
Adaptive Mesh Applications

Sathish Vadhiyar

Sources:
- Schloegel, Karypis, Kumar. Multilevel Diffusion Schemes for Repartitioning of
Adaptive Meshes. JPDC 1997 (Taken verbatim)

Adaptive Applications

 Highly adaptive and irregular applications

 Amount of work per task can vary
drastically throughout the execution –
similar to earlier applications, but..

 Has notions of “interesting” regions

 Computations in the “interesting” regions
of the domain larger than for other
regions

 It is difficult to predict which regions
will become interesting

AMR Applications

 An example of such applications is Parallel
Adaptive Mesh Refinement (AMR) for
multi-scale applications

 Adaptive Mesh – Mesh or grid size is not
fixed as in Laplace/Jacobi, but interesting
regions are refined to form finer level
grids/mesh

 E.g.: to study crack growth through a
macroscopic structure under stress

AMR Applications – Crack
propagation

 Such a system is subject to the laws
of plasticity and elasticity and can be
solved using finite element method

 Crack growth forces the geometry of
the domain to change

 This in turn necessitates localized
remeshing

AMR Applications- Adaptivity

 Adaptivity arises when advances crosses
from one subdomain to another

 It is unknown in advance when or where
the crack growth will take place and
which subdomains will be affected

 The computational complexity of a
subdomain can increase dramatically due
to greater levels of mesh refinement

 Difficult to predict future workloads

Repartitioning

 In adaptive meshes computation, areas
of the mesh are selectively refined or
derefined in order to accurately model
the dynamic computation

 Hence, repartitioning and redistributing
the adapted mesh across processors is
necessary

Repartitioning

 The challenge is to keep the
repartitioning cost to minimum limits

 Similar problems to MD, GoL

 The primary difference in AMR is that
loads can drastically change; cannot
predict; will have to wait for refinement,
then repartition

Structure of Parallel AMR

Repartitioning

 2 methods for creating a new
partitioning from an already distributed
mesh that has become load imbalanced
due to mesh refinement and coarsening

 Scratch-remap schemes create an
entirely new partition

 Diffusive schemes attempt to tweak the
existing partition to achieve better load
balance, often minimizing migration costs

Graph Representation of Mesh

 For irregular mesh applications, the
computations associated with a mesh can
be represented as a graph

 Vertices represent the grid cells; vertex
weights represent the amount of
computations associated with the grid
cells

 Edges represent the communication
between the grid cells; edge weights
represent the amount of interactions

Graph Representation of Mesh

 The objective is to partition across P
processors
 Each partition has equal amount of vertex

weight

 Total weight of the edges cut by the
partition is minimized

Scratch-map Method

 Partitioning from scratch will result in
high vertex migration since the
partitioning does not take the initial
location of the vertices into account

 Hence a partitioning method should
incrementally construct a new partition
as simply a modification of the input
partition

Notations

 Let B(q) be the set of vertices with
partition q

 Weight of any partition q can be defined
as:

 Average partition weight:

 A graph is imbalanced if it is partitioned,
and:

Terms

 A partition is over-balanced if its weight
is greater than the average partition
weight times (1+)

 If less, under-balanced

 The graph is balanced when no partition
is over-balanced

 Repartitioning – existing partition used
as an input to form a new partition

Terms

 A vertex is clean if its current partition
is its initial partition; else dirty

 Border vertex – adjacent vertex in
another partition; those partitions are
neighbor partitions

 TotalV – sum of the sizes of the vertices
which change partitions; i.e., sum of the
sizes of the dirty vertices

3 Objectives

 Maintain balance between partitions

 Minimize edge cuts

 Minimize TotalV

Different Schemes

 Repartitioning from scratch

 Cut-and-paste repartitioning:
excess vertices in an overbalanced
partition are simply swapped into one
or more underbalanced partitions in
order to bring these partitions up to
balance

 The method can optimize TOTALV,
but can have a negative effect on the
edge-cut

Different Schemes

 Another method is analogous to diffusion

 Concept is for vertices to move from
overbalanced to neighboring
underbalanced partitions

Example
(Assuming edge and vertex weights as equal to 1)

Example (contd..)

