an agar phantom with the HIFU focus 6.5
cm deep into the skull. Two 3D imaging slabs are positioned to
monitor the temperature rise at the focus and at the skull/agar
interface.
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FIG. 8. a: Three orthogonal views through the 3D temperature map volume covering the ultrasound focus. Temperatures reconstructed
with the RT-TCR algorithm (Final RT-TCR temperatures shown). b: Two-dimensional projection of the heating measured on the inner sur-
face of the skull/agar interface. Temperature maps reconstructed with a basic sliding window approach.

reconstruction artifacts. Note, however, that motion out-
side of the field of view can be handled, even when it
leads to susceptibility changes that affect the phase of
the object inside the field of view (28). In these cases, a
reference-less temperature calculation technique would
be required as part of the RT-TCR algorithm in place of
the standard phase subtraction approach (29). There are
several MRgHIFU applications where motion of the anat-
omy inside the FOV is not a substantial problem, includ-
ing ablation procedures in the breast and brain.

Despite these limitations, the RT-TCR approach to mon-
itoring temperature changes during MR-guided thermal
therapies offers a significant advantage over the fully
sampled, multislice 2D imaging that is currently used in
most applications. The advantage is greatly increased vol-
ume coverage without sacrificing spatial or temporal reso-
lution. The contiguous 3D volume coverage can be used to
monitor the entire focal zone and much of the near- or far-
field of the beam path. The 3D volume could also be bro-
ken up to monitor two different regions of interest, as in
the case of the trans-skull HIFU heating example. Because
the sequence is truly 3D, zero-filled interpolation can be
done in all three dimensions to create arbitrarily small
voxel spacing and reduce partial volume effects. Simulta-
neous 3D monitoring of the focal zone and of regions out-
side of the ultrasound focus can be critical to avoiding
inadvertent heating that may damage vital tissues.

ACKNOWLEDGMENTS

The authors appreciate helpful contributions from Drs.
Robert B. Roemer, Douglas Christensen, and other collab-
orators at the University of Utah.

REFERENCES

1. Hynynen K, Damianou CA, Colucci V, Unger E, Cline HH, Jolesz FA.
MR monitoring of focused ultrasonic surgery of renal cortex: experi-
mental and simulation studies. ] Magn Reson Imaging 1995;5:259—
266.

2. Jolesz FA. Interventional magnetic resonance imaging, computed to-
mography, and ultrasound. Acad Radiol 1995;2(Suppl 2):5124-S125.

3. Mougenot C, Quesson B, de Senneville BD, de Oliveira PL, Sprink-
huizen S, Palussiere J, Grenier N, Moonen CT. Three-dimensional
spatial and temporal temperature control with MR thermometry-

10.

11.

12.

13.

14.

15.

16.

17.

guided focused ultrasound Reson Med

2009;61:603—-614.

(MRgHIFU). Magn

. Salomir R, Palussiere J, Vimeux FC, de Zwart JA, Quesson B, Gauchet

M, Lelong P, Pergrale J, Grenier N, Moonen CT. Local hyperthermia
with MR-guided focused ultrasound: spiral trajectory of the focal
point optimized for temperature uniformity in the target region. J
Magn Reson Imaging 2000;12:571-583.

. Zhang B, Yang X, Yang F, Qin C, Han D, Ma X, Liu K, Tian ]. The

CUBLAS and CULA based GPU acceleration of adaptive finite ele-
ment framework for bioluminescence tomography. Opt Express
2010;18:20201-20214.

. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcra-

nial magnetic resonance imaging- guided focused ultrasound surgery
of brain tumors: initial findings in 3 patients. Neurosurgery
2010;66:323-332; discussion 332.

. Chopra R, Tang K, Burtnyk M, Boyes A, Sugar L, Appu S, Klotz L,

Bronskill M. Analysis of the spatial and temporal accuracy of heating
in the prostate gland using transurethral ultrasound therapy and
active MR temperature feedback. Phys Med Biol 2009;54:2615-2633.

. Huang Y, Song J, Hynynen K. MRI monitoring of skull-base heating

in transcranial focused ultrasound ablation. In Proceedings of the
18th Annual Meeting of ISMRM, Stockholm, Sweden, 2010. Abstract
249.

. Mougenot C, Kohler MO, Enholm ], Quesson B, Moonen C. Quantifi-

cation of near-field heating during volumetric MR-HIFU ablation.
Med Phys 2011;38:272-282.

