
Adaptive Mesh Applications

Sathish Vadhiyar

Sources:
- Schloegel, Karypis, Kumar. Multilevel Diffusion Schemes for Repartitioning of
Adaptive Meshes. JPDC 1997 (Taken verbatim)

Adaptive Applications

 Highly adaptive and irregular applications

 Amount of work per task can vary
drastically throughout the execution –
similar to earlier applications, but..

 Has notions of “interesting” regions

 Computations in the “interesting” regions
of the domain larger than for other
regions

 It is difficult to predict which regions
will become interesting

AMR Applications

 An example of such applications is Parallel
Adaptive Mesh Refinement (AMR) for
multi-scale applications

 Adaptive Mesh – Mesh or grid size is not
fixed as in Laplace/Jacobi, but interesting
regions are refined to form finer level
grids/mesh

 E.g.: to study crack growth through a
macroscopic structure under stress

AMR Applications – Crack
propagation

 Such a system is subject to the laws
of plasticity and elasticity and can be
solved using finite element method

 Crack growth forces the geometry of
the domain to change

 This in turn necessitates localized
remeshing

AMR Applications- Adaptivity

 Adaptivity arises when advances crosses
from one subdomain to another

 It is unknown in advance when or where
the crack growth will take place and
which subdomains will be affected

 The computational complexity of a
subdomain can increase dramatically due
to greater levels of mesh refinement

 Difficult to predict future workloads

Repartitioning

 In adaptive meshes computation, areas
of the mesh are selectively refined or
derefined in order to accurately model
the dynamic computation

 Hence, repartitioning and redistributing
the adapted mesh across processors is
necessary

Repartitioning

 The challenge is to keep the
repartitioning cost to minimum limits

 Similar problems to MD, GoL

 The primary difference in AMR is that
loads can drastically change; cannot
predict; will have to wait for refinement,
then repartition

Structure of Parallel AMR

Repartitioning

 2 methods for creating a new
partitioning from an already distributed
mesh that has become load imbalanced
due to mesh refinement and coarsening

 Scratch-remap schemes create an
entirely new partition

 Diffusive schemes attempt to tweak the
existing partition to achieve better load
balance, often minimizing migration costs

Graph Representation of Mesh

 For irregular mesh applications, the
computations associated with a mesh can
be represented as a graph

 Vertices represent the grid cells; vertex
weights represent the amount of
computations associated with the grid
cells

 Edges represent the communication
between the grid cells; edge weights
represent the amount of interactions

Graph Representation of Mesh

 The objective is to partition across P
processors
 Each partition has equal amount of vertex

weight

 Total weight of the edges cut by the
partition is minimized

Scratch-map Method

 Partitioning from scratch will result in
high vertex migration since the
partitioning does not take the initial
location of the vertices into account

 Hence a partitioning method should
incrementally construct a new partition
as simply a modification of the input
partition

Notations

 Let B(q) be the set of vertices with
partition q

 Weight of any partition q can be defined
as:

 Average partition weight:

 A graph is imbalanced if it is partitioned,
and:

Terms

 A partition is over-balanced if its weight
is greater than the average partition
weight times (1+)

 If less, under-balanced

 The graph is balanced when no partition
is over-balanced

 Repartitioning – existing partition used
as an input to form a new partition

Terms

 A vertex is clean if its current partition
is its initial partition; else dirty

 Border vertex – adjacent vertex in
another partition; those partitions are
neighbor partitions

 TotalV – sum of the sizes of the vertices
which change partitions; i.e., sum of the
sizes of the dirty vertices

3 Objectives

 Maintain balance between partitions

 Minimize edge cuts

 Minimize TotalV

Different Schemes

 Repartitioning from scratch

 Cut-and-paste repartitioning:
excess vertices in an overbalanced
partition are simply swapped into one
or more underbalanced partitions in
order to bring these partitions up to
balance

 The method can optimize TOTALV,
but can have a negative effect on the
edge-cut

Different Schemes

 Another method is analogous to diffusion

 Concept is for vertices to move from
overbalanced to neighboring
underbalanced partitions

Example
(Assuming edge and vertex weights as equal to 1)

Example (contd..)