Analysis of the 3 schemes

 Thus, cut-and-paste repartitioning
minimizes TotalV, while completely
ignoring edge-cut

 Partitioning the graph from the scratch
minimizes edge-cut, while resulting in
high TotalV

 Diffusion attempts to keep both TotalV
and edge-cut low

Space Filling Curves for Partitioning and Load Balancing

Space Filling Curves

 The underlying idea is to map a
multidimensional space to one dimension
where the partitioning is trivial

 There are many different ways

 But a mapping for partitioning algorithms
should preserve the proximity
information present in the
multidimensional space to minimize
communication costs

Space Filling Curve

 Space filling curves are quick to run, can be
implemented in parallel, and produce good
load balancing with locality

 A space-filling curve is formed over
grid/mesh cells by using the centroid of the
cells to represent them

 The SFC produces a linear ordering of the
cells such that cells that are close together
in a linear ordering are also close together
in the higher dimensional space

Space Filling Curve

 The curve is then broken into segments based on
the weights of the cells (weights computed using
size and number of particles)

 The segments are distributed to processors; thus
cells that are close together in space are assigned
to the same processor

 This reduces overall amount of communication that
occur, i.e., increases locality

 Repartitioning for load balancing also involves less
communications only between neighbors

SFC representation

 One method is to define recursively –
curve for a 2^k x 2^k grid composed of
four 2^(k-1) x 2^(k-1) curves

 Another method is using bit interleaving
– the position of a grid point along the
curve can be specified by interleaving
bits of the coordinates of the point

 The interleaving function is a
characteristic of the curve

Z-curve or Morton ordering

 The curve for a 2^k x 2^k grid composed of four
2^(k-1) x 2^(k-1) curves, one in each quadrant of
the 2^k x 2^k grid

 Order in which the curves are connected is the
same as the order for 2x2 grid

Morton Ordering

 Morton ordering is an ordering/numbering of the
subdomains: the bits of the row and column are
interleaved and the subdomains/clusters are labeled by
Morton number

 The Morton ordered subdomains are located nearby each
other mostly; when this ordered subdomains is
partitioned across processors, nearby interacting
particles/nodes are mapped to a single processor, thus
optimizing communication 28

Load Balancing using Morton
Ordering

 The ordered subdomains are
stored in a sorted list

 After an iteration, a processor
computes the load in each of its
clusters; the load is entered into
sorted list

 The load at each processor is
added to form a global sum

 The global sum is divided by the
number of processors, to form
equal load

 The list is traversed and divided
such that the loads in each
division (processor) is
approximately equal 29

Load Balancing using Morton
Ordering

 Each processor compares the load in
current iteration with the desired load in
the next iteration

 If current load < desired load,
clusters/subdomains are imported from
next processor in Morton ordering

 If not, excess load clusters exported
from the end of current list to next
processor

 Done at end of each iteration
30

Graycode Curve

 Uses same interleaving function as Z-
curve

 But visits points in the graycode order

 Graycode – two successive values differ
in only one bit

 The one-bit gray code is (0,1)

Graycode Curve

 The gray code list for n bits can be
generated recursively using n-1 bits
 By reflecting the list (reversing the list)

[1,0]

 Concatenating original with the reflected
[0,1,1,0]

 Prefixing entries in the original list with 0,
and prefixing entries in the reflected list
with 1 [00,01,11,10]

Graycode Curve

 3-bit gray code:
000,001,011,010,110,111,101,100

Hilbert Curve

 Hilbert curve is a smooth curve
that avoids the sudden jumps in Z-
curve and graycode curve

 Curve composed of four curves of
previous resolution in four
quadrants

 Curve in the lower left quadrant
rotated clockwise by 90 degree,
and curve in lower right quadrant
rotated anticlockwise by 90
degree

SFCs for AMR

 All these curve based partitioning
techniques can also be applied for
adaptive mesh by forming hierarchical
SFCs

