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Adaptive Applications

 Highly adaptive and irregular applications

 Amount of work per task can vary 
drastically throughout the execution –
similar to earlier applications, but..

 Has notions of “interesting” regions

 Computations in the “interesting” regions 
of the domain larger than for other 
regions

 It is difficult to predict which regions 
will become interesting



AMR Applications

 An example of such applications is Parallel 
Adaptive Mesh Refinement (AMR) for 
multi-scale applications

 Adaptive Mesh – Mesh or grid size is not 
fixed as in Laplace/Jacobi, but interesting 
regions are refined to form finer level 
grids/mesh

 E.g.: to study crack growth through a 
macroscopic structure under stress



AMR Applications – Crack 
propagation

 Such a system is subject to the laws 
of plasticity and elasticity and can be 
solved using finite element method

 Crack growth forces the geometry of 
the domain to change

 This in turn necessitates localized 
remeshing



AMR Applications- Adaptivity

 Adaptivity arises when advances crosses 
from one subdomain to another

 It is unknown in advance when or where 
the crack growth will take place and 
which subdomains will be affected

 The computational complexity of a 
subdomain can increase dramatically due 
to greater levels of mesh refinement

 Difficult to predict future workloads



Repartitioning

 In adaptive meshes computation, areas 
of the mesh are selectively refined or 
derefined in order to accurately model 
the dynamic computation

 Hence, repartitioning and redistributing 
the adapted mesh across processors is 
necessary



Repartitioning

 The challenge is to keep the 
repartitioning cost to minimum limits

 Similar problems to MD, GoL

 The primary difference in AMR is that 
loads can drastically change; cannot 
predict; will have to wait for refinement, 
then repartition



Structure of Parallel AMR



Repartitioning

 2 methods for creating a new 
partitioning from an already distributed 
mesh that has become load imbalanced 
due to mesh refinement and coarsening

 Scratch-remap schemes create an 
entirely new partition

 Diffusive schemes attempt to tweak the 
existing partition to achieve better load 
balance, often minimizing migration costs



Graph Representation of Mesh

 For irregular mesh applications, the 
computations associated with a mesh can 
be represented as a graph

 Vertices represent the grid cells; vertex 
weights represent the amount of 
computations associated with the grid 
cells

 Edges represent the communication 
between the grid cells; edge weights 
represent the amount of interactions



Graph Representation of Mesh

 The objective is to partition across P 
processors
 Each partition has equal amount of vertex 

weight

 Total weight of the edges cut by the 
partition is minimized 



Scratch-map Method

 Partitioning from scratch will result in 
high vertex migration since the 
partitioning does not take the initial 
location of the vertices into account

 Hence a partitioning method should 
incrementally construct a new partition 
as simply a modification of the input 
partition



Notations

 Let B(q) be the set of vertices with 
partition q

 Weight of any partition q can be defined 
as:

 Average partition weight:

 A graph is imbalanced if it is partitioned, 
and:



Terms

 A partition is over-balanced if its weight 
is greater than the average partition 
weight times (1+  )

 If less, under-balanced

 The graph is balanced when no partition 
is over-balanced

 Repartitioning – existing partition used 
as an input to form a new partition



Terms

 A vertex is clean if its current partition 
is its initial partition; else dirty

 Border vertex – adjacent vertex in 
another partition; those partitions are 
neighbor partitions

 TotalV – sum of the sizes of the vertices 
which change partitions; i.e., sum of the 
sizes of the dirty vertices



3 Objectives

 Maintain balance between partitions

 Minimize edge cuts

 Minimize TotalV



Different Schemes

 Repartitioning from scratch

 Cut-and-paste repartitioning: 
excess vertices in an overbalanced 
partition are simply swapped into one 
or more underbalanced partitions in 
order to bring these partitions up to 
balance

 The method can optimize TOTALV, 
but can have a negative effect on the 
edge-cut



Different Schemes

 Another method is analogous to diffusion

 Concept is for vertices to move from 
overbalanced to neighboring 
underbalanced partitions 



Example
(Assuming edge and vertex weights as equal to 1)



Example (contd..)