Analysis of the 3 schemes

 Thus, cut-and-paste repartitioning
minimizes TotalV, while completely
ignoring edge-cut

 Partitioning the graph from the scratch
minimizes edge-cut, while resulting in
high TotalV

 Diffusion attempts to keep both TotalV
and edge-cut low

Space Filling Curves for Partitioning and Load Balancing

Space Filling Curves

 The underlying idea is to map a
multidimensional space to one dimension
where the partitioning is trivial

 There are many different ways

 But a mapping for partitioning algorithms
should preserve the proximity
information present in the
multidimensional space to minimize
communication costs

Space Filling Curve

 Space filling curves are quick to run, can be
implemented in parallel, and produce good
load balancing with locality

 A space-filling curve is formed over
grid/mesh cells by using the centroid of the
cells to represent them

 The SFC produces a linear ordering of the
cells such that cells that are close together
in a linear ordering are also close together
in the higher dimensional space

Space Filling Curve

 The curve is then broken into segments based on
the weights of the cells (weights computed using
size and number of particles)

 The segments are distributed to processors; thus
cells that are close together in space are assigned
to the same processor

 This reduces overall amount of communication that
occur, i.e., increases locality

 Repartitioning for load balancing also involves less
communications only between neighbors

SFC representation

 One method is to define recursively –
curve for a 2^k x 2^k grid composed of
four 2^(k-1) x 2^(k-1) curves

 Another method is using bit interleaving
– the position of a grid point along the
curve can be specified by interleaving
bits of the coordinates of the point

 The interleaving function is a
characteristic of the curve

Z-curve or Morton ordering

 The curve for a 2^k x 2^k grid composed of four
2^(k-1) x 2^(k-1) curves, one in each quadrant of
the 2^k x 2^k grid

 Order in which the curves are connected is the
same as the order for 2x2 grid

Morton Ordering

 Morton ordering is an ordering/numbering of the
subdomains: the bits of the row and column are
interleaved and the subdomains/clusters are labeled by
Morton number

 The Morton ordered subdomains are located nearby each
other mostly; when this ordered subdomains is
partitioned across processors, nearby interacting
particles/nodes are mapped to a single processor, thus
optimizing communication 28

Load Balancing using Morton
Ordering

 The ordered subdomains are
stored in a sorted list

 After an iteration, a processor
computes the load in each of its
clusters; the load is entered into
sorted list

 The load at each processor is
added to form a global sum

 The global sum is divided by the
number of processors, to form
equal load

 The list is traversed and divided
such that the loads in each
division (processor) is
approximately equal 29

Load Balancing using Morton
Ordering

 Each processor compares the load in
current iteration with the desired load in
the next iteration

 If current load < desired load,
clusters/subdomains are imported from
next processor in Morton ordering

 If not, excess load clusters exported
from the end of current list to next
processor

 Done at end of each iteration
30

Graycode Curve

 Uses same interleaving function as Z-
curve

 But visits points in the graycode order

 Graycode – two successive values differ
in only one bit

 The one-bit gray code is (0,1)

Graycode Curve

 The gray code list for n bits can be
generated recursively using n-1 bits
 By reflecting the list (reversing the list)

[1,0]

 Concatenating original with the reflected
[0,1,1,0]

 Prefixing entries in the original list with 0,
and prefixing entries in the reflected list
with 1 [00,01,11,10]

Graycode Curve

 3-bit gray code:
000,001,011,010,110,111,101,100

Hilbert Curve

 Hilbert curve is a smooth curve
that avoids the sudden jumps in Z-
curve and graycode curve

 Curve composed of four curves of
previous resolution in four
quadrants

 Curve in the lower left quadrant
rotated clockwise by 90 degree,
and curve in lower right quadrant
rotated anticlockwise by 90
degree

SFCs for AMR

 All these curve based partitioning
techniques can also be applied for
adaptive mesh by forming hierarchical
SFCs