Payne A, Vyas U, Todd N, de Bever J, Christensen DA, Parker DL.
The effect of electronically steering a phased array ultrasound trans-
ducer on near-field tissue heating. Med Phys 2011;38:4971-4981.
Kickhefel A, Roland J, Weiss C, Schick F. Accuracy of real-time MR
temperature mapping in the brain: a comparison of fast sequences.
Phys Med 2010;26:192—201.

Salomir R, Rata M, Lafon C, Cotton F, Delemazure AS, Palussiere J,
Chapelon JY. Automatic feedback control of the temperature for MRI-
guided therapeutic ultrasound. Conf Proc IEEE Eng Med Biol Soc
2007;2007:222-225.

Enholm JK, Kohler MO, Quesson B, Mougenot C, Moonen CT, Sokka
SD. Improved volumetric MR-HIFU ablation by robust binary feed-
back control. IEEE Trans Biomed Eng 2010;57:103—-113.

Kohler MO, Mougenot C, Quesson B, Enholm J, Le Bail B, Laurent C,
Moonen CT, Ehnholm GJ. Volumetric HIFU ablation under 3D guid-
ance of rapid MRI thermometry. Med Phys 2009;36:3521-3535.

Hey S, De Senneville BD, Mougenot C, Kohler MO, Moonen C, Ries
M. Adaptive volumetric MR-guided high-intensity focused ultra-
sound ablations. In Proceedings of the 19th Annual Meeting of
ISMRM, Montreal, Canada, 2011. Abstract 1730.

De Senneville BD, Roujol S, Hey S, Moonen C, Ries M. Extended Kal-
man filtering for continuous volumetric MR-temperature imaging.
IEEE Trans Biomed Eng 2013;32:711-718.

Mei CS, Panych LP, Yuan J, McDannold NJ, Treat LH, Jing Y, Madore
B. Combining two-dimensional spatially selective RF excitation, par-
allel imaging, and UNFOLD for accelerated MR thermometry imaging.
Magn Reson Med 2011;66:112—122.



1404

18.

19.

20.

21.

22.

23.

Adluru G, Awate SP, Tasdizen T, Whitaker RT, Dibella EV. Tempo-
rally constrained reconstruction of dynamic cardiac perfusion MRI.
Magn Reson Med 2007;57:1027-1036.

Todd N, Adluru G, Payne A, DiBella EV, Parker D. Temporally con-
strained reconstruction applied to MRI temperature data. Magn Reson
Med 2009;62:406—419.

Todd N, Vyas U, de Bever ], Payne A, Parker DL. Reconstruction of
fully three-dimensional high spatial and temporal resolution MR tem-
perature maps for retrospective applications. Magn Reson Med
2012;67:724-730.

Prakash J, Chandrasekharan V, Upendra V, Yalavarthy PK. Accelerat-
ing frequency-domain diffuse optical tomographic image reconstruc-
tion using graphics processing units. ] Biomed Opt 2010;15:066009.
Pratx G, Xing L. GPU computing in medical physics: a review. Med
Phys 2011;38:2685-2697.

Schiwietz T, Chang C, Speier P, Westerman R. MR image reconstruc-
tion using the GPU. In Proceedings of the SPIE Conference on
Medical Imaging, San Diego, California, USA, 2006. p. 61423T.

24.

25.

26.

27.

28.

29.

Todd et al.

Shi L, Liu W, Zhang H, Xie Y, Wang D. A survey of GPU-based medi-
cal image computing techniques. Quant Imaging Med Surg
2012;2:188-206.

Pennes H. Analysis of tissue and arterial blood temperatures in the
resting human forearm. Appl Physiol 1948;1:93-122.

De Poorter J, De Wagter C, De Deene Y, Thomsen C, Stahlberg F,
Achten E. Noninvasive MRI thermometry with the proton resonance
frequency (PRF) method: in vivo results in human muscle. Magn
Reson Med 1995;33:74-81.

Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda
K. A precise and fast temperature mapping using water proton chem-
ical shift. Magn Reson Med 1995;34:814—823.

Peters NH, Bartels LW, Sprinkhuizen SM, Vincken KL, Bakker CJ. Do
respiration and cardiac motion induce magnetic field fluctuations in
the breast and are there implications for MR thermometry? ] Magn
Reson Imaging 2009;29:731-735.

Rieke V, Vigen KK, Sommer G, Daniel BL, Pauly JM, Butts K.
Referenceless PRF shift thermometry. Magn Reson Med 2004;51:
1223-1231.



	l

