Adaptive Mesh Applications

Sathish Vadhiyar

Sources:
- Schloegel, Karypis, Kumar. Multilevel Diffusion Schemes for Repartitioning of
Adaptive Meshes. JPDC 1997 (Taken verbatim)

Adaptive Applications

Highly adaptive and irregular applications

Amount of work per task can vary
drastically throughout the execution -
similar to earlier applications, but..

Has notions of "interesting” regions

Computations in the “interesting” regions
of the domain larger than for other
regions

It is difficult to predict which regions

will become interesting

AMR Applications

An example of such applications is Parallel
Adaptive Mesh Refinement (AMR) for
multi-scale applications

Adaptive Mesh - Mesh or grid size is hot
fixed as in Laplace/Jacobi, but interesting
regions are refined to form finer level
grids/mesh

E.g.: o study crack growth through a
macroscopic structure under stress

AMR Applications — Crack
propagation

[0 Such a system is subject to the laws
of plasticity and elasticity and can be
solved using finite element method

O Crack growth forces the geometry of
the domain to change

1 This in Turn necessitates localized
remeshing

AMR Applications- Adaptivity

Adaptivity arises when advances crosses
from one subdomain to another

It is unknown in advance when or where
the crack growth will fake place and
which subdomains will be affected

The computational complexity of a
subdomain can increase dramatically due
to greater levels of mesh refinement

Difficult to predict future workloads

Repartitioning

In adaptive meshes computation, areas
of the mesh are selectively refined or
derefined in order to accurately model
the dynamic computation

Hence, repartitioning and redistributing
the adapted mesh across processors is
necessary

Repartitioning

The challenge is to keep the
repartitioning cost o minimum limits

Similar problems to MD, GolL

The primary difference in AMR is that
loads can drastically change; cannot
predict; will have to wait for refinement,
then repartition

Structure of Parallel AM

—_—

N

=

[lterative Mesh-based Computation ‘ <—‘

iL
Mesh Adaptation l

4

[Compute a New Partitioning

4

[Redistribute Data J|

|

Repartitioning

2 methods for creating a new
partitioning from an already distributed
mesh that has become load imbalanced
due to mesh refinement and coarsening

Scratch-remap schemes create an
entirely new partition

Diffusive schemes attempt to tweak the
existing partition to achieve better load
balance, often minimizing migration costs

Graph Representation of Mesh

For irregular mesh applications, the
computations associated with a mesh can
be represented as a graph

Vertices represent the grid cells; vertex
weights represent the amount of
computations associated with the grid
cells

Edges represent the communication
between the grid cells; edge weights

represent the amount of interactions

Graph Representation of Mesh

The objective is to partition across P
processors

B Each partition has equal amount of vertex
weight

B Total weight of the edges cut by the
partition is minimized

Scratch-map Method

Partitioning from scratch will result in
high vertex migration since the
partitioning does not take the initial
ocation of the vertices into account

Hence a partitioning method should
incrementally construct a new partition
as simply a modification of the input
partition

Notations

Let B(q) be the set of vertices with
partition q

Weight of any partition q can be defined
as. wig = Z w;

v B(q)

. : Lo P W)
Average partition weight: ===

A graph is imbalanced if it is partitioned,
~and: 3¢ W(g) > W x (1+¢)

Terms

A partition is over-balanced if its weight
is greater than the average partition
weight times (1+€)

If less, under-balanced

The graph is balanced when no partition
is over-balanced

Repartitioning - existing partition used
as an input to form a new partition

Terms

A vertex is clean if its current partition
is its initial partition; else dirty
Border vertex - adjacent vertex in

another partition; those partitions are
neighbor partitions

TotalV - sum of the sizes of the vertices
which change partitions; i.e., sum of the
sizes of the dirty vertices

3 Objectives

Maintain balance between partitions
Minimize edge cuts
Minimize TotalV

Different Schemes

Repartitioning from scratch

Cut-and-paste repartitioning:
excess vertices in an overbalanced
partition are simply swapped into one
or more underbalanced partitions in
order to bring these partitions up to
balance

'he method can optimize TOTALV,
but can have a negative effect on the

edge-cut

Different Schemes

Another method is analogous to diffusion

Concept is for vertices to move from
overbalanced to neighboring
underbalanced partitions

Example

(Assuming edge and vertex weights as equal to 1)

Edge-cut = 12 Edge-cut = 13 TotalV=7 |

(a) Original Graph (b) Partitioning from Scratch

Example (contd..)