Analysis of the 3 schemes

 Thus, cut-and-paste repartitioning 
minimizes TotalV, while completely 
ignoring edge-cut

 Partitioning the graph from the scratch 
minimizes edge-cut, while resulting in 
high TotalV

 Diffusion attempts to keep both TotalV 
and edge-cut low



Space Filling Curves for Partitioning and Load Balancing



Space Filling Curves

 The underlying idea is to map a 
multidimensional space to one dimension 
where the partitioning is trivial

 There are many different ways

 But a mapping for partitioning algorithms 
should preserve the proximity 
information present in the 
multidimensional space to minimize 
communication costs



Space Filling Curve

 Space filling curves are quick to run, can be 
implemented in parallel, and produce good 
load balancing with locality

 A space-filling curve is formed over 
grid/mesh cells by using the centroid of the 
cells to represent them

 The SFC produces a linear ordering of the 
cells such that cells that are close together 
in a linear ordering are also close together 
in the higher dimensional space



Space Filling Curve

 The curve is then broken into segments based on 
the weights of the cells (weights computed using 
size and number of particles)

 The segments are distributed to processors; thus 
cells that are close together in space are assigned 
to the same processor

 This reduces overall amount of communication that 
occur, i.e., increases locality

 Repartitioning for load balancing also involves less 
communications only between neighbors



SFC representation

 One method is to define recursively –
curve for a 2^k x 2^k grid composed of 
four 2^(k-1) x 2^(k-1) curves

 Another method is using bit interleaving 
– the position of a grid point along the 
curve can be specified by interleaving 
bits of the coordinates of the point

 The interleaving function is a 
characteristic of the curve



Z-curve or Morton ordering

 The curve for a 2^k x 2^k grid composed of four 
2^(k-1) x 2^(k-1) curves, one in each quadrant of 
the 2^k x 2^k grid

 Order in which the curves are connected is the 
same as the order for 2x2 grid



Morton Ordering

 Morton ordering is an ordering/numbering of the 
subdomains: the bits of the row and column are 
interleaved and the subdomains/clusters are labeled by 
Morton number

 The Morton ordered subdomains are located nearby each 
other mostly; when this ordered subdomains is 
partitioned across processors, nearby interacting 
particles/nodes are mapped to a single processor, thus 
optimizing communication 28



Load Balancing using Morton 
Ordering

 The ordered subdomains are 
stored in a sorted list

 After an iteration, a processor 
computes the load in each of its 
clusters; the load is entered into 
sorted list

 The load at each processor is 
added to form a global sum

 The global sum is divided by the 
number of processors, to form 
equal load

 The list is traversed and divided 
such that the loads in each 
division (processor) is 
approximately equal 29



Load Balancing using Morton 
Ordering

 Each processor compares the load in 
current iteration with the desired load in 
the next iteration

 If current load < desired load, 
clusters/subdomains are imported from 
next processor in Morton ordering

 If not, excess load clusters exported 
from the end of current list to next 
processor

 Done at end of each iteration
30



Graycode Curve

 Uses same interleaving function as Z-
curve

 But visits points in the graycode order

 Graycode – two successive values differ 
in only one bit

 The one-bit gray code is (0,1)



Graycode Curve

 The gray code list for n bits can be 
generated recursively using n-1 bits
 By reflecting the list (reversing the list) 

[1,0]

 Concatenating original with the reflected 
[0,1,1,0]

 Prefixing entries in the original list with 0, 
and prefixing entries in the reflected list 
with 1 [00,01,11,10]



Graycode Curve

 3-bit gray code: 
000,001,011,010,110,111,101,100



Hilbert Curve

 Hilbert curve is a smooth curve 
that avoids the sudden jumps in Z-
curve and graycode curve

 Curve composed of four curves of 
previous resolution in four 
quadrants

 Curve in the lower left quadrant 
rotated clockwise by 90 degree, 
and curve in lower right quadrant 
rotated anticlockwise by 90 
degree



SFCs for AMR

 All these curve based partitioning 
techniques can also be applied for 
adaptive mesh by forming hierarchical 
SFCs