Analysis of the 3 schemes

Thus, cut-and-paste repartitioning
minimizes TotalV, while completely
ignoring edge-cut

Partitioning the graph from the scratch
minimizes edge-cut, while resulting in
high TotalV

Diffusion attempts to keep both TotalV
and edge-cut low

Space Filling Curves for Partitioning and Load Balancing

Space Filling Curves

The underlying idea is to map a
multidimensional space to one dimension
where the partitioning is trivial

There are many different ways

But a mapping for partitioning algorithms
should preserve the proximity
information present in the
multidimensional space to minimize
communication costs

Space Filling Curve

Space filling curves are quick to run, can be
implemented in parallel, and produce good
load balancing with locality

A space-filling curve is formed over
grid/mesh cells by using the centroid of the
cells to represent them

The SFC produces a linear ordering of the
cells such that cells that are close together
in a linear ordering are also close together

in the higher dimensional space

Space Filling Curve

B

The curve is then broken into segments based on
the weights of the cells (weights computed using
size and number of particles)

The segments are distributed to processors; thus
cells that are close together in space are assigned
to the same processor

This reduces overall amount of communication that
occur, i.e., increases locality

Repartitioning for load balancing also involves less
communications only between neighbors

SFC representation

One method is to define recursively -
curve for a 2"k x 2"k grid composed of
four 2°(k-1) x 2”°(k-1) curves

Another method is using bit interleaving
- the position of a grid point along the
curve can be specified by interleaving
bits of the coordinates of the point

The interleaving function is a
characteristic of the curve

Z-curve or Morton ordering

00 The curve for a 2”k x 27k grid composed of four
2”(k-1) x 2°(k-1) curves, one in each quadrant of
the 2°k x 2"k grid

0 Order in which the curves are connected is the
same as the order for 2x2 grid

Morton Ordering

[0 Morton ordering is an ordering/numbering of the
subdomains: the bits of the row and column are
interleaved and the subdomalns/clusters are labeled by
Morton number -

0000 0010 1000 1010

- AER

g If}llf ru I)Ji!

00011« {001
/n

11/1/

= 0100 a1 /II{J(J 110
G Loz /\ 14
. 2\
TRSAR
()iék/ UI“V i ’1111
5

7 13 15

Ol

11

[0 The Morton ordered subdomains are located nearby each
other mostly; when this ordered subdomains is
partitioned across processors, nearby interacting

ticles/nod ' nal 4
optimizing communication 28

Load Balancing using

Ordering

O

O

00

The ordered subdomains are
stored in a sorted list

After an iteration, a processor
computes the load in each of its
clusters; the load is entered into
sorted list

The load at each processor is
added to form a global sum

The global sum is divided by the
number of processors, to form
equal load

The list is traversed and divided
such that the loads in each

il

11}

11

Total load = 115
Load per processor=115/4 =129

Processor O; load = 25

Processor 1: load = 33

e -
~division (processor) is | | ProcessorJdoad =24

approximately equal

29

Load Balancing using Morton
Ordering

Each processor compares the load in
current iteration with the desired load in
the next iteration

If current load < desired load,
clusters/subdomains are imported from
next processor in Morton ordering

If not, excess load clusters exported
from the end of current list to next
Processor

30

Graycode Curve

Uses same interleaving function as Z-
curve

But visits points in the graycode order

Graycode - two successive values differ
in only one bit

The one-bit gray code is (0,1)

Graycode Curve

The gray code list for n bits can be

generated recursively using n-1 bits

B By reflecting the list (reversing the list)
[1.0]

B Concatenating original with the reflected

[0,1,10]

B Prefixing entries in the original list with O,
and prefixing entries in the reflected list
with 1 [00,01,11,10]

Graycode Curve

3-bit gray code:
000,001,011,010,110,111,101,100

(rl'él}-‘t':]:lt' clrrve

—1 [

S=il

i

\

)
LAAN
mn

\

)

\

n

\

i
LILN
mn

\

i

/

Hilbert Curve

[0 Hilbert curve is a smooth curve
that avoids the sudden jumps in Z- Hilbert curve

curve and graycode curve

O Curve composed of four curves of

previous resolution in four

quadrants

[0 Curve in the lower left quadrant

rotated clockwise by 90 degree,

and curve in lower right quadrant
rotated anticlockwise by 90
degree

SFCs for AMR

All these curve based partitioning
techniques can also be applied for
adaptive mesh by forming hierarchical
SFCs

